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ERGODIC MEASURES FOR THE ACTIONS OF DENSE SUBGROUPS 

William Moran 

1. INTRODUCTION 

A construction for singular measures quasi-invariant and ergodic 

for the irrational rotation Ta by a on the circle was first given by 

Keane in[S]. It involved using the continued fraction expansion of a 

to identify T with the odometer action on a subset of an infinite 
a 

product space. Subsequently Katznelson and Weiss [4] obtained a 

general method for constructing uncountably many mutually singular 

quasi-invariant measures ergodic with respect to a general homeomor­

phism T on a compact metric space, provided that T has a recurrent 

point. 

In a recent paper·[6J, we have shown that it is possible to use 

a Riesz product technique to obtain measures of the kind that Keane 

produced; though, being Riesz products these measures are more sus-

ceptible to control of their Fourier-Stieltjes transform. In particu-

lar such measures can be chosen to have their Fourier-Stieltjes 

transform vanishing at infinity. This property was required in 

connection with the study of non-monomial representations of the 

discrete Heisenberg group (cf. [ 1]). 

The idea of using ;Riesz products to obtain ergodicity was first 

introduced by Gavin Brown in [2]. He was, however, only able to deal 

with subgroups in which every element has finite order. Nevertheless 

it was a modification of his technique which was used in [6] to 

obtain measures ergodic for the irrational rotation. In this paper 

we generalise the technique to apply to any countable dense subgroup 

of a compact metric abelian group. 
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It turns out that in many circumstances these measures possess a 

uniqueness property. In the case of T , the measures ~ constructed in 
a 

[6] are the unique quasi-invariant measures with given Radon-Nikodym 
d(wol ) 

derivative''· d a Here we show that the same property can be 
fl 

obtained in the more general setting. 

We begin by exploring the basic ideas of the proof in somewhat 

more generality than is absolutely necessary in an attempt to clarify 

the underlying mechanism involved. 

2. STABiliTY 

Fix a compact metric abelian group G and let B be a countable dense 

subgroup of G. We use r to denote the Pontryagin dual of G. Fix also 

an increasing sequence (An) of finite subsets of r whose union is the 

whole of r and such that A- 1= A For a measure w on G we write Sn(w) ·n n · 

for the nth partial sum of its Fourier Series; explicitly, 

S (~)(t) = [ wA(a)a(t). 
n EA a n 

( 1 ) 

For a probability measure ~ on G we introduce the concept of a 

B-stabilizing sequence; this is a sequence (An) of probability measures 

on B satisfying 

( 2) L ~A(a)!-" 0; 
aEA~\{1} n 

(3) 

A measure w for which there exists such a sequence is said to be B-

stable. The next lemma, the key to the proof of ergodicity, is based 

on a result of Brown ([2], Theorem 5). 

LEMMA 1. Every B-stable measure w is B-ergodic. 
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Proof. Fix a Bore 1 set E invariant for the action of B. We need to 

show that ll(E) is 0 or· 1. Write llE for the "restriction" of l1 to E. 

If (An) is a. B-stabilizing sequence for l1 then, for yEr , 

(" 

jEy(t).S0 (ll)(t).dAn*ll(t) 

(4) 

= L JlA(a)AA(ay)llEA(ay) 
aEA n 

n 
by the B-invariance of E. This is equal to 

and the second term tends to 0 as n+ro by ( 2) s i nee y. An c A~ eventua 11 y. 

On the other hand, by ~3), 

1\ 1\ 
Combining these, we see that JlE (y) = l1 (Y)ll(E) for all yEr and hence 

that JlE = ll(E).Jl which gives the required conclusion. 

There is already a sense in which B-stable measures exhibit a high 

degree of uniqueness. The following simple observation is an important 

step in the ultimate proof of unique ergodicity for appropriate 

measures. 

LEMMA 2. If (An) is a B-stabilizing sequence for].l andv is a proba­

bility measure such that 

in the weak* topology, then l1 = v. 
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Proof. It is enough to show th~t 

(rEf) . 

This follows at once from the following equation: 

and (2), as in Lemma 1. 

However B-stability does not appear to be sufficient to guarantee 

uniqueness of ~ in the sense stated in the Introduction; that is, that 

~ is the unique probabi"1 ity measure satisfying d(o~~)*J:!.) :: Q(b,t) 

where Q:BxG --+ R+ is some fixed cocycle: 

Q(b'b,t) = Q(b',bt)Q(b',t), ~ a.e. for all b,b'EB. 

What we shall assume is that there is some continuous function 

P:BxG --+ R+ (where B has the discrete topology) such that 

(6) 

uniformly in tEG. 

First \~e shol'J that P is just the Radon-Nikodym derivative. 

d"(b'* ) LEMMA 3. P(b,t) = (0 d~ Y (~a.e.) for all bES. 

Proof. Fix yEr. Then, on the one hand, 

(7) 

by (3). 

f:Y(t)P(b,t)Sn(Jl)(t)d(An*~)(t) 

--+ f:Y(t)P(b,t)d~(t) 

On the other, 
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J y( t) Sn (l.l ) (tb -1 ) d (A n *l.l ) (t) 

(8) = L /'(a) Jy(t)a(t)a(b)d(A *ll)(t) 
aEAn n 

= llA(y)y(b) + L a(b)llA(a)A~(ya)llA(ay) 
aEAn\{y} 

and, as usual, the second term tends to 0 by (2). Now combining (6), 

(7) and (8) we produce 

JY"(t)P(b,t)dl.l(t) = (o(b)*llt(y) 

for all '~Er, bEB, whence the result. 

Observe that we have, in proving the lemma,obtained a slightly 

stronger conclusion. 

COROLLARY. If II is a B-stable measure satisfying (6) then II is quasi-

invariant. 

Now we turn the problem of unique ergodicity. The following 

lemma is what we require. 

LEMMA 4. Let l.l be a B-stable measure satisfying (6) and suppose that 

v is a probability measure quasi-invariant for the action of Band 

satisfying d(O~~)*v) = P(b,t) (v a.e.). Then v = ll. 

Proof. In view of Lemma 2, it is enough to show that 

Now 

(9) 

(yEf) . 

A 
(Sn (ll ) . (A n * v)) (y) 

= L An(b)(Sn(ll).(o(b)*v)t(y) 
bEB 

= L An (b) fSn ( ll) ( t rr ( t ) P ( b, t ) ,dv( t ) 
bEB. 
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By ~(6), noting that I: A. (b) < c:o, we observe that ( 9) has the same 
bEB n 

1 i mit as n-!<10, as 

= L L A.n(bht(a)a(b) Ja(tfy(t)dv(t) 
bEB aEAn . 

= L A.A(a)~A(a)vA(ay) 
aEA n 

n 

A 
which tends to v (y) by (2). This proves the result. 

3. RIESZ PRODUCTS 

A sequence ( Xn) of e 1 ements of r is dissociate if each e 1 ement 

y of r can be expressed in at most ~way as a product 

e:1 e:2 e:k 
Y = X· X· · · · X· 11 12 1k 

where e:i = ±1. (If xk has order 2, then we formally identify x~ 

with xk1 .) Such sequences were introduced by Hewitt and Zuckermann in 

their paper [3] generalising the concept of Riesz product to arbitrary 

compact abelian groups. Choose a sequence (an) of real numbers in 

the interval [0,1] and define 

Let pN = TT q and observe that if m denotes the Haar measure of G, 
n<N n 

then pN.m Ts a probability measure (call it ~N). By calculating 

the Fourier-Stieltjes coefficients of ~N' we see quickly that the 

sequence (~N) converges weak* to a probability measure~ - the Riesz 

product generated~ (xn) with coefficients (an). These measures 

have had wide application in harmonic analysis and, in particular, 
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have been studied by Hewitt and Zuckermann (loc.cit.) and Gavin 

Brown [2]. 

For our. purposes, it will be enough to note a few simple proper-

ties. First observe that the Fourier-Stieltjes transform of ~ is 

given by 

(10) 
k I Ei I 

~"(y) = TI a. 
i=1 1 

so that ~" vanishes at infinity if and only if an~ 0 

Furthermore ~ is absolutely continuous if and only if 

as n-+oo. 

IX) 2 
E a < oo([2], 

n=1 n 
Proposition 2). There are corresponding mutual singularity results, 

which would allow us to pick uncountably many mutually singular 

measures which are quasi-invariant and ergodic for a dense subgroup. 

We refrain from giving the details, save to mention that only the 

sequence (xn) plays a role in the construction of these measures; the 

coefficients may be chosen freely from an interval [O,p] where p < 1. 

4. THE CONSTRUCTION 

Fix now the group G with dual r, the countable dense subgroup B 

of G, and a real number pE(0,1). Choose also a sequence (En) of real 

numbers in [0,1] and tending to 0. We shall construct simultaneously 

by induction four sequences (An), (xn), (Dn), (An), where An is a 

probability measure on B, XnEr, On is a subset of B and Ancr. To 

describe the properties which we shall impose on these objects, we 

need to introduce the notation 

En 
Xn ; Ei = 0,±1}. 

Let us write (Sn) and (bn) for enumerations of the countable groups 

rand P with 81 = 1. We shall write ICI for the cardinality of the 

set C. The sequences will then be defined inductively to satisfy: 
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(c) l>..~(dl< lin12;:1 (~EA~\{1}); 
(d) 1 (b) 11 < (l:..!J) 1 E (bEDr, r < n); Xn - 2fD';;l · 6n+1 · r 

for n = 1,2,3, ... 

Before giving the proof of existence of sequences with these 

properties, we show that (a), {b), (c), (d), (e) together lead to a 

B-stable measure satisfying (6). Observe first that by (a) Xn+1 f n~, 

for all n, so that the sequence (xn) is dissociate. Now, for any 

sequenc~ of real numbers (an) in the interval (O,p), we may form the 

Riesz product generated by (xnl with coefficients (an). It follows 

also from (a) that 

L ll" (a )a = P n 
aEAn 

and, of course, from (b) that uAn r. Observe too, that (c) implies 

that 

L2 j>..~(a) I < En-+ 0 
aEAn\{1} 

to that (2) is satisfied. To achieve the B-stability of ll• therefore, 

it is enough to show that if vn = P n. { >..n *ll) - l1 then llvnll -+ 0. We 

first establish the property (6), from this we can deduce the remaining 

conclusions. Define 

(11) V(b,t) 
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lEMMA 6. For bEDn, the infinite product (11) converges uniformly and 

IV (b, t) - 11 < 2'f\TD1 E: • 
n '-lunl n 6n 

Proof. First observe that by (d), for tED , n 

lqk(tb-1)qk(tf1 - 11 ~ 1~p lqk(tb-1)- qk(t)l 

2 I I 1 1 ~ 1-P \(b) - 1 < "6fOJ sn . 6k 

provided k>0+1. Now the result follows from the inequality 

11T (1+ck) -11 <e,Jf ic0 il·-1. 
k=1 ~=1 

Lemma 6 implies, in particular, that 

so that (6) follows from the remark that each bEB is eventually in 

some Bn. 

The final step in the proof of B-stability is the next result. 

LEMMA 7. llv0 II = IISn ( Jl). ( \ *JJ) - llll < En for a 11 n. 
Proof. Write lln = Sn(Jl)-1 .)1 and Tn = An*l1-l1n· Then 

[I A.l\(a) I A. (b)a(b)a. (o(b)*ll )] 
aEQ bED n n 

n n 

so that 



185 

ll'n 11 ::_ 11 [.L JlA (o:) L A.n(b)a(b)cLJlJ - llnll 
aES7n tE On J 

+II L /(a) L A.n(b)a(b)a.(o(b)*Jl0 - llnlll 
oB~ tEDn 

(12) 

+ 3n JD Jsup IJo(b)*u_ - u II n bED ·n rn 
n 

The first term is less than 

( 13) 

by property (c). To estimate the second term, observe that 

( 14) 

< 1 n 
-ZlD:T·n n 6 

Now by (12), (13) and (14), llcnl! < 2-ne:n and since jp11 (t)j < 2n 

for ail tEG, llvnll < e:n. 

It only remains to indicate how the four sequences (A.11 ), (xn), 

(On) and (A 11 ) may be obtained to satisfy (a), (b), (c), (d), (e). 

Assume then that the first n terms in each sequence have been defined 

and satisfy the required conditions. The first task is to find a 

suitable X . D 1 is a finite subset of B, so that it is poss~ble 
n+1 n- • 
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A 
to find Xn+1 to satisfy (d), since r is dense in B. Furthermore, 

because Q~An is also finite it is possible to arrange matters so that 

(a) is satisfied. Choose An+1 = An+1 to contain Sn+1' An and nn+1. 

Next select An+1 to be a measure finitely supported on B which is a 

weak* approximation to Haar measure m on G so that (c) holds. Finally 

define Dn+1 to be a finite subset of B containing bn, On and the 

support of An+1. This completes the construction. We now state the 

main theorem. 

THEOREM. The Riesz product measure ~ constructed above is quasi­

invariant and ergodic for the action of B. lf v is any other B­

guasi-invariant probability measure with the same Radon-Nokodym 

derivative then v = ~-

As we have already indicated, by varying the coefficients it is 

possible to obtain uncountably many mutually singular ergodic measures 

for B. 
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