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INTEGRATION FOR THE SPECTRAL THEORY 

Igor KZuvanek 

Let E be a complex Banach space. Let B(E) be the algebra of all 

bounded linear operators on E. Then B(E) is a Banach algebra with res-

pect to the operator (uniform) norm defined by liT II= sup{ !Txi : lxl :> 1, 

x ~ E}, for every T ~ B(E). By I is denoted the identity operator. 

A spectral measure is a multiplicative and a-additive (in the strong 

operator topology) map P : Q + B(E), whose domain, Q, is a a-algebra of 

sets in a space n, such that P(Q) = I. An operator T E B(E) is said to 

be of scalar type if there exists a spectral measure P and a P-integrable 

function f such that 

(1) T ffdP. 
n 

This notion, due to N. Dunford, extends to arbitrary Banach space 

the ide.a of an operator with diagonalizable matrix on a finite-dimensional 

space. It proved to be very fruitful as shows the exposition in the 

monograph [3]. Many powerful techniques in which scalar operators play 

a role are based on the requirements that Q be a a-algebra and that P 

be a-additive. But precisely these requirements are reponsible for 

excluding many operators of prime interest from the class of scalar-type 

operators. Suggestions for extending this class lead to new interesting 

theories. 

So, C. Foias introduced the notion of a generalized scalar operator, 

replacing the algebra of all bounded measurable functions by some other, 

possibly poorer algebras of functions and the integration map by certain 
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homomorphisms of such algebras into B(E). The resulting theory is 

systematically presented in [1]. 

The theory of well-bounded operators, having its origin in the work 

of D.R. Smart and J.R. Ringrose, is discussed in the monograph [2]; see 

also the .relevant part of Section XV.l6 in [3]. It uses the fact that, 

even if the set function P is not cr-additive and is not defined on a 

cr-algebra 1 it may still be possible to introduce the integral with res-

pect to P, based on strong operator convergence, for sufficiently many 

functions. 

The theory of extended spectral operators 1 due to w. Ricker [7] 1 is 

not yet available in a monograph form. Its point of departure is the 

observation that the failure of an operator T to be of scalar type may be, 

so to say, not the fault of the operator T itself but, rather, of the 

space E. Indeed, there often exist a space F1 continuously and densely 

containing E, and an extension, S, of the operator T, by continuity, onto 

the whole of F such that S is a scalar-type operator. 

The purpose of this note is to propose still another generalization 

of the notion of a scalar-type operator. It is suggested by the well-

known fact that, if the integral (1) exists, then there exist Q-simple 

functions fj I j = 1, 2, ••• , such that 

(2) 

and the equality 

(3) 

LIIJf.dPII <co 
j=1 rl J 

f(w) = L f .(w) 
j=1 J 

holds for every w E rl for which 

(4) L if.(w)l <co. 
j=1 J 
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In that case, 

(5) ffdP 
n 

I Jf.dP. 
J=1 n J 

So, the integral (1) can be defined purely in terms of the operator 

norm convergence. Consequently, it is not necessary to assume that the 

set function P be bounded, let alone a-additive, nor that Q be a a-algebra. 

These assumptions can be replaced by less stringent ones which neverthe-

less guaran·tee that the integral (1) is defined unambiguously, that the 

operator T can be approximated by linear combinations of disjoint projec-

tion operators - values of P - that the spectrum of T is equal to the 

essential range of the function f and that the family of all operators so 

expressed, with fixed P but varying f, is a semisimple commutative Banach 

algebra. 

Let n be a non-erntpy set to be called the space. To save subscripts 

and circumlocution, subsets of n will be identified with their character-

istic functions. Let Q be an algebra of sets in the space n. The vector 

space of all Q-sirnple functions is denoted by sim(Q). 

An additive and multiplicative map P : Q-+ B(E) such that P(n) = I 

will be called a B(E)-valued spectral set function on Q. A spectral set 

function is not distinguished in the notation from its unique linear B(E)-

valued extension onto the whole of sim(Q). 

Given a spectral set function P, let us call P-null any set Y c Q 

for which there exist sets X. E Q such that P(X.) = 0, for every 
J J 

j = 1,2, ... , and 

Y c u X •• 
j::1 J 

For a function f on Q, let 

II [1100 inf{sup{ Jf(w) J W E Q\Y} y E N}' 
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where N is the family of all P-null sets~. Then 0 ~ II f ll, ~ co. Following 

the custom, we shall call P-null any function f on n such that II f llco = 0. 

The P-equivalence class of a function f will be denoted by [f]. To be 

sure, [fJ is the set of all functions g on n such that II f - g IL, 0. Of 

course, when there is no danger of confusion, we use the usual licence 

which allows us not to distinguish between a function and its equivalence 

class. 

Let Lco(P) be the family of all functions f on n such that, for every 

e: > 0, there exists a function g E: sim(Q) for which II f- g ll, < e:. Then 

Lco(P) is an algebra under the point-wise operations. 

Let Lco(P) = {[f] : f € Lco(P)}. Then Lco(P) is a Banach algebra with 

respect to the operations induced by the operations in the algebra Lco(P) 

and the norm, II •llco , induced by the seminorm f o+ II f llco, f E L co (P) . 

The spectral set function P Q ~ B(E) will be called closable if 

n 
lim 11 l. .e(f.)ll = o 
n-+co j=1 J 

for any functions f. E sim(Q), j = 1,2, ... , satisfying condition (2), such 
J 

that co 
L f .(w) = 0 

j=1 J 

for every w € n for which the inequality. (4) holds. 

PROPOSITION 1. Let P : Q ~ B(E) be a spectral set function. Let A(P) 

be the closure of the algebra of operators {P(f) : f E sim(Q)} in B(E). 

The spectral set function P is closable if and only if there 

exists an injective map 4> : A(P) ~ Lco(P) such that II 4>(T)IIco ~ II T II, for 

every T E A(P), and 4>(P(f)) = [fJ, for every f E sim(Q). 

Let P : Q ~ B(E) be a closable spectral set function. The range of 

the map 4> from Proposition 1 will be denoted by L(P). Furthermore, we 
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shall write L(P) {f [f] E L(P)} and 

P(f) ffdP ~- 1 ([f]), 
n 

for every f E L(P). Functions belonging to L(P) will be called P-integ-

rable. 

PROPOSITION 2. Let P : Q-+ B(E) be a closable spectral set function. 

A function f on n is P-integrable if and only if there exist 

funetions f j E: sim( Q) , j = 1, 2, " .. , saHsfy1:ng cond1: Uon ( 2), such 

that the equality (3) holds for every w E n for which the inequality 

(4) does. In that case, the equality (5) holds. 

Furthermore, L(P) c L00 (P) and llfll,::; IIP(f)ll, for every f E L(P). 

If f E l(P) and g E l(P), then fg E l(P) and P(fg) = P(f)P(g). So, 

L(P) is an algebra of functions. 

If f E L(P), then the spectrum of the operator (1) is equal to the 

P-essential range of the function f, that is, the set 

where N is the family of all P-null sets and the bar indicates the 

closure in the complex plane. 

A(P) is a semisimple Banach algebra. The integration map P = w- 1 

L(P) -+ A(P) is an isomorphism of the algebm L(P) onto the algebra 

A(P). 

So, operators T E B(E), for which there exist a space n, an algebra 

Q of its subsets, a closable spectral set function P : Q-+ B(E) and a 

function f E L(P) such that T = P(f), can be considered natural general-

izations of scalar operators in the sense of Dunford, in particular oper-

ators with diagonalizable matrix on a finite-dimensional vector space. 
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Let us call such operators scalar in a wider sense. 

It turns out that an operator T E B(E) is scalar in wider sense if 

and only if there exists a Boolean algebra of projections belonging to 

B(E) such that the Banach algebra of operators it generates is semisimple 

and contains T. 

To demonstrate the viability of the introduced concepts, we use them 

to obtain new information about some multiplier operators in LP spaces. 

We show, in particular, that, for any p E (1,oo), translations are scalar 

operators in the indicated wider sense. This is particularly significant 

if p E (2,oo) because, as proved in [4], in this case, translations are 

not extended spectral operators in the sense of W. Ricker, [7]. 

Let G be a locally compact Abelian group and r its dual group. The 

value of a character I; E r on an element X E G is denoted by ( x, I; ) • 

Let 1 < p < oo and let E = LP (G) , with respect to a fixed Haar 

measure on G. 

Let MP(r) be the family of all individual functions on r which deter­

mine multiplier operators on Ed That is, f E M P ( r) if and only if there 

exists an operator T f E B(E) such that (T ftp) = f:P, for every 

tp E L2 nLP(G). Here, of course, :P denotes the Fourier-Plancherel trans-

form of an element tp of L2 (G). 

Functions belonging to MP(r) are essentially bounded. In fact, 

llfll"' ~ IITfll, for every f E MP(r), where llfll"' is the essential supremum 

norm off with respect to the Haar measure. The operator Tf depends 

only on the equivalence class of a function f. That is, iff E MP(r) 

and if g is a function on r such that g(l;) = f(l;) for almost every I; E r, 

relative to the Haar measure, then g E MP(r) and Tg Tf. 

It is well-known that an operator T E B(E) commutes with all trans­

lations of G if and only if there exists a function f E MP ( r) such that 
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T = Tf. So, {Tf : f E MP(r)} is a commutative algebra of operators, con­

taining the identity operator, which is closed in B(E). Clearly, MP(r) 

is an algebra of functions and the map f~+ Tf' f E MP(r), is multipli­

cative and linear. 

Let RP(r) be the family of all sets X c r such that X E MP(r). Let 

pP(X) = TX' for every X E Rp ( r). r 

PROPOSITION 3, The family RP(r) is an algebra of sets in r and 

set 

The usefulness of this proposition depends of course on how rich is 

the algebra of sets RP(r). A result of T.A. Gillespie implies that it is 

rich enough to permit complete spectral analysis of translation operators. 

Let us introduce the necessary relevant notation. 

Let TI' be the circle group, {z E cr : I z 1· = 1}, with its usual top-

ology of a subset of the complex plane. Connected subsets of TI' will be 

called arcs, For an element x of the group G and an arc Z c TI' , let 

X = {~ E f Z,x 

Let K1 (r) be the family of all sets x2 corresponding to arcs Z cTI' and ,x 

elements x of G. The classes of sets Kn(r), n = 2,3, .•. , are then 

defined recursively by requiring that K ( r) consist of all sets X n Y such n 

that X E Kn_1 Cr) andY E K1 Cr). 

For n = 1, the following lemma is a simple re-formulation of Lewna 6 

of [5]. (See also Lemma 20.15 in f2].) By induction, the result follows 

for every n = 2, 3, .. , . 

Ln1MA 4, The inclusion K (r) c Rp(r) is valid for every p E (1,oo) and 
n 

every n = 1,2, ... Moreover, for every p E ( 1 ,"") ·' there exists a 

constant such that liP~ (X)II ~ C n every X E r), every 
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n 1,2, •.• and every loaally aompaat Abelian group r. 

Now, each element X of the group G is interfreted as a function on 

r - the character it generates - that is I the function I; I+ (X,!;) I I; € r. 

Then x E M P ( r) and T x is the operator of translation by x. 

It can be shown that, for every x € G, there exist numbers a. and 
J 

sets X. E K2Cr), j = 1,2, ••• , depending on x but not on p, such that 
J 

the equality 

00 

L Ia .111 P~(X .)II < oo, 
j=1 J J 

Ia.X.(t;) 
j=1 J J 

holds for every I; E r, and 

00 

L a.P~(X.), 
j=1 J J 

for every p E (1,oo). Consequently, x € L(P~) and 

T 
X 

= J< x,t; > P~(dl;). 
n 

For p = 2, this is of course an instance of Stone's theorem ([6], 36E). 

It might be of interest to note that, for each p € (1,oo), the translation 

operator, Tx, can be expressed as the sum of the same multiples of the 

projectionsP~(Xj), j = 1,2, ••• ; only the underlying space, E =LP(G), 

varies with p. 

More generally, if u is a function of bounded variation on the circle, 

~. such that the continuous singular component of u is zero, and 

f<s> = u((x,s)), for some x E G and every s E r, then f E L(~), 

for every p E (1, 00). 
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