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BETTER GOOD A INEQUALITIES 

Douglas S. K v.rtz 

Introd.udio:n 

In the early 1970s, D. Burkholder and R. Gundy introduced a technique 

for studying operators on LP spaces. Their idea was to relate a pair of 

operators by a distribution function estimate which is now known as a 

~'good-A" inequality: 

m({x E nn: ITf(x)l > 2)., !Mf(x)l::; 6).}) 

::; f m( {x E Rn: ITf(x)j > 

Such an inequality implies that the LP norm of Tf is bounded by the LP norm 

of Mf. Thus, integrability results about M can be used to derive corresponding 

ones about T. Often, the method of proof aHows one to replace Lebesgue 

measure by a weighted measure. 

h.1 many instances, this kind of result can be improved. Consider the 

::;ituation when Tf is a maximal Calde.ron-Zygmund singular integral operator 

and Mf is the Hardy-Littlewood maximal function of L R.R. Coifman and 

C. Fefferman proved [6] 

w({x ERn: Tf(x) > 2A, Mf(x) ::; «5).}) 

~ E w({x E Rn: Tf(x) > A}) (0.1) 

for any weight w in Muckenhoupt 's A00 da.ss. Our main result is an nnn"'"""'"'.n 

version of (0.1). 

Theorem 1: Let w E A00 and 0 < ~ ~ l There is a constant C > 0 

such thai 
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w(x E Rn: Tf(x) > CMf(x) + >.}) 

::; f. w({x E R+: Tf(x) > >.}), >. > 0. D 

This result is equivalent to an estimate proved by R.J. Bagby and the author 

[1]. 

The conclusion of Theorem 1 implies (0.1). One can see it is an 

improvement of (0.1) by considering non-increasing rearrangements. From the 

theorem, we get 

t > 0. 

This inequality implies sharp estimates on the operator norm of T acting on 

LP, for large p. Such estimates cannot be obtained from (0.1). 

We use m(E) for the Lebesgue measure of the set E. Given a: non­

negative, measurable function, w, and p ~ 1, set 

llfllp w = ( f lf(x)IP w(x)dx) 11P. , J-Rn 
In Section 1, we discuss the good-..\ inequality (0.1). A sketch of the 

proof of Theorem 1 can be found in Section 2. The last two sections contain 

results about rearrangement functions and applications. 

The results of this paper contain joint work done with R.J. Bagby [1]. 

In particular, the content of Sections 3 and 4 can be found in that paper, 

where complete proofs are given. 

I. The Good-..\ Inequality 

Lf't w(x) be a non-negative, measurable w~·i~hl 'nnn·u!• and spt 

w(E) = J. "l·ddx for an~ Lt>be~gue measurab!P set f 
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Definition 1.1: w E A00 if given £, 0 < f < 1, there is a 6 > 0 so that 

for any cube Q C R 0 and measurable set E C Q, m(E) < 6m(Q) implies w(E) 

< ~: w(Q). 0 

Let f be a Lebesgue measurable function on R 11 and define the distribution 

function off with respect to w by 

for >. > 0. For 1 ::; p < oo, we have 

(L2) 

Let K(x) be homogeneous of degree ~nand satisfy the conditions: 

(i) IK(x)l ::; C/lxln 

(ii) { K(x)dx = 0, 
J{a<lxj<b} 

0 <a< b (1.3) 

(iii) IK(x-y)- K(x)l ::; C!YI/Ixln+l, 

Set 

TJ(x) = { K(x-y)f(y)dy. 
J{y:jx-yl>d 

To study the Calderon-Zygmund singular integral operator 

Kf(x) = lim 
<E'\,0 

T 10f(x ), consider tht> maximal singular integral operator 

Tf(x) = sup00 ITJ(x)l. Thf operator we use to control T is the Hardy-

tittlewood maximal function 
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Mf(x) = supQ::lx l~l k lf(y)l dy, 

where the supremum is taken over all cubes, Q, which contain x. 

In [6], Coifman and Fefferman proved 

Theorem 1.4: Let w E A00 • Given f, 0 < f < 1, there is ali > 0 so that 

w( {x E Rn: Tf(x) > 2>., Mf(x) ::; 8>.}) 

$ f w({x E Rn:Tf(x) > >.}), >. > 0. 0 

From this theorem, we have 

Using {1.2) and several changes of variables 
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{ Tf(x)Pw(x)dx = p 100 
_AP-l DTfw(A)d.A 

}Rn 0 ' 

Combining terms and taking pth roots yields 

2 
(1.5) 

Consider now the AP condition. 

Definition 1.6: Let 1 < p < oo. w E AP if there is a constant C > 0 so 

that for all cubes Q C Rn 

c~~ w(x)dx) c~~ J w(x) 1-P' dx) p-l ~ C. D 

Mu.ckenhoupt [8] has shown that w E AP implies M defines a boundt>d 

operator on the weighted LP space. L~. ~ince w E AP implies w E Ax 1 -.N' 

6,), (1.5) gives the weighted norm iMquality IITfJJp,w ::; Cllfllp,w wht>n('H'r I 



123 

< p < =and wE AP. 

There are two main problems with (1.5). One is that no single E works 

for all values of p since we need .r:: < 2-P. The other is that, due to the 

relationship between E and fi; the expression 2/8(1-2P~:-) 1/P is on the order of 

zP while operators like T should have operator norms on the order of p (see 

[10, p.48]). Both of these problems are caused by the constant 2 by which A is 

multiplied in Theorem 1.4. This constant can be replaced by any (3 > 1, still 

yielding estimates with exponential growth, but not by 1, since this would 

imply the norm of T is bounded for large p. 

II. The Better Good-.:\ Inequality 

The major problem with Theorem 1.4 is that Tf is considered only for 

values of x where Mf is relatively small. Notice that in Theorem 1, the two 

are compared pointwise. We sketch a proof of Theorem 1 for completeness, 

The proof is taken from [1]. 

Proof: Fix <£ and choose 8 by the A= condition. Fix A > 0. Let { Qk} be 

Whitney cubes for the set E = {x E Rn: Tf(x) > >.}. 

Fix k and choose xk ri E so that distance (xk,Qk) ::; 4 diameter Qk. Let 

Q be the cube centered at xk with diameter Q = 20 diameter Qk. Set g = fxq 

and h = fxRn-Q so that f = g+h. If 

then C 1Mf(x) ;::: a for all x E Qk. By the inequality 

m({x ERn: Tf(x) >a})::;~ /lf(x)l dx. 

we get 
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AI A ::; a lg(x)l dx ::; ct IQI . (2.1) 

Fix x E Qk and YJ > 0. Let Ll be the symmetric difference the balls 

B(x,fJ) and B(xk,f7) and let r = max{7J,distance(xk,Rn-Q)}. Then 

IT11h(x)l :S 11 K(xk-y)f(y)dyJ 
{y: Jxk-yj >r} 

+ { JK(xk)l- K(x-y)llf(y)idy 
J{y: Jxk-yJ>r} 

+I JK(x-y)Jif(y)Jdy. 
L\ 

The first term is bounded by Tf(xk) :S ~. The second and third terms are 

bounded by constant multiples of Mf(x), by (1.3, i) and (1.3, iii), respectively. 

Taking the supremum over 'fJ > 0, 

ITh(x)l ::; c2 Mf(x) + ~ . 

Let C = C1 + C2• Then (2.1) and (2.2) imply 

Using the A00 condition and summing over k completes the proo[ D 

1 

(2.2) 

Suppose Mf(x) :S CA. Then Tf(x) > 2..\ ~ CMf(x) + A which implies 

... 1 
Rn Tf(x) > 2>., Mf(x) :S C .A} 

~ {x E Rn: Tf(x) > CMf(x) + .A} . 
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1 
Therefore, Theorem 1 implies Theorem 1.4 with 6 == 0. To see that Theorem 

1 contains a stronger inequality, we consider rearrangement functions. 

III. Rearrangement functions 

Define the non-increasing rearrangement function off with respect to w 

by 

* for t > 0. Since f and fw are equi-measurable, 

* Setting,\ = (Tf)w in Theorem 1, we get the equivalent inequality 

* w({x ERn: Tf(x) > CMf(x) + (Tf)w(2t}}) 

* ~ £ w( {x E Rn: Tf(x) > (Tf)w(2t}}) . 

Fix /, 0 < 1 < 1 and set£ = 1;7. Since the definition off: implies Dr,w(f:(t)) 

~ t, by (3.1), 

* * w( {x E Rn: Tf(x) > C(Mf)w(it) + (Tf)w(2t}}) 

'* 
~ w( {x E Rn: Tf(x) > CMf(x) + (Tf)w(2t}}} 

* + w( {x E Rn: Mf(x) > (Mf)wht)}) ~ £(2t} + jt = t. 

Therefore, we get 

Lemma 3.2: Let w E A00 • For /, 0 < 1 < 1, there is a C > 0 so that 

t > 0. 0 
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1 
Set 1 = 2 and iterate the conclusion of the lemma to get 

(X) 

(Tf): ~ L (Mf):(2k-1t) + lim (Tf):(s) . 
k=O s--+= 

If the sum is finite, one can show that the limit is 0. Since r: IS non­

increasing, we have 

Tbem·em 3.3: Let w E A00 • There is a C > 0 such that 

~ C ioo (Mf):(s) ds' 
t/4 s 

t > 0. 0 

Results of this nature also appear in [3,4]. 

IV. Applications 

Suppose w E A00 • By Hardy's inequality, 

g(u)du)Pdt ::; pP ~a= (ug(u))P du, 

and Theorem 3.3, we get 
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< 1oo (!oo -~ ds\ (Mf)~(s) -} P dt 
0 t/4 s' 

= 4(Cp)P !Rn Mf{x)P w(x)dx. 

Thus, IITfllp,w ::; 4CpiiMfllp,w for l S p < oo. By the boundedness of M on 

weighted LP spaces, I!Tfllp,w S Cllfllp,w for l < p < oo and w E Ap. Using, 

some results about A00 weights (see [6]), we have 

Corollary 4.1: Let w E A00 • There is a p(w) > 1 and a C > 0 so that 

for p(w) S p < oo, 

The linear rate of growth of the norm of T is the best possible for 

general Calderon-Zygmund singular integral operators. Note also that we get 
1 

all of the LP results, 1 < p < oo, using only 1 = 2' instead of having to vary £ 

as (L5). 

Calderon [5] has shown that if an operator S is weak-type (1,1) and 

bounded on L 00 then 

* 11t * (Sf) (t) ::; C- f (s)ds. 
t 0 

(4.2) 

Suppose w sat1~fies the A 1 condition, Mw(x) ::; Cw(x) for almost every x. 

Then, for the H.ar«h Littlewood maximal function we have 



128 

Plugging this estimate 

the integration yields 

the first inequality of Theorem 3.3 and performing 

Corollary 4.3: Suppose w E A1. Then there is a C > 0 so that 

Thus, we get a weighted version of ( 4.2) even though Tis not bounded on 1 00 

(see [1,3]). Averaging the conclusion of the corollary over the interval (O,t) 

yields an analog of a result proved by O'Neil and Weiss [9] for the Hilbert 

transform. 

For finite p, the Mardnkiewicz space weak-LP properly contains V>, 
while the two spaces coincide when p = oo. In order to extend 

Mardnkiewicz Interpolation Theorem to include operators that are 

unbounded on L00 , Bennett, De Vore, and Sharpley [2] Introduced a space 

called weak-100 • 

Define the averaged rearrangement function off by 

1 1t =- r* (s)ds. 
t 0 w 

* We say f (:: weak-L00 iffw(t) is finite for all t > 0 and 

.<\ r>oth~r Iteration of the COIH lusion of Lemma 3.2 yields 

*". . . . ** . . ·.. • rrn'\\' II) 'S C(\1f)w (I i + \D i"P I. 
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H f E L00 and (Tf):(t) is finite for a singlet, then (Tf):(t) is finite for all t, 

by Lemma 3.2. Therefore, we have 

* Corollary 4.4: Suppose w E A00 and f E L00 . If (Tf)w(t) is finite for 

some t then Tf E weak-L00 and 

As a consequence of Corollary 4.4, one can prove results about 

exponential integrability forT. 

Versions of Theorem 1 are true for kernels satisfying conditions weaker 

than (1.3). Let :E = {x E Rn: lxl = 1}. Suppose K is positively homogeneous 

of -nand J E K(x) du(x) = 0. Set 

where pis a rotation of :E and IPI = supxEL' lpx-xJ. We say K E U-Dini,.l < 

r:::; co, ifK E U(E) and 

11 dt 
wr(t)- < co . 

0 t 

Analogs of Theorem 1 for Dini kernels can be found in [1] We also note that 

similar results for Littlewood-Paley operators are known [7]. 
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