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BILINEAR INTEGRALS AND RADON-NIKODYM DERIVATIVES

Brian Jefferies

Dedicated to Igor Kluvének

1. INTRODUCTION

. A basic problem in the treatment of random evolutions via the non-
commutative Feynman-Kac formula is to construct a random multiplicative operator
valued functional /M, and show that the perturbed semigroup of the random evolution
is represented as the integral of /1 with respect to the associated operator valued
measure [3]. The solutions of certain partial differential equations can thereby be
represented as a bilinear integral, giving further insight into their behaviour.

A related problem is to determine when a process described by an operator
valued measure may be expressed as the integral of an operator valued function
with respect to another such process.

The purpose of this paper is to consider the above question in a general
setting. Given measures m, n with values in the vector spaces Y, Z respectively,
there is a given continuous bilinear "multiplication" defined on the product of the
vector spaces X and Y with values in Z and we ask whether n can be expressed as
the integral of an X- valued function with respect to m .

The present approach differs from previous work [1], [6] in a number of ways.
The locally convex setting is used, because ultimately, the case of spaces of
operators on Banach spaces, with the strong operator topology is to be treated. The
bilinear multiplication - the composition of operators - is only separately

continuous in that case.

*Research supported by a Queen Elizabeth |l Fellowship.
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The conditions imposed in [1] and [6] require that, in the operator setting, the
vector measure m has finite variation in the uniform norm, a property too
restrictive in practice. By working with weak vector valued integrals, the more
general situation is treated. The results are formulated in terms of bornologies,
because they form a natural structure for viewing the variation of a vector
measure.

The types of integrals considered are introduced in Section 2; they are
modelled along the lines of the Pettis integral in Banach spaces. The main result
(Theorem 3.6) on the differentiation of a vector measure with respect to another
vector measure is given in Section 3. The assertion is used to establish the
existence of operator functionals associated with Markov processes, and it is also
applied to the existence of conditional expectations with respect to operator valued
measures in Section 4.

Let E be a locally convex space. The standard notation of [7] is generally
followed. In particular, for a disked set B € E such that x = 0 whenever
pp(%) = 0, Eg denotes the normed space consisting of Upyn8  equipped with the
gauge pg. of B.

A saturated family [7] p 81, B of bounded subsets of E is called a convex
bornology in E . If for each closed disked set B ¢ B, the normed space Ep is
complete, then B is said to be complete .

Let & be a o-algebra of subsets-of a set Q. The collection of all finite
partitions of a set Ae & by elements of & is denoted by H(A , &). Given an
additive set function m : & -» E  and a disked set D € £ the D -variation

VimD) : & - [0,00] of m is the set function defined by

VimDXA) = suplZgeqpp MB):meTl(A &)}, A €@



187

The set function m is said to have finite D-variation on A €& if
V(im,D)(A) < co. If m is a vector measure with finite D -variation on Q, then
V(m,D) is o-additive whenever D is closed, because then pp is lower semicontinuous
on E.

Now let & be a family of subsets of E. A vector measure m : & - E is said

to have o-finite S-variation if there exists a partition Q; ,i =1,2,... of Q by
elements of & such that for each 1 = 12,.., there exists a disked set F; ¢ &

such that m has finite F; -variation on Q; . It is often convenient to replace the

family & by the property which defines it; for example, in the case that & is the
family of all bounded subsets of £, the vector measure is said to have o-finite

bounded variation.

2. INTEGRATION

In the context that the following results are to apply, it is important not to
place too many restrictions on the variation of the vector measure with respect to
which we are differentiating, so the weak form of vector valued integrals is the
most appropriate type to use.

Let £ be a locally convex space. The integral f 1 :& -» £ of a vector valued
function f: Q@ - £ with respect to a scalar measure W & - [0,1] is taken in
the following sense. The function f is p-integrable if for each & € E' «<f 6>
is p-integrable, and for every A € &, there exists fu(4 ) € £ such that
KFP(A )E> = [p < E>du forevery £ € E"

The convex bornology EE of subsets of £ whose closed convex hulls are
weakly compact is distinguished by the following property; if m :&-£ is a vector
measure with o-finite W& E-variation such that m « A for some finite measure

N\, then there exists a function f: Q - E such that m = f\ . Moreover, the

density f is A-regular in E g ; that is, f is Borel measurable for the weak
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topology o(E.E') of E and XNef=! is a Radon measure for o(E ,E'). Any two
such densities must be equal \-a.e. [4].

There is another notion of measurability associated with each convex
bornology B on E. A function 7:Q - E is said to be B-strongly - measurable
if for every set V € @ of positive A-measure, there exists another set W e&NV

of positive A-measure, and a disked set £ ¢ B, such that the restriction 7 IW of

f to W is strongly measurable in the normed space £g ; that is, there exist Eé
-valued &-simple functions s, , n = 12..0n W converging pointwise to 7 on VW,
in the normed space Eg . It follows that 7 is Borel A-measurable on £ and
2ef-l  is a Radon measure on E .

Let X be a locally convex space and suppose that (Q, &) is a measurable
space. Let m: & - Xy be a vector measure with o-finite ZBEE-variation. If X
is a barrelled space, such as a Banach space, then bounded subsets of X' are
o(X'.X)-compact, so it is enough to know that m has o-finite bounded variation in

X '. Then there exists a finite measure \ : &-[0,1] and a \-weakly regular function

function g : Q - X'y such that g is M-integrable in X'y and m = g\

DEFINITION 2.1. A function f:Q - X is said to be m-integrable if for

any A-weakly regular function g such that m =g\, <f,g is A-measurable and

Joktf.pldN<oo. The indefinite integral <f,m> of f with respect to m is defined

by <m(A) = fp <fg>dh , A €@

The definition makes sense because any two A-weakly regular densities of m
with respect to A\ are eqﬁal A-a.e. . Moreover, it is easy to see that vthe the
choice of the measure X\ is irrelevant.

It may be seen from the case of stochastic integrals that there can be
significant problems associated with the definition of the bilinear integral

whenever the vector measure m does not have o-finite variation.
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whenever X is a Banach space, the bilinear integral defined by Bartie [1]
requires that the vector measure m has finite variation in X ' The integral so
defined has good convergence properties, but it is too restrictive for many
applications to operator valued measures.

Now let (x4 ) - xy be a separately continuous bilinear form from the

product XxY of the locally convex spaces X and Y into the locally convex

space Z. Letm :& - Y be a vector measure. For each{ eZ', define mg : @ - X' by
m,:(A)x= <xm(A),t>, x € X, Ae®. Suppose that for each ¢ € Z', the vector

measure m;— has o-finite & E€~variation.

DEFINITION 2.2. A function f: Q - X is said to be m-integrable if for

each ¢ e Z, f is mg - integrable, and for every A €@, there exists fm (4) ¢

Z such that <fm(A),¢>=<f,m,: A ) for every ¢ e Z.

The set function fm :& - Z is o-additive by the Orlicz-Pettis lemma. It is
the integral of 7 with respect to m .
The space of all X -valued &-simple functions is denoted by sim(&,X). If

F=2,% ¢j Xaj. i € X, Aj €8 is an X -valued &-simple function, then f is

clearly m -integrable and the indefinite integral fm of f with respect to m is

given by frm (A )=Z,5, ¢cim (45 NA ), A c@.

3. A RADON-NIKODYM THEOREM.

Letm: & ->Y,n:® =27 be vector measures. A Radon-Nikodym derivative
of n with respect tom is a function f:Q - X such that n =fm . This

section gives a necessary and sufficient condition for the existence of a Radon-
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Nikodym derivative in the case that m has the appropriate variational properties.
The main result is preceded by some preparatory lemmas.

As before, it is assumed that m¢ has o-finite ZMEE-variation in X'y for

each ¢ € Z' Let B be a complete convex bornology in X . Let & be a
neighbourhood base of zero in Z consisting of closed disked sets.

Set &*= {AeG: m(B) =0 forsome B € A} and for each disked set
D € X and ¢ € Z', let

ImIpe (A) = supl kfm(Hl(A) : f esim@X), F(Q D}, A €@

Then |m|lp¢ : @ - [0,00] is theD °-variation of an X'y -valued measure, so it is

o-additive. If |m |p¢ (Q) < oo, it follows that Imlpg «m. .

For a closed disked subset £ of Z,

Inlgc () = suplln £>5l(A )¢ € C°)}, A4 €@,

Im Ipc (A) = supllm Ipg (A ¢ eC°}, A €@

LEMMA 3.1. Suppose that Z is sequentially complete. Let B € B be a
closed disked set. If A € & and |Imlgy (A)<co forall U € U, then the

uniform Iimit f in Xg of Xp -valued ©-simple functions fp, n =12.. i

m -integrable in Z, and for each n =12,..,U € 1
Ifm-fam iy (A) <suplpg (F - f (W)): w €A, n =12.. Hm lgy (A).

Proof. For each ¢ ¢ 7', me  has g-finite weakly compact variation in X

so there exists a measure \¢ & - [0,11 such that me « N, anda A -



191

weakly regular function gg :Q » X' such that mg =g¢ ¢ . Furthermore, there
exists a partition Q;, j =12.. of Q into sets on which g¢ 1s bounded in X'

From the Banach-Mackey theorem, the set B is strongly bounded in X, so

fp .g¢ > converges uniformily on each Qj ,J =12, to <f gt > Moreover,
[fjm - fem 1y (A) < suplpg (Fj - fe (@) w €A, n =12 }m gy (A)

By the sequential completeness of Z , there exists a vector measure

r:@ -z such that r(5) =1limjse0fjm (5) uniformly for all 5 € GNA. . In
particular, |« &> -«<f GEONE I(Qj )=0 foreach j =12,.., so
A¢ (Jer g D) =l e5l(Q) < o0, and ¢ ,E> = «f .mg > The function 7 s

therefore m -integrable and the required inequality holds.

If E € & and D is a disked set in X such that |m |D,¢ (E) <oo for every

¢ €Z', then for each €> 0 set

Ap (E.8) ={x eX: |kn-xm (O|(F) <elmlpe (F), F e ®NE ,§ € Z' }.

DEFINITION 3.2. Let D ©X be a disked set. A set £ ¢ &* is said to be D-

semilocalized in a set K ©X with respect to (n,m), if lmID,g (E)< oo for all
¢ €Z', and for all & > O,there exists F e&@*NE with Ap (F e)NK =&.

A set E e &* is said to be D-localized in a set K S X with respect to
(n,m ) if each F e@*NE isD -semilocalized in K with respect to (,m ).

The set Q is said to be B-compactly localized in X with respect to (nm )

if for each E € &*, there exist a disked set B € B, and sets

F € &*NE ,K & X such that K is X5 -compact, and F is B -localized in K.

with respect to (nm) .
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In what follows, the vector measures n and m will be fixed, so the phrase

"with respect to (n,m )" will be omitted.
The next lemma follows from an exhaustion argument (Lemma 1.1 [6]).

LEMMA 3.3. If there exists a measure W& - [0,1] such that m « W, and Q

is B-compactly localized in X , then there exists pairwise disjoint sets

Q; €@,i = 12.. suchthat Q =UQ;, and for some disked set Bj € B, there

exists an Xg, -compact set Kj, such that Q; is Bj-localized in Kj, 1 =12,.

LEMMA 3.4. Suppose that T S Q is B-localized in the X g-compact set K,
B € B. If W& - [0,1] is @ measure such that n « ) and m < oon ne,
then there exists a sequence fy , k= 12.. of Xg-valued @&-simple functions,
such that for every & >0, there is a set A € IN& with WAL ) <& and fy,
k= 1,2... converges uniformly in Xg on the set A .

Furthermore, fimg. o0 I<(n- fem ),¢5[(A) = O forall ¢ e Z'.

Proof. By induction, as in [6] Lemma 2.6, for each j = 1,2,.. there exists
a finite partition mj of I such that for every W e mj. there exists an Xg -
compact set K, of diameter less than 1/2/, and a countable partition Trj' (W)
of W with Ag (Vv 1/2])NK,; =@, foralV e mj (W). Moreover, mj ,q is
finer than mj, j =12.., and whenever V € m; ,q U e m;, V S U, then
Kg*' ek d. LetP; be the cardinality of the set ;. .

For every j =12.. and W € mj, there exists a finite collection
T/ (W) € (W) such that w(W \ Uy eq " (w)V) ¢ 1/(Pj2]). For each
Vemn" (W) Wemj,choose Xy €Ag(V 1/2] )NK 4 and then define the X

-valued @-simple function fj by 7j = Zyem, Zyen,” (W) X VW jXV-
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Let 45 =Up ¢ n Uy em," (w ) foreachj= 12,... . Then w(r\y; ) <172
for all j =12.. and pI\U.o N Yj)=0.

If weN,Y and h 21 >K,then fp(w),fj(w) are both in the same
Xp -compact set of diameter less than 1/27, so fj, i =12. converges
uniformly in the space Xg , on each set M, Y, k =12.. . Given &> 0, choose
K so large that Ll(l'\ﬂJ->K5’j) <eandset A =MNj, Y. It remains to show that for
each ¢ e Z', Bimy o0l<(n- fem )& (A) = O.

Let f be the limitof 7y ,h =12.. on A and set

S =suplpg (f (w): w €A} Let £ e Z'. Now pg (fp (@-f; (@) < 1/2  whenever
weA andh 2i >K,s0 [kfpm ,£>](A) < |m lg,¢ (AXS +1/21) . Therefore, for
each j 2 K,
lkn - rmeolAa) ¢ laeolaN\y;) « kiym £5la \gp)

+ len=rfim, £500Y)

N

lar,&o0(A \yj )+ G + Dm IB,Q' (A \H] )

+ Zyen,Zy en,"(w) 27 Imlge (v DA)

[ ZaN

l1.6>1(ANY; ) + G +DIm |ge (A \Y;)

+ 2= |m IB:C (4).

Since n « . and m « 4, the right-hand side goes to zero as j - oa.

LEMMA 3.5. Suppose that T ¢ &*NQ and I - X is an m-integrable
function such that n =fm on G&NI.

If for some closed disked set B € B there exist Xg-valued &-simple
functions fj, ] =12. 0n [ such that fj - f uniformly in Xg , and

Im 15,1_: () < oo for all ¢ €Z', then T is B-localized in some Xg-compact set K .
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Proof. Let K be the closure of Ujy¢fj (I) in Xp . Then K is Xg-compact.
Suppose that f; = ZAe‘nJCA,jXA , for finite partitions m; of [ by sets in &™.

Let ¥ € @*NI' and € >0 . Choose j = 12.. such that
pp (f (w) - fj(w)) <& forall wel. Then forall { € ', E e®Ny,

o - fjm . EOlIE) < elm B¢ (E).

There exists a set A4 € mj such that £ =A NY ¢ &* . Since fj is equal

to cpj on E,forall ¢ eZ', F eENG
ln ~cpjm LOI(F) < elmlge (F).

Because cpj € K, Ag(E &)NK = @ . Everyset Y e IN&* is therefore &

semilocalized in K, so I is B -localized in K.

THEOREM 3.6. Let (Q,&) be a measurable space and (x,y) -» xy a
separately continuous bilinear form from the locally convex spaces X, Y into the
locally convex space Z . The space X is endowed with a convex bornology B .

Let m: & - Y, n: @& - Z be vector measures such that n « m. Suppose
that there exists a measure ). & - [0,1] such that m « p, and for each ¢ € Z'

the vector measure m¢ : & - X'y has o-finite MEE-variation . Furthermore,

suppose that for each E € &*there exists a disked set B € B, and a set

F e &*NE such that m |5',; (F)<oo forall ¢ eZ.

Then there exists a B-strongly measurable function f : Q » X such that

n = fm, if and only if Q is B-compactly localized in X .

Proof. Suppose first that Q is B-compactly localized in X . By Lemma 3.3,

there exist pairwise disjoint sets Qj € &*,j =12.. such that Q= Uj >1 Qj
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and for each j =12,., there exists a closed disked set5; < B and an Xg; -
compact set Kj, such that Qj is Bj -localized in KJ-.

According to Lemma 3.4, for each j = 1,2,.., there exists XBJ -valued &-
simple functions s;, 7 = 12.. converging uniformly in XBJ, on sets of
arbitrarily large p-measure. Let fj : Qj - X be the limit on a set of full p-
measure in Qj , and zero off this set. By taking the weak-completion of Z if
necessary, Lemma 3.1 shows that fj is m -integrable on sets of arbitrarily large
H-measure in Qj , and its indefinite integral is equal to n on these sets.
Consequently, f; is m -integrable on QJ.-, and fjm =n on @ﬂQj., jo=12.. .

On setting 7 = ij fj XQj . it follows immediately from the definition of
integrability that 7 is m -integrable and n =7fm .

Suppose now that 7:Q - X is a B-strongly measurable function such that

n = fm . Then there exist pairwise disjoint sets QJ- € &%, j =1.2,.. such that
Q =Ujy1Q; , and for each j =12.., there exists a closed disked set 5; ¢ B
such that fj =f |Qj is strongly measurable in Xp . The sets 5; may also be
chosen such that |m g, ¢ (Q;) < oo forall ¢ e 2

By the Banach space version of Egorov's theorem, there exist X -valued
&-simple functions s;, i = 1,2,.. converging to fj in Xg, . uniformly on sets of

arbitrarily large p-measure in Q;

It follows from Lemma 3.5 that Q is ®B-compactly localized in X .

Remark. |If the elements of the family B of subsets of X are not bounded -
in X , then under slightly different conditions, a function 7:Q - X such that n
= fm can still be constructed ; in Definition 3.2, instead of the condition that a

set is "B-compactly localized in X ", it is sufficient to assume that the set K

is compact in X, and continuously included in the normed space Xpg, instead of
requiring that it is Xg -compact. For example, K may be compact, disked and

metrizable in X
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It is not hard to show that the function f so constructed has good
measurability properties; for example, it is Borel measurable for the original
topology of X , and ueof =1 is a Radon measure on X . Any two such densities
must agree p-a.e. [4] Corollary 4.

However, the hecessarg and sufficient conditions of Theorem 3.6 are more
natural as stated for convex bornologies. The following definition is applied in

Section 4. A disked subset D of a vector space is said to be injective if x =0

whenever pp (x ) = 0.

DEFINITION 3.7. The set Q is said to be compactly localized in X with
respect to (nm ) if for each E € &%, there exist an injective disked setB8 <

X,and sets F € G*NE, K € B such that K is compact in ¥ and

continuously included in the normed space Xg , and F is B -localized in K. with

respect to (nm ) .
4. APPLICATIONS

The conditions of Theorem 3.6 are of sufficient generality to treat the
existence of operator-valued functionals associated with Markov processes. Such
functionals arise in the solution of partial differential equations via the non-
commutative Feynman-Kac formula. To illustrate how the result may be applied, the
presentation of J.W. Hagood [3] is followed. \

Let (Q.&,(P% )x ¢5i(Xt d50) be a right continuous Markov process with
locally compact, second countable state space £ . Put & = B(Z), the Borel o-
algebra of £ , and for each t > O, denote the o-algebra generated by Xg,
0<s <t by &;.Let p be a fixed excessive measure with respect to this
process; that is, there exists C > 0 such that [s PX(X; €B) du(x ) ¢ C u(B)

forevery B € & and t >0,
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Let F be a Banach space and 1 <p < oo. The space LP(E;F) of
(equivalence classes of) functions strongly p-integrable with respect to W is

denoted by £ .If f e E, then for p-almost all x € £, the function

foX¢:Q > F is strongly p-integrable with respect to PX for every t > 0.
Furthermore, if PH:@& - [0,00[ is the measure defined by PH(S) = fs PX(S)du(x),
5 € @&, then [ oX; is strongly p-integrable in F for every ¢t > 0.

The operator valued measure myg: &¢ - S(E ,F) is defined by

me(5)f = [ofeXy(w)dPH(w) , 7 e £,5 ¢ &,

for every t > 0. The space S2(E,F) of bounded linear operators of £ into F is
endowed with the strong operator topology.

The bilinear form S(F )x8(E ,F ) -2(E ,F) is taken to be the composition of
operators: (A ,B) > AB , A € &(F),B ¢R(E,F) The product is clearly
separately continuous.

The continuous dual (£ ,F) of S(E,F) may be identified with the tensor
product £ ®F' of £ with F' by the action
(A F®E)>Ar B>, A eRUEF) F ¢ E,teF" [7]p139.

First, we will see that for each t > 0, the vector measure m; is of the

type considered in Section 2; namely, for each ¢ € (£ ,F )", the vector measure
[m 1g 1 @¢ » R(F) has o-finite MEE-variation in  L(F ). It is sufficient to
consider linear functionals of the form ¢ =7 ®E f € £,E ¢ F', in which case
<A Imelp (8» = Amp (5P 5 A € R(F) and [m¢lp (§) = fhy (5)7)8E
for all 5§ ¢ &y .

The vector measure mf :@; - F has a density f oX; :Q » F with respect to

the measure PH:&; - [0,00[ , so from [4] Corollary 4, mf has o-finite compact

variation in F . Since a set of the form K ®t for K compactin F , £ e F' is
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o(R(F )", 8(F ))-compact in L(F )", it follows that [m; 1¢ has o-finite weakly

compact variation in S(F ).

THEOREM 4.1. Let t > O and suppose that ny @y - S(E,F) is a vector
measure . If Q is compactly localized in S(F ) with respect to
(n¢ .my¢ ), then there exists PH —fegular function Mg :Q - (F ) such that ny = Mymyg .
Suppose that F is separable. If there exists an mg-integrable function
Mg : Q ->S(F) such that ny = Mgmy , then for each f ¢ E, the set Q is

compactly localized in S(F ) with respect to (ngf ,myf ).

Proof. As indicated in the remark after Theorem 3.6, the function /7y can

be constructed as before when Q 1is compactly localized in 2(F ) with respect to
(nt Jmg ). .

For the converse, note that R(F) is a Suslin space whenever F is
separable [8] p67. Let My :Q - R(F ) be an my- integrable function such that
ng =Mym; . Since My is scalarly measurable with respect to p, it follows from
the properties of Suslin spaces [8] p67 that PlloMt -1 is a Radon measure on
S(F).

For every &> 0, there exists a set [ € &; NQ such that PH(IC) <e/2 and
K =My () is relatively compact in S(F ), and C =f oX; (I') is relatively
compact in F

Let X, € F, k =12,.. be vectors whose linear span is dense in F, and set

ax = sup{supyer "Ax || + ||Axk “:A €K ) k =12..,
D = (A € S(F) Zyoy (supger lax |+ laxe D /eae 26y <1y

Then D is a closed, injective, disked subset of 2(F ). Because the topology of
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compact convergence coincides with the strong operator topology on equicontinuous

subsets of R(F), it follows that K < D is continuously included in S(F )p .

For each t e F ', Imtfl p & (I < co. Furthermore, by the vector valued version
of Egorov's theorem, there exists a set A © I and K -valued &; -simple functions
Sj , J =1.2,. converging uniformly in 2(F)p to My on A, such that

PH(AC) < . The conclusion now follows as in the proof of Lemma 3.5.

Remark. If the conditions of Theorem 3.6 applied, then the operator valued

function My would be strongly measurable in the uniform operator topology - a

property which is too strong to be practical. The function M; is a candidate for a

multiplicative operator functional [3] associated with the given Markov process.

An example of Edgar [2] p672 may be adapted to show that the separability of
the Banach space F cannot be omitted in general.

The question was raised in [5], as to when there exists a conditional
expectation of a scalar function with respect to a vector valued measurem and a
sub o-algebra &. The technigue developed in [S] answered that guestion in the
case that the restriction of m to the o-algebra & has o-finite IR EE-variation.

An application of Theorem 3.6 gives an alternative condition which does not
require that the vector measure m admits a density. The proof follows that of
[6] Theorem 3.2. In the present setting, the variation of m is replaced with the

variation of «<m ,£> for the appropriate continucus linear functional &.

THEOREM 4.2. Let X be a locally convex space, and (Q,&) a measurable
space. Suppose that m :& -» X, n:& - X are vector measures such that n « m,
and for some scalar measure W& - [0,1], m « J.

Then there exists a function f :Q - R such that n =fm if and only if for

all E € &%, g > 0,there exists F €e&B*NE such that A[_m](F ,€) #Jz.
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