ASYMPTOTIC BEHAVIOUR NEAR ISOLATED SINGULAR POINTS

FOR GEOMETRIC VARIATIONAL PROBLEMS

David Adams and Leon Simon

Isolated singularities for extrema of functionals of "geometric"

type have been studied in [SL1], [SL2]. Here we will use the notation

of [SL1]. We consider functionals of the form

o0
(1) F(u) = J J e—mt[F(w,u,Vu,ég) + E(w,t,u,Vu,ég)]dwdt
at ot
0"z
where = is a compact manifold, m constant # 0 , ¥ = gradient on
2 , and where E has exponential decay with respect to t as t § o .

Here, u is a 02 section of a vector bundle V over £ x (0,®)

For these functionals, it is proved in [SL1] that under certain
conditions, e.g. that the C2 norm of u on Z£ X (0,w) is finite,
F(w,z,p,q) convex in p , q-Fq(m,z,p,q) = Iql2 for gl £1 and
q~Fq(w,z,p,q) >0 for g#0 , and F(w,z,p,0) real analytic in
{(z,p) , an extremum u of (1) has a limit as t ¢ « . However, the
method of proof does not yield estimates for the rate of convergence to

the limit, except in special circumstances.
We also consider the functionals

?z(u) = Iz F(w,u,vu,0)dw .



We write e—mtm ,‘mz for the Euler-Lagrange operators of ¥ ?2
respectively (see [SL1, I182]). As in [SL1,184], we write ¥ , L for
the linearisation at 0 of #4 , MZ . We call £ , L Jacobi field
operators, and solutions of ¥v = 0 (Lv = 0) are called Jacobi fields
(on Z£). The conditions in [SL1,1I%2] imply that # , MZ are second

order, quasilinear elliptic operators.

In general, there are non zero Jacobi fields on £ . Suppose us
is a l1-parameter family of solutions of Mz(us) = 0 with
a/as(us) s=0 = v oL Then‘ sz =0, so v 1is a Jacobi field. A Jacobi
field on 2 1is called integrable if it is the initial velocity of

such a family us

The special circumstances when the proof in [SL1, II%6] shows that
extrema of (1) converge to their limits at exponential rates are those
when all Jacobi fields on £ are integrable. We will show that if the
Jacobi fields on £ are not all integrable, then there may be an
extrema of‘(l) which converges to its limit at only some power rate.

The method of proof is to use the contraction mapping principle starting
at such a Jacobi field to construct a solution. This idea is used in
[SLi1, 187] to construct solutions with exponential decay rates, based
on a method of [CHS]. However, different estimates are needed to

establish power rate decay.

We wish to solve the equation Mu = 0 . Solutions of mz(u) =0
provide solutions of #Mu = 0 which are independent of t . We suppose
MZ(O) =0 . Write K =Ker L and P : L2(2) -+ K . Note that k = dim

K 1is finite since L 1is elliptic. Now Mz(u) = 0 1is equivalent to



]
o

(2) (a) (I-P)_(u)

]
o

(b) P Mz(u)
Apply the implicit function theorem [NL82.7] to the analytic map
(I—P)mz(u) , whose linearisation has kernel = {0} in Cz(Z,V) to
deduce the existence of an analytic function & : Bp(o) € K » nbd of 0
in (I-P)c2(2,V) such that

(I—P)mz(v+¢(v)) =0 .

Hence, in a neighbourhood of 0 in CZ(Z,V) , the set of solutions of
Mz(u) = 0 corresponds to the analytic set in K defined by
sz(v+®(v)) =0

Write

H(v) = PA(v+e(v)) , h(v) = F (v+e(v)) ,

so0 H , h are analytic functions in a neighbourhood of 0 in K = Rk .
mk
Also H(v) = -v h(v) . Write h as a power series about 0 :
h(v) =h(0) + 3 h.(v),
r2g>2
where hr is homogeneous of degree r , and hq £ 0 . Since

Lv = 0 , Vzh(o) =0 so g> 2



All Jacobi fields on £ are integrable if and only if H(v) = 0 . Thus
we can state the result:
THEOREM: If hq/m < 0 at some point on Sk_1 , then there is a

solution u(t) of (1) on (0,®) and 5 € K such that

1 1

(== . =3
sup (T+t) (972) u(t) - p/(+t) T s,
o<t
for some T > 1, e >0 .
Remark: If hq/m 20 on Sk_1 , then there may be a solution u(t) on

(-»,0) if E(w,-t,u,p,q) has exponential decay with respect to |t]

as |t] t e .

n-1
Proof: Let h I have a minimum at p , so vs h (p) =0, i.e.
qlgn-1 q

n .
Hq(p) . hq(p) = hq(p) - p, with hq(p)/m <0 . Put v =

1 -1
[—E;%BT (qiz)](q—Z) [T+t](q_2)p , where T > 1 is to be chosen. Hence

-m g?(a) L H (W) = 0.

The equation Mu = 0 is equivalent to

(3) (a), (I-P)(u) =0
(b) PAi(u) = 0 .
The linearisation of the operator in (a) about 0 is (I-P)¥ , which

can be written ((I-P)w)" - m((I-P)w) + Low (see [SL1,134]). The



linearisation of the operator in (b) about v + ®(v) can be written

(Pw)” - m(Pw)  + (T+t) ‘M(Pw) ,

where M : K- K is a finite dimensional linear operator. Thus we can

rewrite (3) as

(4) (a) ((I-P)w)” - m((I-P)w)  + LW = Ry

(b) (Pw)” - m(Pw) - (T+t) ‘MPw =

(v,w)
R G,w

() V' ¥)
Define iterative maps A(a)(w) to be the solution of (4)(a) with right
hand side R a)(\_7,w) , and A(b)(w) to be the solution of (4)(b) with

(

right hand side R(b)(G,A(a’(w)+Pw) . Note that A(a) must be used to

define A(b) . Also, 4(b) is a finite system of ordinary differential
equations for which t = @@ is a singular point of the second kind (see

[CL,Ch.5]). Special estimates based on asymptotic series need to be

used to construct solutions of this eguation.

One can prove estimates for these maps which imply that they are

contractions in suitable Banach spaces, so there exists a (unique)

solution. Certain boundary values can be prescribed on 2 , namely
those components allowable in [SL1,I1%6], and, depending on p , certain
components in Kker LZ . For details, see [AD]. g.e.d.

In [SL1,I183], it is shown that functionals for energy and area
have the form (1), and satisfy appropriate conditions. (One puts
t = -loglx| if the domain is BI(O).) The above result implies the

existence of harmonic maps which converge to tangent maps and minimal



surfaces which converge to tangent cones at rates proportional to powers

of 1/loglx|l as |x| -» 0 , if there are non-integrable Jacobi fields.

In [AD], it is shown that the metric, g , on R" ~ {0} can be
analytically perturbed so that

s, /. {0}.g>

is harmonic, but there are non integrable Jacobi fields. From work of
[AA], it follows that products of 3 or more spheres of suitable radii
have non-integrable Jacobi fields. Also, Nagura [NT] showed that there
are non-integrable Jacobi fields on minimal surfaces given by immersions
into spheres by harmonic polynomials of high degree. All these examples

have codimension at least 2.

Milani [M] showed that there exist minimising currents whose
supports are not analytic sets. However, his examples have subanalytic
support. (For the definition of subanalytic, see e.g. [HI], [HA]). The
minimal surfaces constructed above do not even have subanalytic support,
since they converge to tangent cones at rates given by 1/loglx| , not
lea (see [BR]). However, it is not known whether these are minimising

examples, even if the tangent cone is taken to be minimising.
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