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BETTER GOOD )X INEQUALITIES
Douglas S. Kurtz

Introduction

In the early 1970s, D. Burkholder and R. Gundy introduced a technique
for studying operators on LP spaces. Their idea was to relate a pair of
operators by a distribution function estimate which is now known as a

“good-A” inequality:
m({x € R™ |Tf(x)| > 2, |Mf(x)| < éX})
< em({x € R™ |Tf(x)| > A}).
Such an inequality implies that the LP norm of Tf is bounded by the LP norm
of Mf. Thus, integrability results about M can be used to derive corresponding

ones about T. Often, the method of proof allows one to replace Lebesgue

measure by a weighted measure.

In many instances, this kind of result can be improved. Consider the
situation when Tf is a maximal Calderén-Zygmund singular integral operator
and Mf is the Hardy-Littlewood maximal function of f. R.R. Coifman and
C. Fefferman proved [6]

w({x € R™ Tf(x) > 2A, Mf(x) < 6A})
< ew({x € R™ Tf(x) > A}) (0.1)
for any weight w in Muckenhoupt’s A  class. Our main result is an improved

version of (0.1).

Theorem 1: Let w € Aoo and 0 < ¢ < 1 There is a constant C > 0

such thai
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w(x € R™ Tf(x) > CMI(x) + A})

<ew({x e RETHx)>1A}), A>0.0O

This result is equivalent to an estimate proved by R.J. Bagby and the author
[1]-

The conclusion of Theorem 1 implies (0.1). One can see it is an
improvement of (0.1) by considering non-increasing rearrangements. From the

theorem, we get

(TE).(8) < C(MA), (t/2) + (TH),, (2t), £>0.

This inequality implies sharp estimates on the operator norm of T acting on

LP, for large p. Such estimates cannot be obtained from (0.1).

We use m(E) for the Lebesgue measure of the set E. Given a: non-

negative, measurable function, w, and p > 1, set

fllpw = ( /R“ |£(x) P w(x)dx)!/P .

In Section 1, we discuss the good-\ inequality (0.1). A sketch of the
proof of Theorem 1 can be found in Section 2. The last two sections contain

results about rearrangement functions and applications.

The results of this paper contain joint work done with R.J. Bagby [1].
In particular, the content of Sections 3 and 4 can be found in that paper,

where complete proofs are given.

I. The Good-) Inequality

Let w(x) be a non-negative. measurable weight ‘*unei-on and set

w(E) = f* wl¥idx for any Lebesgue measurable set F
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Definition 1.1: w € A __ if given ¢, 0 < € < 1, thereis a § > 0 so that
for any cube Q C R"™ and measurable set E C Q, m(E) < ém(Q) implies w(E)

<ew(Q). D

Let f be a Lebesgue measurable function on R" and define the distribution

function of f with respect to w by
Dy (A) = w({x € R™ [f(x)] > A}),
for A > 0. For 1 < p < oo, we have

©0

’ /n" lf(x)[P w(x)dx = p /0 APLDg L (A)d)

Let K(x) be homogeneous of degree -n and satisfy the conditions:
(i) IK(x)| < C/|x|"
ii K(x)dx =0, 0<ac<b
(i) /{“le(b} (x)

(iii) [K(x-y) - K(x)| < Clyl/Ix[**1, x| > 2ly] .

Set.

Tf(x) = /{yzlx-yl>e} K(x-y)i(y)dy .

(1.2)

(1.3)

To  study the  Calderén-Zygmund  singular  integral  operator

Kf(x) = lim T f(x), consider the maximal singular integral operator

e\,0

Ti(x) = sup,,q |Tf(x)]. The operator we use to control T is the Hardy-

i.ittlewood maximal function
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1
MI(x) = suPQx g /Q lf(y)| dy »

where the supremum is taken over all cubes, Q, which contain x.

In [6], Coifman and Fefferman proved

Theorem 1.4: Let w € Aoov. Given ¢, 0 < € < 1, thereis a § > 0 so that
w({x € R™ Tf(x) > 2\, Mf(x) < §)\})
<ew({x € R:Ti(x) > A}), A>0.0
From this theorem, we have
DTf,w(2)‘) < w({x € R™ Tf(x) > 22, Mf(x) < 6A}) + DMf,w(iS‘/\)
<e DTf,w(’\ + DMf,w(&\) .

Using (1.2) and several changes of variables
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O
/Rn Tf(x)Pw(x)dx = p /0 APd D, (A)dA
[e.e]
=p /0 (22)P1 Dy, (22)dA
cO
< 2Pep /0 AP1 Dy o (A)d
2 o1
+ (3) 6A) Dyr o (63)d
G/R“ T(x)P w(x)dx

+ ((—i) / MI(x)Pw(x)dx .

th roots yields

Combining terms and taking p

||| (1.5)

— ||Mf]
P»W - (1_2p€)1/p I ”P;W ’

as long as € < 2°P.

Consider now the Ap condition.

Definition 1.6: Let 1 < p < co. W € Ap if there is a constant C > 0 so
that for all cubes Q C R™

(Iézl (x)d") (|:Q|/ w(x)1P dX)p'l <c.o

Muckenhoupt [8] has shown that w € A, implies M defines a bounded
operator on the weighted LP space. LP. Since w € A implies w € A__ (e

'6,), (1.5) gives the weighted norm inequality ||Tf]| C||f|| whenever |

p,w =
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<p<ooandw€Ap.

There are two main problems with (1.5). One is that no single ¢ works
for all values of p since we need € < 2P. The other is that, due to the
relationship between ¢ and §, the expression 2/ 5(1-2pe)1/ P is on the order of
2P while operators like T should have operator norms on the order of p (see
[10, p.48]). Both of these problems are caused by the constant 2 by which X is
multiplied in Theorem 1.4. This constant can be replaced by any £ > 1, still
yielding estimates with exponential growth, but not by 1, since this would

imply the norm of T is bounded for large p.

I1. The Better Good-) Inequality

The major problem with Theorem 1.4 is that Tf is considered only for:
values of x where Mf is relatively small. Notice that in Theorem 1, the two
are compared pointwise. We sketch a proof of Theorem 1 for completeness..

The proof is taken from [1].

Proof: Fix € and choose é by the A__ condition. Fix A > 0. Let {Q, } be
Whitney cubes for the set E = {x € R™ Tf(x) > A}.

Fix k and choose x; ¢ E so that distance (x;,Q;) < 4 diameter Q. Let
Q be the cube centered at x; with diameter Q = 20 diameter Q. Set g = fo
and h = fXR"-Q so that f = g+h. If

1
o= Cl@/Q lg(y)] dy ,

then C;Mf(x) > o for all x € Q). By the inequality

m({x € R™ Ti(x) > a}) < % / If(x)| dx .

we get
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m({x € Q;: Tg(x) > C;Mf(x)}) < m({x € R":Tg(x) > a})

IA

IA

2 [l ex < Cil Q. (21)

Choose C; so that A|Q|/C; < 6 |Qy].
- Fix x € Q and n > 0. Let A be the symmetric difference of the balls

B(x,n) and B(x,n) and let r = max{n,distance(x;,R™Q)}. Then

IT,h(x)] < | K (i )(y)dy]

{y: [x-y|>1}

+ /{y: byeyl>1) [K(x)| - K(x-y)] [f(y)Idy

+ /A K (eey)] IEy)1dy

The first term is bounded by Tf(x,) < A. The second and third terms are
bounded by constant multiples of Mf(x), by (1.3, 1) and (1.3, iii), respectively.

Taking the supremum over 7 > 0,
|Th(x)] < Cy Mf(x) + X . (2.2)
Let C = C; + C,. Then (2.1) and (2.2) imply
m({x € Q;: Tf(x) > CMf(x) + A}) < ém(Qy) -
Using the A | condition and summing over k completes the proof. O

1
Suppose Mf(x) < o A. Then Tf(x) > 2A > CMf(x) + X which implies -

1
x o R™ Ti(x) > 2, Mf(x) < c A}

C {x € R™ Tf(x) > CMIf(x) + A} .
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1
Therefore, Theorem 1 implies Theorem 1.4 with § = o To see that Theorem

1 contains a stronger inequality, we consider rearrangement functions.

I1I1. Rearrangemenf functions

Define the non-increasing rearrangement function of f with respect to w
by
£ (t) = inf{A > 0: Dy (A) < t},

w

for t > 0. Since f and f:v are equi-measurable,

oo
*
/R“ If(x)|P w(x)dx = /0 f, (t)Pdt.
Setting A = (Tf):‘v in Theorem 1, we get the equivalent inequality

w({x € R™ Ti(x) > CMf(x) + (Tf),,(2t)})
< ew({x € R™ Ti(x) > (T{), (2t)}) - (3.1)

Fix 7,0 < v < 1 and set ¢ = -1-21 Since the definition of f,, implies Dy ,,(f,,(t))
< t, by (3.1),
w({x € R™ Tf(x) > C(M), (vt) + (Tf), (2t)})
< w({x € R™ Tf(x) > CMi(x) + (Tf), (2t)})
+ w({x € R™ Mi(x) > (Mf), (1t)}) < €(2t) + 1t =t
Therefore, we get

Lemma 3.2: Let w € A__. For 4,0 < 7y < 1, there isa C > 0 so that

(Tf)y(t) < CMI), (1) (TO,(2t),  ¢>0.0
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1
Set v = 2 and iterate the conclusion of the lemma to get

(TR, < Y (MI), (2¥1t) + Tim (To),(s) .

k=0 §— 0O
If the sum is finite, one can show that the limit is 0. Since f, is non-

increasing, we have

Theorem 3.3: Let w € Aoo. There is a C > 0 such that
* * t ©o * dS
(Tf)w(t) < C(Mf)"v <§> + C A (Mf)w(s) .

<C/°O(Mf)*()ds £>0.0
—_ t/4 ws s7 °

Results of this nature also appear in [3,4].

IV. Applications

Suppose w € A__. By Hardy’s inequality,

/0°° (/too g(u)du)Pdt < pP /0°° (ug(u))P du,

and Theorem 3.3, we get
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'/Rn Tf(x)Pw(x)dx = /Ooo (Tf):,(t)pdt

<cP/w< Nﬂ(ﬂ—)dt

54@pr“meZ®P&
= 4(Cp)P /Rn Mf(x)P w(x)dx .

Thus, ||Tfl|, ,, < 4€p|Mf]|; , for | < p < co. By the boundedness of M on
weighted LP spaces, [|Tf||pw < CHprw forl <p<ocoandw € A, Using;

some results about A | weights (see [6]), we have
Corollary 4.1: Let w € A_ . Thereis a p(w) > 1 and a C > 0 so that
for p(w) < p < oo,
“Tf”p,w S Cp”f“p’w -0

The linear rate of growth of the norm of T is the best possible for
general Calder6n-Zygmund singular integral operators. Note also that we get

1
all of the LP results, 1 < p < oo, using only v = Py instead of having to vary €
as in (1.5).

Calderén [5] has shown that if an operator S is weak-type (1,1) and

bounded on L°° then

" 1 [t
(w(@5c€4f@m& (4.2)

Suppose w satisfies the A; condition, Mw(x) < Cw(x) for almost every x.

Then, for the Hardy Littlewood maximal function we have
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(Mf),,(t) < C % /0 t £ (s) ds -

Plugging this estimate in the first inequality of Theorem 3.3 and performing

the integration yields

Corollary 4.3: Suppose w € A;. Then there is a C > 0 so that

t

)’ <01/f* d c/oof* ds 0
0 <oy [ nEesrcf 4T, 0.0

Thus, we get a weighted version of (4.2) even though T is not bounded on L
(see [1,3]). Averaging the conclusion of the corollary over the interval (0,t)

yields an analog of a result proved by O’Neil and Weiss [9] for the Hilbert

transform.

For finite p, the Marcinkiewicz space weak-LP properly contains LP,
while the two spaces coincide when p = oco. In order to extend the
Marcinkiewicz Interpolation Theorem to include operators that are
unbounded on L°°, Bennett, De Vore, and Sharpley [2] introduced a space

called weak-L°.

Define the averaged rearrangement function of f by

t

k% l *
f, (t) = E/O f,(s)ds .
We say f € weak-L® if f, (t) is finite for all t > 0 and
s %k *
My eak-L® = 8UP; 5 o {fy, (t) - ()} < +oo.
Arother iteration of the condlusion of Lemma 3.2 yields

(TN, (1) < CMIL (01 + 47
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If f € L and (Tf):;(t) is finite for a single t, then (Tf)jv(t) is finite for all ¢,

by Lemma 3.2. Therefore, we have

Corollary 4.4: Suppose w € A and f € L. if (Tf):v(t) is finite for
some t then Tf € weak-L°° and

I Tl yeak-1,o0 < Cliflly, - O

weak-

As a consequence of Corollary 4.4, one can prove results about local

exponential integrability for T.

Versions of Theorem 1 are true for kernels satisfying conditions weaker
than (1.3). Let ¥ = {x € R™ |x| = 1}. Suppose K is positively homogeneous
of degree -n and [, K(x) do(x) = 0. Set

w(t) = sup), | < 1Kop - Kllpr 5 »

where p is a rotation of ¥ and |p| = SUp, ¢ 57 |ox-x|. We say K € L'-Dini,.1 <
r < oo, if K € L'(X) and

1 dt
0 wr(t) T < oo.

Analogs of Theorem 1 for Dini kernels can be found in [1] We also note that

similar results for Littlewood-Paley operators are known [7].
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