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BiLINEAR INTEGRALS AND RADON-NIKODYM DERIVATIVES 

Brian Jefferies 

Dedicated to Igor Kluvanek 

1. INTRODUCTION 

A basic problem in U1e treatment of random evolutions via the non­

commutative Fe!Jnman-Kac formula is to construct a random multiplicative operatol­

va1ued functional !'1, and sho\v that the perturbed semigroup of the random evolution 

is represented as the integral of r1 \vith respect to the associated operator valued 

measure [3]. The solutions of certain partial differential equations can thereby be 

represented as a bilinear integral, giving furt11er insight into their bel1aviour. 

A related problem is to determine 'When a process described b!J an operator 

valued measure rna!J be expressed as the integral of an operator valued function 

v/ith r·espect to another suc11 process. 

The purpose of this paper is to consider U1e above question in a general 

setting. Given measures m, n with values in the vector spaces Y, Z respectively, 

there is a given continuous bilinear "multiplication" defined on the pr·oduct of the 

vector spaces X and Y ·,11ith values in Z, and 'we asl< whether n can be exp!-essed as 

the integral of an X- valued function ~Jitr'i respect to m 

The present appr-oach differs from previous work [1], [6) in a number of W'a!Js. 

The locall!J convex setting is used, because ultimately, the case of spaces of 

operators on Banach spaces, v!itll tile strong operator topology is to be treated. The 

bilinear multiplication - the composition of operators - is onl!J separatel!J 

continuous in that case. 

* Research supported b!J a Queen Elizabeth II Fello\Vship. 
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The conditions imposed in [1] and [6] require that, in the operator setting, the 

vector measure m has finite variation in the uniform norm, a property too 

restrictive in practice. By working with weak vector valued integrals, the more 

general situation is treated. The results are formulated in terms of bornologies, 

because they form a natural structure for vie"JJing the variation of a vector 

measure. 

The types of integrals considered are introduced in Section 2; they are 

modelled along the lines of the Pettis integral in Banach spaces. The main result 

(Theorem 3.6) on the differentiation of a vector measure with respect to another 

vector measure is given in Section 3. The assertion is used to establish the 

existence of operator functionals associated with Markov processes, and it is also 

applied to the existence of conditional expectations with respect to operator valued 

measures in Section 4. 

Let E be a locally convex space. The standard notation of [7] is generally 

followed. In particular, for a disked set B '= E such that x = 0 whenever 

Pa(x) = o, Ea denotes the normed space consisting of U n ~ 1 nB equipped with tl1e 

gauge p6. of B . 

A saturated family [7] p 61, '6 of bounded subsets of E is called a convex 

bornology in E . If for each closed disked set fJ .:: '6, the normed space fa is 

complete, then 'B is said to be complete . 

Let 6 be a 11-algebra of subsets of a set Q. The collection of all finite 

partitions of a set Ae 6 by elements of 6 is denoted by IT(A , 6). Given an 

additive set function m : €J -• E and a disked set D '= E the D -variation 

V(m,D) : 6 -• [O,oo] of m is the set function defined by 

V(m,D)(A) sup{l:a ETI PD (m (B)) : Tl E n(A ,6) } , A E 6. 
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The set function m is said to have finite D-variation on A E@ if 

V(m,D)(A) < oo. If m is a vector measure with finite D -variation on Q, then 

V(m,D) is cr-additive whenever D is closed, because then Po is lo\\ler semicontinuous 

on E. 

Now let 13' be a family of subsets of E . A vector measure m :@ -> E is said 

to have r:r-fintte 13'-variation if there exists a partition Qi .i = 1,2, ... of Q by 

elements of @ such that for each = 1,2, ... , there exists a disked set Ft e 13' 

such that m has finite F1 -variation on Q 1 . It is often convenient to replace the 

family 13' by the property \\lhich defines it; for example, in the case that 13' is the 

family of all bounded subsets of E, the vector measure is said to have cr-finite 

bounded variation. 

2. INTEGRATION 

In the context that the following results are to apply, it is important not to 

place too many restrictions on the variation of the vector measure with respect to 

which we are differentiating, so the \\leak form of vector valued integrals is the 

most appropriate type to use. 

Let E be a locally convex space. The integral f Jl : @ .... E of a vector valued 

function f : Q -> E with respect to a scalar measure Jl: @ -> [0, 1] is taken in 

the following sense. The function f is jl-integrable if for each £ E E ', <f .£ > 

is ].I.-integrable, and fol- every A E @, there exists fJl(A ) E E suc11 that 

<fJl(A ),£ > = fA <f ,£ > dJl for every £ E E '. 

The convex bornology 5JH~Q: of subsets of E -v;hose closed convex hulls are 

weakly compact is distinguished by the following property; if m : €>-•E is a vector 

measure with cr-finite XllQ:Q:-variation such that m « ).. for some finite measure 

).., then there exists a function f : Q -• E such that m = n . Moreover, the 

density f is 'A-regular in E cr ; that is, f is Borel measurable for the weak 
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topology cr(£ ,£ ') of £, and 'Ao f -1 is a Radon measure for cr(£ ,£ '). Any two 

such densities must be equal 'A-a.e. [4]. 

There Is another notion of measurability associated with each convex 

bornology !8 on £ . A function f : Q ... £ Is said to be !8-strongly >-.- measurable 

If for every set V e €> of positive 'A-measure, there exists another set W e €Sn V 

of positive 'A-measure, and a dlsked set B e !8, such that the restriction f !w of 

f to w Is strongly measurable in the normed space E8 ; that is, there exist fa 

-valued €>-simple functions sn , n = 1,2, ... on W converging pointwise to f on W, 

in the normed space Ea . It follows that f Is Borel 'A-measurable on E and 

>-.or-1 is a Radon measure on E . 

Let X be a locally convex space and suppose that (Q, €>) is a measurable 

space. Let m : €> ... X'cr be a vector measure with cr-finite ~G:G:-variation. If X 

is a barrelled space, such as a Banach space, then bounded subsets of X' are 

cr(X',X)-compact, so it is enough to know that m has cr-flnite bounded variation in 

X '. Then there exists a finite measure 'A : €>->[0, 1] and a 'A-weakly regular function 

function g : Q ... X'cr such that g is 'A-integrable in X'cr and m = g'A. 

DEFINITION 2.1. A function f: Q -• X is said to be m-integrable if for 

any 'A-weakly regular function g such that m = g'A , <f,g> is 'A-measurable and 

/QI<f,g>ld'A<oo. The indefinite integral <f,m> of f with respect to m Is defined 

by <f,m>(A) = fA <f.g > d'A , A e €>. 

The definition makes sense because any two 'A-weakly regular densities of m 

with respect to 'A are equal 'A-a.e .. Moreover, it is easy to see that the the 

choice of the measure 'A is irrelevant. 

It may be seen from the case of stochastic integrals that there can be 

significant problems associated with the definition of the bilinear integral 

whenever the vector measure m does not have cr-finlte variation. 
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Whenever X is a Banach space, the bilinear integral defined by Bartle [1] 

requires that the vector measure m has finite variation in X '. The integral so 

defined has good convergence properties, but it is too restrictive for many 

applications to operator valued measures. 

No\o/ let (x,y ) _, xy be a separately continuous bilinear form from the 

product XxY of the locally convex spaces X and Y into the locally convex 

space Z . Let m : e -> Y be a vector measure. For each t eZ', define mt; : e -> X'rr by 

mt;(A)x = <xm(A),I:; >, x E X , Aee. Suppose that for each 1:; e z• , tt1e vector 

measure mt; has a'-·finite ~ G?:G?:-variation. 

DEFINITION 2.2. A function f: Q -> X is said to be m-tntegrable if for 

each 1:; E z: f is mr; - integrable, and for every A E e, there exists fm (A ) E 

Z such that <fm(A),I:;>=<f,mt; >(A ) for every t; E Z'. 

The set function tm : e -> z is rr-additive by the Orlicz-Pettis lemma. It is 

the integral of f with respect to m . 

Tl1e space of all X -valued e-simple functions is denoted by sim(G,X). If 

f =L; ~ 1 ci XAi, ci E X, Ai e e is an X -valued e-simple function, then f is 

clearly m -integrable and the indefinite integral fm of f \o/ith respect to m is 

given by fm (A )=l:;~ 1 Cjm (Ai nA), A EG. 

3. A RADON-NIKODYM THEOREM. 

Let m : e -> Y , n : e -> l be vector measures. A Radon-Nikodym derivative 

of n \o/ith respect to m is a function f : Q -. X such that n = fm . This 

section gives a necessary and sufficient condition for the existence of a Radon-
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Nikodym derivative in the case that m has the appropriate vat-iational properties. 

The main result is preceded by some preparatory lemmas. 

As before, it is assumed that has cr-finite ID~~-variation in X'r1 for 

each (; e Z '. Let '3 be a complete convex bornology in X 

neighbourhood base of zero in Z consisting of closed disked sets. 

Let U. be a 

Set 6+ = {A e 6: m (B ) ,e o for some f3 <;;;;; A } and for each disked set 

D <;;;;; X and (; e z•, let 

lm lo,(; (A) Sl.l.p{ i<fm,(; >I(A) : f e sim(6,X ), f (Q) <;;;;; D} , A e 6. 

Then lm lo,(; : 6 -> [O,oo] is theD 0 -variation of an X'cr -valued measure, so it is 

cr-additive. If lm lo,(; (Q) < oo, it follo'w's that lm lo,(; « m .. 

For a closed disked subset c of z , 

In lc (A ) S~.~.p{i<n ,(; >!(A ): (; € C o } , A E 6, 

lm lo,c (A) su.p{im lo,(; (A): (; E C 0 } , A € 6. 

LEMMA 3.1. Suppose that z is sequentially complete. Let B e '3 be a 

closed disked set. If A e 6 and I m la,u (A) < co for all u e U, then the 

uniform limit f in X a of X a -valued 6-simple functions f n , n = 1.2,... is 

m -integrable in z, and for each n = 1,2, ... , u e tt 

ifm- fnm lu (A)~ mp{pa (f- fn (w)): w eA, n = 1,2, ... }im la,u (A). 

Proof. For each ~ e z•, m(; has cr-finite \\!eakly compact variation in X(r, 

so there exists a measure A~ :6 -> [0, 1] such that m~ « A(; , and a A~ -
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weakly regular function g~ :Q-> X' such that m~ =g~ A~ . Furthermore, there 

exists a partition Qj • j = 1,2,... of Q into sets on which g~ is bounded in X' . 

From the Banach-Mackey theorem. the set B is strongly bounded in X, so 

<f n ,g~ > converges uniformly on each Qj • j = 1,2, ... to <f ,g~ >. Moreover, 

ltj m- tkm lu (A ) ~ sup{p8 (fJ- fk (w)): w eA. n = 1,2, ... Hm la.u (A ). 

By the sequential completeness of Z • there exists a vector measure 

r :6 -> z such that r (5 ) = limj-ooo r1m (5 ) uniformly for all 5 e 6nA. . In 

particular, l<r .~ >- <f ,g~ >A~ ICQJ ) = 0 for each j = 1,2, ...• so 

A~ Cl<t ,g~ >I> = k .~ >I(Q) < oo, and <r .~ > = <f ,m~ >. The function f is 

therefore m -integrable and the required inequality holds. 

If E e 6, and 0 is a disked set in X such that lm lo.~ (E ) < oo for every 

~ e z• , then for each e > 0 set 

Ao (E ,e) = {x ex : l<n - xm .~ >ICF ) ~ elm lo.~ (F >. F e 6n£ . ~ e z• }. 

DEFINITION 3.2. Let 0 t;;;;X be a disked set. A set E e 6+ is said to be 0-

semilocalized in a set K t;;;;X with respect to (n,m), if lm lo.~ (E)< oo for all 

~ eZ'. and for all e > o,there exists F e6+n£ with Ao (F ,e)nK ,r,fZJ. 

A set E e 6+ is said to be 0-localized in a set K t;;;, X with respect to 

(n,m ) if each F e6 + n E isO -semilocalized in K with respect to (JJ,m ). 

The set Q is said to be <a-compactly localized in X with respect to (n,m ) 

if for each E e 6+, there exist a disked set B e 'B • and sets 

F e 6+n£ ,K t;;;, X such that K is Xa -compact, and F is B -localized in K. 

with respect to Cn.m ) . 
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In what follows, the vector measures n and m will be fixed, so the phrase 

"with respect to (n,m )" will be omitted. 

The next lemma follows from an exhaustion argument (Lemma U [6]). 

LEMMA :'U. If there exists a measure Jl:G -> [0, 1] such that m « Jl, and Q 

is 'a-compactly localized in X , then there exists pairwise disjoint sets 

1,2,,. such that Q = UQi, and for some disked set Bt e 'a, there 

exisis an -compact set , suci1 that Qi is Bj-localized in Kt, i = 1,2,,. 

LEMMA 3,4, Suppose that f <;:;;;; Q is 6-/oca/ized in the X B -compact set K, 

B e 'a. If )l:G ... [0,1] is a measure such that n « Jl and m « Jl on rnG, 

then there exists a sequence f k , k = 1,2,,. of X a -valUed G-simple functions, 

such that for every E > o, there is a set A e rne with )l(AC ) ~ s, and fk, 

k= 1,2,,. converges uniformly in x8 on the set A . 

Furthermore, li.mk- , 00 l<(n- f km ),t >ItA) = 0 for all ~ e Z", 

Proof. By induction, as in [6] Lemma 2.6, for each j = 1,2,,. there exists 

a finite partition Tij of r such that for every W e rr j , there exists an x8 -

compact set K d of diameter less than 1/2i, and a countable partition rrJ (W) 

of W 'With Aa (V ,1/2j) n K d ;e fZ), for all V E ilj' (W ). Moreover, ilj +1 is 

finer than il j , j = 1,2,,., and whenever V e il j + 1 ,U e TI j , V <;:;;;; U , then 

K d + 1 <;:;;;; K d , LetPj be the cardinality of the set TIJ . 

For every j = 1,2,,. and W e rr j, there exists a finite collection 

TI/ (W) <;:;;;; nJ (W) such that Jl(W \ Uv err/ (W )V) ~ 1/(Pjzj ). For each 

V e TI/ (W ), We Tij, choose x v,W,j e Aa (V ,1/2i )nK d and then define the X 

-valued 6-simple function fj by fj = l: we 11 j l:v ETI j" (W) x V,W,j'X.V· 
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Let Yj = Uw E TT j U v ETT /' ( w ) for eachj = 1,2, .... Then Jl(f\Yj ) ~ 1/21 

for all J = 1,2,... and Jl(f\Uk > 0 n j > k Yj ) = o. 

If w E nj > ~<Yj and h ~ i > K, then rh (w),f; (w) are both in the same 

Xa -compact set of diameter less than 1/2i, so fi, i = 1,2,. .. converges 

uniformllJ in tl1e space Xa , on each set n j > KYj, k = 1,2, .... Given s > o, choose 

K so large that )l(f\n j > KYj) ~ 8 and set A = n j > KYJ- It remains to sho\v that for 

each f; e Z', tmtk -•DO I<Cn- fkm ),s >I (A) = o. 

Let f be the limit oi fh , h = 1,2,... on A and set 

s = $-ap{pa (f (w): w E A }. Let t e Z' . Noli/ Pa (f h (w)-f i (w)) ~ 1 ;:! 111henever 

wE A and h ~i > K, so l<fhm ,(; >ICA) ~ lm Ia,(; (A)(S +1/zh). Therefore, for 

each j ~ K, 

I<Cn - fj m ),f; >ICA ) JiJ ,f; >i(A \Yj ) + l<fjm ,(; >l(A \Yj ) 

+ l<n- fJm, f; >ICYj) 

~ l<n ,f; >ItA \Yj) ;. rs + 1)Jm Ia,(; (A \Yj) 

... :L w E TT j :L v e 11 / c w l z-1 I m I a, t C v n A l 

l<n ,(; >i(A \Yj) + rs +1)1m Ia,(; (A \Yj) 

+ z-J lm Ia,(; (A). 

Since n « Jl and m « J.l., the right-hand side goes to zero as j -> DO. 

LEMMA 3.5. Suppose that r E @+nQ and 1 :r -• X is an m-integrable 

function such that n = fm on @nr. 
If for some closed disked set a e 'B there exist ><a-valued @-simple 

functions f j , j = 1 ,2, ... on r such that fJ -> r uniformly in X a , and 

lm Ia,(; CD < oa for all(; EZ', then r is a-localized in some Xa-compact set K. 
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Proof. Let K be the closure of Uj~ 1 fj ([) in X a . Then K is X a-compact. 

Suppose that fj = LAe'fl j c A, j XA . for f"inite partitions Tij of f by sets in @.>+. 

Let Y e e+nr and ::: > o . Choose j = 1,2, ... such that 

PB (f (w)- fj (w)) S s for all W e L Then for all ~ e l', E E enY, 

l<n - fjm .~>I(£) s slm (£ ). 

There exists a set A e rr 1 such that £ = A n Y E e+ Since fj is equal 

to cA,j on E , for all ~ e Z', F E E ne 

Because CA,j E /(, Aa (£ ,s)nK ;<E fZJ . Every set !:1 E rne+ is therefore B­

semilocalized in K , so r is 8 -localized in K . 

THEOREM :us. Let (Q,6) be a measurable space and (x,y) .... xy a 

separately continuous bilinear form from the locally convex spaces X, Y into the 

locally convex space Z . The space X is endowed with a convex bornology '8 . 

Let m : 6 -• Y , n : 6 ... Z be vector measures such that n « m. Suppose 

that there exists a measure Jl: e .... [0, 1] such that m « J1 , and for each ~ e z• 

the vector measure m ~ : e .... X'ct has ct-finite XQ(2Q:- variation . Furthermore, 

suppose that tor each E e e+ there exists a disked set 8 e '8, and a set 

Fe 6+n£ such that m Ia.~ (F)< oo tor all t e z'. 

Then there exists a '8- strongly measurable function f : Q -> X such that 

n fm, if and only if Q is '8- compactly localized in X . 

Proof. Suppose first that Q is '8-compactly localized in X . By Lemma 3.3, 

there exist pairwise disjoint sets Qj e e+ , j = 1,2,... such that Q = U j ~ 1 Qj 
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and for each j = 1,2, ... , there exists a closed disked set Bj E '8 and an Xaj-

compact set Kj , such that Q j is a1 -localized in Kj . 

According to Lemma 3.4, for each j = 1,2, ... , there exists XaJ -valued@­

simple functions si, i = 1,2, ... converging uniformly in XaJ on sets of 

arbitrarily large jl-measure. Let r1 : Q j .... X be the limit on a set of full jl-

measure in Qj, and zero off this set. By taking the weak-completion of Z if 

necessary, Lemma 3.1 shows that r1 is m -integrable on sets of arbitrarily large 

)l-measure in Qj , and its indefinite integral is equal to n on these sets. 

Consequently, r1 is m -integrable on ~ , and r1m = n on Gi!QI, j = 1,2, ... 

On setting f Ljc_ 1 r1 XQj, it follows immediately from the definition of 

integrability that f is m -integrable and n = fm . 

Suppose now that f :Q -> X is a 'a-strongly measurable function such that 

n fm . Then there exist pairwise disjoint sets Qj E e+ , j = 1,2,... such that 

Q = U j ~ 1 Q j , and for each j = 1,2, ... , there exists a closed disked set a1 e '8 

such that r1 = f IQ; is strongly measurable in x8 J . The sets Bj may also be 

chosen such that lm Ia J ,s (Q 1 ) < oo for all S" e l'. 

By the Banach space version of Egorov's theorem, there exist x8 .-valued 
J 

@-simple functions si, i = 1,2, ... converging to r1 in x8 J , uniformly on sets of 

arbitrarily large jl-measure in Qj 

It follows from Lemma 3.5 that Q is 'a-compactly localized in X. 

Remark. If the elements of the family '8 of subsets of X are not bounded 

in X , then under slightly different conditions, a function f :Q ... X such that n 

= fm can still be constructed ; in Definition 3.2, instead of the condition that a 

set is "'a-compactly localized in X", it is sufficient to assume that the set K 

is compact in X, and continuously included in tl1e normed space Xa, instead of 

requiring that it is Xa -compact. For example, K may be compact, disked and 

metrizable in X 
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It is not hard to show that the function f so constructed has good 

measurability properties; for example, it is Borel measurable for the original 

topolog!J of X , and Jl"f -1 is a Radon measure on X. An!J two such densities 

must agree ]J.-a.e. [4] Corollary 4. 

However, the necessary and sufficient conditions of Theorem 3.6 are more 

natural as stated for convex bornologies. The following definition is applied in 

Section 4. A disked subset D of a vector space is said to be injective if x = 0 

whenever Po (x ) ~ 0. 

DEFINITION 3.7. The set Q is said to be compactly localized in X wtth 

respect to (n,m ) if for each E e G+, there exist an injective disked set B <;;;; 

X, and sets F e G+n£, K <;;;; B such that K is compact in X and 

continuously included in the normed space and F is B -localized in K. with 

respect to (n,m ) . 

4. APPLICATIONS 

The conditions of Theorem 3.5 are of sufficient generality to treat the 

existence of operator-valued functionals associated with Markov processes. Such 

functionals arise in the solution of partial differential equations via the non­

commutative Feynman-Kac formula. To illustrate how the result may be applied, the 

presentation of J.W. Hagood [3] is followed. 

Let (Q,G,(PX lx e~;CXt )t>o) be a right continuous Markov process with 

locally compact, second countable state space ~ . Put ~ = ll(D, the Borel cr­

algebra of ~ , and for each t > 0, denote the cr-algebra generated by x5 , 

0 S s ~ by G t . Let J.! be a fixed excessive measure with respect to this 

process; that is, there exists C > 0 such that /[ pX(Xt eB) d)l(x) ~ C ]J.(B) 

for every B e ~ and t > o. 
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Let F be a Banach space and 1 s p s oo. The space LP(~,Jl;F ) of 

(equivalence classes of) functions strongly p-integrable with respect to Jl is 

denoted by E . If f e E , then for Jl-almost all x e ~ , the function 

f oXt :Q .... F is strongly p-integrable with respect to px for every t > 0. 

Furthermore, if PJ.l:6 .... [O,oo[ is the measure defined by PJ.l(S) = /[ pX(S)dJl(X), 

5 E 6, then f oX t is strongly p-integrable in F for every t > 0. 

The operator valued measure mt : 6t .... £(£,F) is defined by 

mt (5 )f /Q f oXt (w) dPJl(w) , f E E, 5 E 6t, 

for every t > 0. The space £(£ ,F ) of bounded linear operators of E into F is 

endowed with the strong operator topology. 

The bilinear form Q.(F )x£(£ ,F) -+£(£,F) is taken to be the composition of 

operators: (A ,B ) -+ AB , A e £(F ) , B e £(£ ,F ). The product is clearly 

separately continuous. 

The continuous dual £(£ ,F )' of £(£ ,F ) may be identifi.ed with the tensor 

product E ®F ' of E with F ' by the action 

(A ,f ®!;) -+ <Af ,!;> , A E £(£ ,F ), f E E, !; E F ' [7] p139. 

First, we will see that for each t > 0 , the vector measure mt is of the 

type considered in Section 2; namely, for each ~ e £(£ ,F )' , the vector measure 

[mt ]~ : 6t -+ Q.(F )' has a-finite ~~~-variation in Q.(F )'. It is sufficient to 

consider linear functionals of the form ~ = f ®!;, f e E, !; e F ', in which case 

<A .[mt ]~ (5 )> = <A mt (5 )f.!;> , A E £(F) and [mt ]~ (5) = rUt (5 )f)®!; 

for all 5 e 6 t· . 

The vector measure mtf :6 t -+ F has a density f oXt :Q -+ F with respect to 

the measure PJ.l: 6 t .... [O,oo[ , so from [4] Corollary 4, mtf has a-finite compact 

variation in F . Since a set of the form K ®!; for K compact in F , s e F ' is 
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cr(s:!.(F )',s:!.(F ))-compact in 2(F )', it follo\t/s that lint ]~ has cr-finite \t/eakly 

compact variation in 2(F )'. 

THEOREM 4.1. Let t > o and suppose that nt :6 t ... 2(£ .F ) is a vector 

measure . If Q is compactly localized in s:!.(F ) with respect to 

(nt ,mt ), then there exists PJl -regular function Nt :Q ... s:!.(F ) such that nt = Ntmt . 

Suppose that F is separable. If there exists an mt-integrable function 

Nt : Q ->2(F ) such that nt = Ntmt • then for each f e E. the set Q is 

compactly localized in 2(F ) with respect to <ntf .mtf ). 

Proof. As indicated in the remark after Theorem 3.6. ,the function Nt can 

be constructed as before \t/hen Q is compactly localized in 2(F ) \tilth rsspect to 

<nt .mt ). 

For the converse. note that 2(F ) is a Suslin space \t/henever F is. 

separable [8] p67. Let Nt :Q ... s:!.(F ) be an mt- integrable function such that 

nt = Ntmt . Since Nt is scalarly measurable \tilth respect to Jl, it follo\t/s from 

the properties of Suslin spaces [8] p67 that P JloNt -1 is a Radon measure on 

s:!.(F ). 

For every s > o. there exists a set r e 6 t no such that PJl(fC) < s/2 and 

K = Nt (f) is relatively compact in s:!.(F ). and C = f oXt (f) is relatively 

compact in F . 

Let xk e F • k = 1,2,... be vectors \t/hose linear span is dens~ in F • and set 

ak = su.p{su.pxe c IIAx II + IIAxk II : A e K }, k = 1,2, .... 

D {A e 2(F ): rk~1 (su.pxec IIAx I + I!Axk II) /(ak 2k) ~ 1 l . 

Then D is a closed, injective. disked subset of 2(F ). Because the topology of 
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compact convergence coincides with the strong operator topology on equicontinuous 

subsets of 2(F ), it follows that K ~ o is continuously included in 2(F )o . 

For each s e F ', imtf I o .s (r) < oo. Furthermore, by the vector valued version 

of Egorov's theorem, there exists a set A ~ r and K -valued G> t -simple functions 

Sj . j = 1,2,... converging uniformly in 2(F )o to Nt on A . such that 

PJl(A C) < e. The conclusion now follows as in the proof of Lemma 3.5. 

Remark. If the conditions of Theorem 3.6 applied, then the operator valued 

function Nt would be strongly measurable in the uniform operator topology - a 

property which is too strong to be practical. The funct.ion Nt is a candidate for a 

multiplicative operator functional [3] associated with the given Markov process. 

An example of Edgar [2] p672 may be adapted to show that the separability of 

the Banach space F cannot be omitted in general. 

The question was raised in [5], as to when there exists a conditional 

expectation of a scalar function with respect to a vector valued measure m and a 

sub cr-algebra e. The technique developed in [5] answered that question in the 

case that the restriction of m to the cr-algebra e has cr-finite xn~~-variation. 

An application of Theorem 3.6 gives an alternative condition which does not 

require that the vector measure m admits a density. The proof follows that of 

[6] Theorem 3.2. In the present setting, the variation of m is replaced with the 

variation of <m .~ > for the appropriate continuous linear functional ~ . 

THEOREM 4.2. Let X be a locally convex space, and (Q,G>) a measurable 

space. Suppose that m :G> ... X , n :G> ... X are vector measures such that n « m , 

and for some scalar measure Jl:G> ... [0,1] • m « Jl. 

Then there exists a function f :Q -> IR such that n = fm if and only if for 

all E e e+, e > O,there exists F ee+n£ such that A[-1,1]CF ,e) ¢ !0. 
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