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4.4. Type Dn. Here g = �~�n� (C). We consider g as a subalgebra �o�f�~� = �~�n� (C). 

We have g = l, where() is an involution of g . We argue as in 4.3. In this case, however, 
= =1 =1 

there is an "extra" polynomial invariant, the Pfaffian, which is not the restriction to g 
of an element of I(g ). We need the following result : 

=1 
LEMMA 4.4.1. Let x E g be nilpotent. Then x is a critical point of the Pfaffian 

if and only if l(>.(x)) > 2. 

This result, and computations similar to those of 4.3, gives the following : 

THEOREM 4.4.2. (Type Dn). Let x E g and let >.(x) = (>.1, ... , >.r ). (a) If 

l(>.(x)) > 2, then rank(d7rx) = [.>.1/2] and the exponents of (g, x) are 1, 3, ... , 2[.>.1/2]-

1. (b) Assume >.( x) = (2n - i, i) with i odd. Then rank( d1r x) = (2n - i + 1) /2 and the 

exponents of x are 1, 3, ... , 2n - i - 2 and n - 1. (c) Assume n = 2m is even and 

>.(x) = (n, n). Then rank(d7rx) = m and the exponents of (g, x) are 1, 3, ... , 2m-1. 

5. TWO SPECIAL RESULTS 

We continue with the notation of Section 2. We recall that a nilpotent element x E g is 

subregula!' if dim Gx = n + 2. (Here n =rank( G).) The subregular nilpotent elements 

of g form a single conjugacy class which is dense in the set of non-regular nilpotent 

elements. 

LEMMA 5.1. Let x be a subregular nilpotent element of g. Then rank(d7rx) = 

n - 1 �a�n�~� the exponents of (g, x) are m1, ... , mn-1· 

The proof that rank(d7rx) = n- 1 is given in [13]. Using this, an easy argument 

involving Proposition 2.2 shows that the exponents of (g, x) are m1, ... , mn-1· 

PROPOSITION 5.2. Let ! be a regular semisimple subalgebra of g and let x 

be a regular nilpotent element of !· Assume that m; is an exponent of ! and that d; 

does not divide d; for i =f:. j. Then m; is an exponent of (g, x ). 

It follows from Section 3 that Proposition 5.3 is equivalent to a result on Weyl 

group invariants. Our proof of the corresponding result on Weyl group invariants was 

suggested by T. A. Springer and uses his results [15] on regular eigenvectors of Weyl 

groups. 

6. EXPLICIT RESULTS FOR THE EXCEPTIONAL LIE ALGEBRAS 

PROPOSITION 6.1. Let g be an exceptional simple Lie algebra and let ! 
be a regular semisimple subalgebra of g. If m is an exponent of g which is also an 

exponent of !' then m is an exponent of g, x). 

Example 6.2. Let g be of type Es, let! be a regular semisimple subalgebra of g 
of type E1 and let x be a regular nilpotent element of !· The exponents of E8 which 
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are also exponents of E7 are 1, 7, 11, 13 and 17. It follows from Proposition 6.1 that 

the exponents of(g,z) are 1, 7, 11,13 and 17 and that rank(d7rx) = 5. 

Discussion of proof of Proposition 6.1. If x =f:. 0, then 1 is an exponent of <g, x) 

by Lemma 2.3. For most other exponents, the proof follows from Proposition 5.2. The 

exponents which cause trouble are as follows : (a) Types F4, E 6 and E7, m = 6; (b) 

Type Es, m = 8, 12. For all cases except type E7, m = 6, one can get the result by 

a refinement of the proof of Proposition 5.2, using the detailed information on regular 

eigenvectors of Weyl groups which is contained in Springer's paper [15]. The case of 

type E7, m = 6, requires a special argument. 

If g is an exceptional simple Lie algebra and if x E g is a regular nilpotent element 

of a regular semisimple subalgebra!: of g, then Proposition 6.1 gives precise information 

on the exponents of (g, x). In order to obtain the exponents for the other nilpotent 

elements, we need to use the order relation on nilpotent orbits given by the orbit 

closures. If C1 and C2 are nilpotent orbits in g, then we say that C1 < C2 if C1 C C2. 

One has exact information on this order relation between nilpotent orbits. See, for 

example the tables in Carter's book [5], pp. 433- 446. 

The following results are elementary : 

6.2. If x E C1, y E C2 and C1 < C2, then the exponents of (g, x) are a 

subsequence of the exponents of (g, y). 

6.3. Let r be the number of nodes with non-zero weight in the weighted Dynkin 

diagram associated to a nilpotent element x E fl:· Then rank(d7rx) ~ r. 

6.4. Let !: be a regular semisimple subalgebra of f!_, let x be a nilpotent element 

of ! and let m be an exponent of !:,, x). [We assume g is not of type D2r· If!: has a 

direct factor of type D2r, then we assume that m =f:. 2k- 1]. If m is also an exponent 

of g,, then m is an exponent of (g,, x). 

Let g be an exceptional Lie algebra. By using the results 5.1 and 6.1 - 6.4, one 

can get precise information on the exponents for every nilpotent orbit in g with the 

following exception: g of type Es, Cis the class E 8 (a2) (notation as in [5]) and m = 19. 

In this case we expect that 19 is an exponent of C, but have not been able to prove it. 

A list of the exponents of the nilpotent orbits in the exceptional simple Lie algebras 

is given in the Appendix to this paper. 

7. NON-NORMAL ORBIT CLOSURES IN EXCEPTIONAL LIE ALGE­

BRAS. 

The problem of whether the closure of a nilpotent orbit in g is a normal variety is of 

interest in representation theory (see, e.g. [2], Thm. 5.6). For the classical Lie algebras, 
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Kraft and Procesi [10] ha.ve obtained detailed, although not quite complete, information 

on this problem. For the exceptional Lie algebras, some results can be obtained from 

the (very difficult) calculations of Benyon and Spaltenstein [1] on "Green's functions" 

for the corresponding finite Chevalley groups, but the general problem is still open. We 

indicate below how the calculations of the previous sections lead to a number of new 

examples in the exceptional algebras of nilpotent orbits whose closures are not normal 

varieties. 

For each integer j > 0, let = {x E g, I dim G · x = j}. Each gCiJ is a locally 

dosed subvariety of fl· A sheet in ~ is an irreducible component of some gCj); a sheet 

S is a Dixmier sheet if S contains a semisimple orbit. It is known that each sheet of g 
contains a unique nilpotent orbit. 

The following two results are due to Borho and Kraft [3] : 

7.L S is a sheet in {1,> then there exists a parabolic subgr-oup P of G and a 

solvable ideal ~ of g = Lie(P) such that S = G ·'!;.reg. 

See [3] for the definition of T;_re9. 

7.2. Let S, P, '!;,. b.e a.s in 701 and let G · x denote the uniqu.e nilpotent orbit in 

S. Assume that Gx = and that the orbit closure G ·a: is a. normal variety. Then 

for each simple G-module V, the function y ~-+ mult1l(C[G · y]) is constant on the 

sheet S. Moreover, for evew--y yES, the orbit closure G · y is a normal 

Here multv(C[G · y]) is the multiplicity of V in the G-module C[G · y]. 

As an immediate consequence of 7.2, we have : 

7 .3. Let g be a parabolic subalgebra of g, let !J, be a Levi subalgebra g, let 

~ = fQ, , ~ and let ~ denote the centre of JJ,. Let S be the unique connected algebraic 

subgroup of G such that Lie(S) = §. and let C = S · u be a nilpotent orbit in §.. Let 
g - -

C1 = IndhC be the induced nilpotent orbit in fl.. and let v E C1 . Let 1r1 : §......,. cr 
= -

denote the quo-tient morphism for ~· Assume tha-t the stabilizer G"' is connected. (1) 

If 

(7.3.1) dim,&+ rank(d7rl)u > rank(d7rv), 

then · v is no·t a normal varietuo (2) If · u is not a norrnal varietu, then G · v is 

not a normal variety. 

Proof. (1) Let hE g;eg. Then the left hand side of (7.3.1) is equal to 

rank(drrh+u = multg(G · (h + u)) 

and the right hand side equals mult~(G · v). Thus (1) follows from 7.2. (2) It is known 

that G · (h + u) is a normal variety if and only if S · u is normal. Thus (2) follows from 

7.2. 
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Example. Let C denote the class in (the Lie algebra of type) B 3 corresponding 

to the partition (3, 2, 2). By the results of Kraft-Procesi [10], the orbit closure Cis not 

normaL Let C' = Ind~~ (C). Then C1 is the class in F4 denoted by C3 . If v E C', then 

the stabilizer of v in G (the adjoint group of type F4 ) is connected. Thus, by 7.3.(2), 

C 1 is not a normal variety. 

There is a recipe which assigns to each nilpotent element v of fl.. a weighted Dynkin 

diagram (abbreviated W.D.D.); this is a function which assigns to each node a of the 

Dynkin diagram of g an integer n(a), the weight of a; the weights n(a) are either 0, 1, 

or 2. The conjugacy class G · v is uniquely determined by the W.D.D. If all weights 

of the W.D.D. of v are even, then v is an e·ven nilpotent element and G · v is an even 

nilpotent class. 

Let C = G · v be an even nilpotent dass of fl..· Let P denote the "standard parabolic 

subgroup" associated to the set of nodes of the W.D.D. of C which have weight zero 

and let g = Lie(P). Let :1; resp :g be the solvable (resp nilpotent) radical of g. Then 

S = G · f'·eg is a sheet of g (a Dixmier sheet) and C = G · Jkreg is the unique nilpotent 

orbit of S. In particular we may assume that v E Jk· 

1.4. Let C = G · v, g, P and 11. be as above and assttme -that v E Q. Then 

Pv = Gv. 

This follows from results of Hesselink and Kraft (see [7], Thm. 11.3 and [8], Thm. 

4.7). 

7 .5, Let C = G · v be an even nilpotent class in fl and lei d denote the number of 

21 s in the weighted Dynkin diagram of C. Then rank( d11,;) ~ d and, if rank( d11 v) < d, 

then the orbit closure C is not a no·rmal variety. 

Proof. Let S, ~, g be as in 7.3. If h E ("9 is semisimple, then rank(d1rh) = d. 

Thus 7.4 follows from 7 .2. 

Remark 7.5. In 7.4, if Gv is connected, then the result follows from 7.2.(1). 

Example 7.6. Let fl.. be of type E8 and let C = G · v be the nilpotent orbit in 

g denoted by D7(a1 ). Then C is an even nilpotent class and we see from Carter's 

tables, [5], p. 407, that the W.D.D. has three 2's. From the Appendix, we see that 

rank( d?Tv) = 2. Thus C is not normal. We note from the tables in [5] that Gv is not 

connected. 

Using the results 7.2 and 7.4, one can obtain a number of examples of nilpotent 

orbit closures which are not normal in the exceptional Lie algebras of types E6 , E7, E8 • 

It is a matter of checking our tables in the Appendi..'C against the tables of Carter [5], 

pp. 402 - 407, and also the tables of Spaltenstein (14], pp. 17 4 - 175 on induced orbits. 
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In the appendix we have indicated the non-normal nilpotent orbit closures which we 

have detected in this way. 

8. CONCLUDING REMARKS 

The two results below can be checked case by case from our calculations : 

8. L Let g be a simple Lie algebra, let !1: be a reductive subalgebra of g of maximal 

rank and let ~ = [lf , ~· Let v be a regular nilpotent element of ~· For each integer 

m > 0, let am (resp. bm) be the multiplicity of m as an exponent of the semisimple 

Lie algebra g ( resp. i). Then the multiplicity of m as an exponent of (g, v) is equal 

to min( am, bm)· 

8.2. Let v be a distinguished nilpotent element of the simple Lie algebra g and 

let d denote the number of 2' s in the W.D.D. of !!::· Assume G · v is not the dass 

Es(a.z). Then rank(dnv) =d. 

See [3] for the definition of distinguished nilpotent elements. 

We have not been able to give direct proofs of either 8.1 or 8.2. If one could 

strengthen 8.2 by giving a procedure for getting the exponents of a distinguished nilpo­

tent element, then 8.1 and 8.2 together would give an easy algorithm for reading off 

the exponents of a.n arbitrary nilpotent element of fl in terms of the Carter-Bala clas­

sification of nilpotent elements. 

Our computations also give the following result : 

8.3. Let g, be a simple Lie a.lgebra type An, B,. or and let S be a Dixmier 

sheet in fl· Then the function 

is constant on S. ,.., 
Let g be a simple Lie algebra and let C be a nilpotent orbit in g. Let "! : C -1> C 

denote the normalization of C. Then one can detect those orbits G, a inC for which 

#"!- 1 (a) > 1 by means of results on Green's functions (See [1], p. 595). This allows 

one to detect aU nilpotent orbits C such that 'TJ is not a bijection (assuming one can 

calculate the appropriate Green's functions!); in these cases, the non-normality of Cis 

due to "branching". For g of type E6 , it is shown in [1] that there are precisely three 

such orbits. However our results give seven nilpotent orbits with non-normal orbit 

closures. For the four new non-normal orbit closures in type E6 , the normalization 

map 'fJ is a bijection. For the classical groups this does not happen (except perhaps for 

a few special cases which Kraft-Procesi cannot handle). See [10], p. 543, Thm. 1. 
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APPENDIX. Exponents and non-normal orbit closures for nilpotent orbits in 

exceptional simple Lie algebras. 

We list below the exponents for each nilpotent orbit in the exceptional simple Lie 

algebras. We follow the notation of Carter's book [5] for the nilpotent classes. An entry 

of the form As - 1, 4, 5 ; under type Es means that if g is of type Es and x Egis 

nilpotent, with the orbit of x denoted by As, then the exponents of (g, x) are 1, 4, 5. 

We also list those nilpotent orbits, for which we can prove by our methods that the 

orbit closures are not normal. Presumably, there are other non-normal nilpotent orbit 

closures. 

1. Type Es. Exponents. 

Es- 1, 4, 5, 7, 8, 11 ; Es(al)- 1, 4, 5, 7, 8 ; Ds- 1, 4, 5, 7 ; Es(aa)- 1, 4, 5; 

Ds( al) - 1, 4, 5 i. As - 1, 4, 5, ; A4 + A1 - 1, 4 ; D4 - 1, 5 ; A4 - 1, 4 ; 

all other (non-zero) nilpotent orbits- 1. 

Non-normal nilpotent orbit closures: A4 + A1, A4, Aa + A1, Aa, A2 + 2Al, 2A2, 

A2 +A1. 

2. Type E7. Exponents. 

E1- 1, 5, 7, 9, 11, 13, 17 ; E7(a1)- 1, 5, 7, 9, 11, 13 ; E1(a2)- 1, 5, 7, 9, 11 ; 

E7(aa)- 1, 5, 7, 9 ; Es- 1, 5, 7, 11 ; Ds- 1, 5, 7, 9 ; E7(a4)- 1, 5, 7 ; 

Ds(al)- 1, 5, 7 ; Es(al)- 1, 5, 7 ; Ds + A1- 1, 5, 7 ; As- 1, 5 ; E7(as)- 1, 

5 ; 

Ds- 1, 5, 7 Es(aa)- 1, 5 Ds(a2)- 1, 5 ; Ds(al) + A1 - 1, 5 ; As+ A1- 1, 

5 ; 

(As)'- 1, 5 ; Ds(al)- 1, 5 ; D4 + A1- 1, 5 ; (As)"- 1, 5 ; D4- 1, 5 ; 

all other nilpotent orbits - 1. 

Non-normal nilpotent orbit closures: Ds(al), Ds(a2), (As)", A4, Aa+2Al, Aa+A1, 

Aa. 

Type E8 • Exponents 

E8 - 1, 7, 11, 13, 17, 19, 23, 27 ; E8 (a1)- 1, 7, 9, 11, 13, 17, 19, 23 ; 

Es(a2)- 1, 7, 11, 13, 17, (19?) ; Es(aa)- 1, 7, 11, 13, 17 ; Es(a4)- 1, 7, 11, 13 

E7- 1, 7, 11, 13, 17 Es(b4)- 1, 7, 11, 13 ; Es(as)- 1, 7, 11 ; 

E7(al)- 1, 7, 11, 13 Es(bs)- 1, 7, 11 ; D7- 1, 7, 11 ; Es(as)- 1, 7 

E7(a2)- 1, 7, 11 ; Es + A1 - 1, 7, 11 ; 

the following classes have exponents 1 and 7 : Es(as), D7(a!), Es(bs), E7(aa), 

Es(al) + A1, A1, D7(a2), Ds, Ds + A2, Es(a1), E7(a4), Ds(a1), Ds + A1, Ds 

all other nilpotent orbits - 1. 
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Non-normal nilpotent orbit closures : E7(a1), E7(a2), D7(al), Es, Ds, Es(al), 

A6, Ds + A1, Ds, E6(ag), D4 + A2, Ds(al) + A1, As, D4 + A1, A4, D4, Ag. 

4. Type F4 • Exponents 

F4- 1, 5, 7, 11 ; F4(a1)- 1, 5, 7 ; F4(a2)- 1, 5 ; Bg- 1, 5 ; C3- 1, 5 ; 

all other nilpotent orbits - 1. 

Non-normal nilpotent orbit closures : Cg. 

5. Type G2. Exponents 

G2 - 1, 5 ; all other nilpotent orbits- 1. 
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