PARTIAL REGULARITY FOR SOLUTIONS OF VARIATIONAL PROBLEMS

N. Fusco and J.E. Hutchinson

We report here on some recent results of the authors [FH1,2] within the context of a general discussion of problems in the calculus of variations. Some results (those in [FH2]) were not included in the delivered lecture.

We will consider minima of functionals F of the form

(1)
$$u \mapsto F[u] = \int_{\Omega} F(x, u, Du)$$

where $\Omega \subset \mathbb{R}^n$, Ω is open, and $u: \Omega \to \mathbb{R}^N$. It will always be assumed that F is a *Caratheodory* function, i.e. F = F(x, u, p) is measurable in x for all $(u, p) \in \mathbb{R}^n \times \mathbb{R}^N$ and is continuous in (u, p) for almost all $x \in \Omega$. This ensures that F(x, u, Du) is measurable if u is measurable.

Here will be interested in the general case $n \ge 1$ and $N \ge 1$. If N = 1, one can obtain much stronger results, for this we refer to [G1], [G2], [GT], [LU], and [M].

There are two questions of fundamental interest. First, one wants to show (subject to various boundary conditions) the *existence* of minima of F in suitable function classes. Second, one is interested in the *regularity* (i.e. smoothness) properties of such minimisers.

The existence problem in a general sense is solved as a standard consequence of the following result by Acerbi and Fusco [AF].

Lecture delivered by the second author.

 \ast

Theorem 1 Suppose F = F(x,u,p) is a Caratheodory function. Assume that

$$0 \leq \mathbf{F}(\mathbf{x},\mathbf{u},\mathbf{p}) \leq \lambda(1+|\mathbf{u}|^{m}+|\mathbf{p}|^{m})$$

for some $m \ge 1$.

Then the functional F is weakly sequentially lower semicontinuous in $\operatorname{H}^{1,\mathfrak{m}}(\Omega; \mathbb{R}^N)$ iff F is quasiconvex.

We say that F is *quasiconvex* if linear functions are local minimisers of the "frozen" functionals corresponding to F. More precisely, F is quasiconvex if for a.e. $x_0 \in \Omega$ and for all $(u_0,p) \in \mathbb{R}^N \times \mathbb{R}^{nN}$ one has

$$\int_{\Omega} F(\mathbf{x}_{0}, \mathbf{u}_{0}, \mathbf{p}) \leq \int_{\Omega} F(\mathbf{x}_{0}, \mathbf{u}_{0}, \mathbf{p} + \mathbf{D}\phi)$$

for all $\phi \leq C_{C}^{\infty}(\mathbb{R}^{n};\mathbb{R}^{N})$.

For further discussion on the existence question we refer to the book [G1] and the references therein.

We now discuss in somewhat more detail the regularity question for minima of $\ensuremath{\ensuremath{\mathcal{F}}}$.

Suppose F is a Caratheodory function, F = F(x,u,p) is C^2 in p for all $(x,u) \in \Omega \times \mathbb{R}^N$, and F satisfies the following conditions

$$\begin{cases} (i) |p|^{2} - 1 \leq F(x,u,p) \leq a(1+|p|^{2}), \\ (ii) |F_{pp}(x,u,p)| \leq b \\ (iii) F_{pp}\xi\xi = F_{p_{\alpha}^{i}p_{\beta}^{j}}\xi_{\alpha}^{i}\xi_{\beta}^{j} \geq \lambda|\xi|^{2} \\ for some \ \lambda > 0 \ and \ all \ \xi \in \mathbb{R}^{nN}, \\ (iv) \ (1+|p|^{2})^{-1} F(x,u,p) \ is \ H\ddot{o}lder \ continuous \ in \ (x,u) \\ uniformly \ in \ p \ In \ other \ words \\ |F(x,u,p) - F(y,v,p)| \leq c(1+|p|^{2})\omega(|x-y|^{2}+|u-v|^{2}) \end{cases}$$

where $\omega(t) \le t^{\sigma}$, $0 < \sigma \le \frac{1}{2}$, and ω is bounded, non-negative, concave, and increasing on $\{t \ge 0\}$.

Then we have the following result due to Giaquinta and Giusti [GG].

Theorem 2 Suppose F is as in (1) and (2). Suppose $u \in W_{loc}^{1,2}(\Omega; \mathbf{R}^N)$ is a local minimum for F (i.e. $F[u] \leq F[u+\phi]$ for all $\phi \in W^{1,2}(\Omega; \mathbf{R}^N)$ with spt $\phi \subset \Omega$). Then there exists an open set $\Omega_0 \subset \Omega$ such that $u \in C_{loc}^{1,\alpha}(\Omega_0)$ for some $0 < \alpha < 1$ and such that $H^n(\Omega \sim \Omega_0) = 0$. Moreover,

(3)
$$\Omega_0 = \left\{ x_0 \in \Omega : \limsup_{r \to 0} |(Du)_{x_0, r} \right| < \infty$$

and $\liminf_{r \to 0} \int_{B(x_0, r)} |Du - (Du)_{x_0, r}|^2 = 0 \}$. \Box

The theorem is proved by ultimately establishing a local decay estimate in $~\Omega_{_{\rm O}}$ of the form

(4)
$$\int_{B(x_0,\rho)} |Du - (Du)_{x_0,\rho}|^2 \le c\rho^{2\alpha}$$

as $\rho \to 0$, for some $\alpha > 0$. The key idea is to compare u with the minimum v in $B(x_0,r)$ of the frozen functional

$$w \mapsto \int_{B(x_0,r)} F(x_0, (u)_{x_0,r}, Dw)$$

with boundary condition

$$w \in u + W_0^{1,2}(B(x_0,r))$$
.

In particular, one uses the fact that w, being a solution of a constant coefficient equation, satisfies a decay condition analogous to (4). Finally, one uses results of Companato [cf. [G1, Chapter III]) to deduce the Hölder continuity of u in Ω_0 from (4).

It is an open question whether one can improve the dimension of

the singular set $\Omega \sim \Omega_0$. For particular classes of functionals this is indeed the case. On the other hand, one cannot generally expect everywhere regularity, as well-known counterexamples show. Again we refer to [G1] for further discussion.

Aside from the question of the dimension of the singular set, there are some other gaps between the existence results which follow from Theorem 1 and the (partial) regularity results of Theorem 2.

In particular, the *convexity condition* of (2)(iii) implies quasiconvexity but not conversely; see [M, Chapter 4.4] and [Gl, Chapter IX.2]. However, it has recently been shown that if one replaces (2)(iii) by the requirement of *strict quasiconvexity* (see below), then one again has partial Hölder continuity of first derivatives of local minimisers.

One says that F is strictly quasiconvex if there exists $\gamma > 0$ such that for a.e. $x_0 \in \Omega$, for all $(u_0,p) \in \mathbb{R}^N \times \mathbb{R}^{nN}$, and for all $\phi \in C_0^1(\mathbb{R}^n;\mathbb{R}^N)$, one has

(2) (iii) $\int_{\Omega} [F(x_0, u_0, p) + \gamma | D\phi |^2] \leq \int_{\Omega} F(x_0, u_0, p + D\phi) .$

The following theorem was proved by Evans [E] in case F depends only on p , and then later for general F by Fusco and Hutchinson [FH1] and also by Giaquinta and Modica [GM].

Theorem 3 Under the same hypothesis as Theorem 2, but with (2) (iii) replaced by (2) (iii)^{*}, we have that if $u \in W^{1,2}(\Omega; \mathbb{R}^N)$ is a local minimum then $u \in C^{1,\alpha}_{loc}(\Omega_0)$, for some $0 < \alpha < 1$ and some open Ω_0 satisfying $\operatorname{H}^n(\Omega \sim \Omega_0) = 0$.

The proof in [E] was by means of a "blow-up" argument. The key new point was to establish the following Caccioppoli type estimate assuming (2)(iii) * rather than (2)(iii):

$$\int_{B(x_0, r/2)} |Du - \xi|^2 \le c(L) r^{-2} \int_{B(x_0, r)} |u - a - \xi(x - x_0)|^2$$

provided $B(x_0,r) \subset \Omega$, $a \in \mathbb{R}^N$, $\xi \in \mathbb{R}^{nN}$, and $|\xi| \leq L$.

One is naturally tempted to extend the result in [E] (where F depends only on p) to general functionals F (depending on x and u, as well as p) as follows. Suppose u is a local minimiser of F. Try to obtain an estimate in Ω_0 of the form

(5)
$$\int_{B(x_{0},\rho)} |Du - (Du)_{x_{0},\rho}|^{2} \le c\rho^{20}$$

by first estimating $\int_{B(x_0,r)} |Du - Dv|^2$, where v minimises $\int_{B(x_0,r)} F(x, (u)_{x_0,r}, Dv)$ subject to $v \in u + W_0^{1,2}(B(x_0,r))$, and then by combining this with the estimate (5), with u replaced by v, which estimate is proved in [E].

However, one cannot readily estimate $\int_{B(x_0,r)} |Du - Dv|^2 \text{ with } v$ as above, precisely because $F_{\alpha,\beta}(x,u,p)$ satisfies a Legendre Hadamard condition $F_{\beta,\alpha\beta} \xi^i \xi^j \eta_{\alpha} \eta_{\beta} \ge \gamma |\xi|^2 |\eta|^2$ rather than a Legendre condition $F_{\beta,\alpha\beta} \xi^i \xi^j \xi^j \ge \gamma |\xi|^2$.

This problem is solved in [FH1] by invoking a lemma of Ekeland (cf. [Gl, Theorem 2.3, p.257]), from which one can deduce the existence for any $B(x_0,r) \subset \Omega$ of a function v such that

$$\int_{B(x_0,r)} |Dv - Du|^2 \leq r^{2\alpha}$$

and v minimises the problem

$$\begin{split} \mathbf{f} &\mapsto \oint_{\mathbf{B}(\mathbf{x}_{0},\mathbf{r})} \mathbf{F}(\mathbf{x}_{0},(\mathbf{u})_{\mathbf{x}_{0},\mathbf{r}},\mathbf{Df}) + \mathbf{cr}^{\beta} \left(\oint_{\mathbf{B}(\mathbf{x}_{0},\mathbf{r})} |\mathbf{Df}-\mathbf{Dv}|^{2} \right)^{\frac{1}{2}} \\ \mathbf{f} &\in \mathbf{v} + \mathbf{W}_{0}^{1,2}(\mathbf{B}(\mathbf{x}_{0},\mathbf{r});\mathbf{R}^{N}) , \end{split}$$

for some small positive α, β . For further details see [FH1, §4].

The estimate (5) is obtained by means of a "blow-up" argument. Thus one supposes such an estimate is not true, blows up minimisers v_m obtained as above in appropriate balls $B(x_m, r_m)$, and obtains a contradiction by passing to a limit of the v_m .

As remarked above, the results in [E], [GG] and [FH], allow a weakening of the hypotheses of Theorem 2 by replacing convexity by a strengthened form of quasiconvexity. Another natural weakening of the hypotheses of Theorem 2 is to replace the quadratic growth of F(x,u,p) in the variable p, by a growth rate of order $|p|^m$ for some m.

Motivated by a functional given by

$$F(x,u,p) = a(x,u)(1+|p|^{m}), m \ge 2$$

we consider the following structural conditions to replace (2) (where $m \ge 2$):

(2) (i)' $|p|^{m} - 1 \le F(x,u,p) \le a(1 + |p|^{m})$

(ii)'
$$|F_{pp}(x,u,p)| \le b(1+|p|^{m-2})$$

(iii)'
$$F_{pp}\xi\xi \ge \lambda(1+|p|^{m-2})\xi\xi$$

(iv)'
$$(1+|p|^m)^{-1} F(x,u,p)$$
 is Hölder continuous on
(x,u) uniformly in p.

Then one can still prove $C^{1,\alpha}$ regularity (some $\alpha > 0$) on an open Ω_0 with $\#^n(\Omega \sim \Omega_0) = 0$, as in Theorem 2. Moreover, one can even replace (2)(iii)' by (2)(iii)'*

(2) (iii) *
$$\int_{\Omega} [F(x_0, u_0, p_0) + \gamma(|D\phi|^2 + |D\phi|^m)] \leq \int_{\Omega} F(x_0, u_0, p_0 + D\phi)$$

for a.e. $x_0 \in \Omega$, for all $(u,p) \in \mathbb{R}^N \times \mathbb{R}^{NN}$, for all $\phi \in C_0^1(\mathbb{R}^n; \mathbb{R}^N)$, and for some $\gamma > 0$; see [E], [FH1] and [GM]. However, if one considers a functional given by (1) and

(6)
$$F(x,u,p) = a(x,u) |p|^{m}, m \ge 2,$$

one sees that one should replace the structural condition (2) (iii) by

(2) (iii)''
$$F_{pp}\xi\xi \geq \lambda |p|^{m-2}\xi\xi .$$

Although (partial) regularity results are not known for such a general class of functionals, there are some results. Uhlenbeck [U] has shown *complete* $C^{1,\alpha}$ (some small $\alpha > 0$) regularity for minimisers (even stationary points) of $\int |Du|^m$ in case $m \ge 2$. This has been extended to m > 1 by Tolksdorff [T1]. Moreover, examples show that one cannot expect $C^{1,\alpha}$ regularity for all $0 < \alpha < 1$ (cf. [T2]).

In [FH2], partial regularity was shown for minimisers of functionals corresponding to (6). More generally, we have the following result.

Theorem 4 Suppose $u \in W_{loc}^{1,p}(\Omega)$ is a local minimum for (7) $F[u] = \int_{\Omega} [G^{\alpha\beta}(x,u)g_{ij}(x,u) D_{\alpha}u^{i} D_{\beta}u^{j}]^{p/2}$

where $p \ge 2$. Suppose G and g satisfy

$$\begin{split} \left| \xi \right|^2 &\leq G \xi \xi \leq M \left| \xi \right|^2 \quad \text{for all } \xi \in \mathbb{R}^n \text{,} \\ \left| \eta \right|^2 &\leq g \eta \eta \leq M \left| \eta \right|^2 \quad \text{for all } \eta \in \mathbb{R}^N \text{,} \end{split}$$

and G, g are $C^{0,\sigma}$ on $\Omega\times {\rm I\!R}^n$.

Then $u \in C_{loc}^{1,\alpha}(\Omega_0)$ for some $0 < \alpha < 1$ and some $\Omega_0 \subset \Omega$, where $H^{n-q}(\Omega \sim \Omega_0) = 0$ for some q > p.

Moreover

(8)

$$\Omega_0 = \{ \mathbf{x}_0 \in \Omega : \limsup_{r \to 0} |(\mathbf{u})_{\mathbf{x}_0, r} | < \infty$$

and
$$\liminf_{r \to 0} r^{p-n} \int |\mathbf{D}\mathbf{u}|^p = 0 \}.$$

The main idea in the proof is to first obtain an appropriate decay estimate for minima of functionals of the form

$$u \mapsto \int [G^{\alpha\beta}g_{ij} D_{\alpha}u^{i}D_{\beta}u^{j}]^{p/2}$$

where $[G^{\alpha\beta}]$, $[g_{ij}]$ are *constant* inner products on \mathbb{R}^N and \mathbb{R}^n respectively.

By a change of coordinates, one reduces the problem to considering functionals of the form

$$u \mapsto \int |Du|^p$$

where $|Du| = (D_{\alpha}u^{i}D_{\alpha}u^{i})^{\frac{1}{2}}$. Indeed, we work more generally with solutions of the Euler Lagrange equation

(9)
$$\int |Du|^{p-2} Du D\phi = 0$$

for all $\phi \in W_0^{1,p}(\Omega; \mathbb{R}^N)$.

One might hope for an estimate on solutions u of (9) which has

$$\int_{B(x_0,\tau R)} |Du - (Du)_{\tau R}|^p \leq c\tau^{p\alpha} \int_{B(x_0,rR)} |Du - (Du)_{R}|^p$$

for all $B(x_0,R) \subset \Omega$ and $0 < \tau < 1$. However, it is not clear that such an estimate is true. What is done instead in [FH2] is to obtain an estimate of the form

(10)
$$\phi(\mathbf{x}_0, \tau \mathbf{R}) \leq c \tau^{\alpha} \psi(\mathbf{x}_0, \mathbf{R}) \quad \text{for } 0 < \tau < 1$$

where one defines

$$\phi(\mathbf{x}_{0},\rho) = \int_{B(\mathbf{x}_{0},\rho)} |Du - (Du)_{\mathbf{x}_{0},\rho}|^{p} + |(Du)_{\mathbf{x}_{0},\rho}|^{p-2} \int_{B(\mathbf{x}_{0},\rho)} |Du - (Du)_{\mathbf{x}_{0},\rho}|^{2},$$

whenever $B(x_0, \rho) \subset \Omega$.

The proof of (10) uses earlier estimates of Uhlenbeck [U]. One finally proves Theorem 4 by comparing a minimum of (7) with a minimum of the problem

$$\begin{cases} v \mapsto \int_{B(x_0, R)} [G^{\alpha\beta}(x_0, (u)_{x_0, R}) g_{ij}(x_0, (u)_{x_0, R}) D_{\alpha} v^i D_{\beta} v^j]^{p/2} \\ v \in u + W_0^{1, p}(B(x_0, R), \mathbb{R}^N) \end{cases}$$

where $B(x_0, 2R) \subset \Omega$. One combines an estimate of the type (10) (with u there replaced by v) together with an estimate of the form

$$\int_{B(x_0,R)} |Du - Dv|^p \leq c^* R^{\varepsilon}$$

for some small $\epsilon>0$, where here c^{\star} depends on $\displaystyle \int_{B(x_{_{0}},2R)}|Du|^{p}$ and $|\displaystyle \int_{B(x_{_{0}},R)}u|$.

The resulting estimate which one obtains is

(11)
$$\phi(\mathbf{x}_{0}, \tau \mathbf{R}) \leq \mathbf{c}^{**}(\tau \mathbf{R})^{\alpha}$$

for some small $\alpha > 0$ and all sufficiently small τ , provided $B(x_0, 2R) \subset \Omega_0$ where Ω_0 is defined in (8). Here c^{**} has the same dependencies as c^* . By the usual Compariato estimates it follows $u \in C_{loc}^{1,\alpha}(\Omega_0)$.

Finally, we remark that if in (7) the matrix G does not depend on u, and u is a locally *bounded* minimum, then the dimension of the singular set is at most n - [q] - 1 for some q > p (q does not depend on u), where [q] is the integer part of q. If $n \le q+1$, then u can have at most isolated singularities. The proof is a modification of a similar argument in [GG]. REFERENCES

- [AF] E. Acerbi, N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. Anal. <u>86</u> (1984), 125-145.
- [E] C.L. Evans, Quasiconvexity and partial regularity in the calculus of variations, University of Maryland preprint, 1984.
- [FH1] N. Fusco J.E. Hutchinson, C^{1, α} partial regularity of functions minimising quasiconvex integrals Manuscripta Mathematica <u>54</u> (1985), 121-143.
- [FH2] N. Fusco J.E. Hutchinson, Partial regularity for minimisers of certain functionals having non-quadratic growth, Centre for Mathematical Analysis Report #40, 1985, Canberra.
- [G1] M. Giaquinta, Multiple Integrals in the Calculus of Variations,
 Annals of Mathematics Studies 105, Princeton University Press,
 1983.
- [G2] M. Giaquinta, An Introduction to the REgularity Theory for Nonlinear Elliptic Systems, Lecture notes from Mathematics Department, Univ. of Zürich, 1984.
- [GG] M. Giaquinta, E. Giusti, Differentiability of minima of nondifferentiable functionals, *Inv. Math.* <u>72</u> (1973), 285-298.
- [GM] M. Giaquinta, G. Modica, Partial regularity of minimisers of quasiconvex integrals, University of Florence preprint, 1985.
- [GT] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977 (2nd edn, 1984).
- P.A. Ivert, Partial regularity of vector valued functions minimising variational integrals, preprint.
- [LU] O.A. Ladyzharvskaya, N.N. Ural'tseva, *Linear and Quasilinear Elliptic Equations*, Engl. Trans., Academic Press, 1968.

- [M] C.B. Morrey Jr, Multiple Integrals in the Calculus of Variations, Springer-Verlag, 1966.
- [T1] P. Tolksdorf, Everywhere regularity for some quasilinear systems with a lack of ellipticity, Annali di Matematica Pura ed Applicata <u>134</u> (1983), 241-266.
- [T2] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, Journal of Differential Equations, to appear.
- [U] K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math. <u>138</u> (1977), 219-240.