Peng Lizhong

1. INTRODUCTION

In [12], Rochberg has studied the Toeplitz and Hankel operators on the PaleyWiener space in one dimension, and has got the characterizations for the Schattenvon Neumann class S_{p} criteria. In the end of [12], Rochberg proposed what are analogs of the results in several dimensions. In [11], Peng has studied the case of cube $I^{d}=\left\{\xi \in \mathbb{R}^{d}:-\pi<\xi_{j}<\pi, j=1, \ldots, d\right\}$. In this paper, we study the case of disk $D=\left\{\xi \in \mathbb{R}^{2}:|\xi|<1\right\}$.

Let D denote the unit disk in \mathbb{R}^{2}, and let χ_{D} denote the characteristic function of D. The Paley-Wiener space on the unit disk, $P W(D)$, is defined to be the image of $L^{2}(D)$ under inverse Fourier transformations F^{-1}, i.e.

$$
\begin{equation*}
P W(D)=\left\{F^{-1}\left(\chi_{D} f\right): f \in L^{2}(D)\right\} \tag{1.1}
\end{equation*}
$$

Let P_{1}, P_{2} denote the projections defined by $\left(P_{1} g\right)^{\wedge}=\chi_{D} \hat{g}$ and $\left(P_{2} g\right)^{\wedge}=\chi_{2 D} \hat{g}$, separately.

The Toeplitz operator on $P W(D)$ with symbol b is defined by

$$
\begin{equation*}
T_{b}(f)=P_{1}(b f), \quad \text { for } f \in P W(D) \tag{1.2}
\end{equation*}
$$

And the Hankel operator on $P W(D)$ with symbol b is defined by

$$
\begin{equation*}
H_{b}(f)=P_{1}(b \bar{f}), \quad \text { for } f \in P W(D) \tag{1.3}
\end{equation*}
$$

Because $P W(D)$ is preserved when taking complex conjugates, these two operators on $P W(D)$ are unitary equivalent. But as they have properties similar to those of classical Hankel operators (see below), we prefer the name Hankel operators in both cases.

Note that $T_{b}=T_{P_{2} b}$, so we assume that supp $\hat{b} \subset 2 D$ throughout this paper.
Taking Fourier transform, we get

$$
\begin{equation*}
\widehat{T_{b}(f)}(\xi)=\int_{\mathbb{R}^{2}} \hat{b}(\xi-\eta) \chi_{D}(\xi) \chi_{D}(\eta) \hat{f}(\eta) \mathrm{d} \eta \tag{1.4}
\end{equation*}
$$

This turns out to be a paracommutator. But as in the case of cube, it can not be dealt with in the framework of Janson and Peetre [4].

Our idea is the same as that in [11], that is to give a decomposition of D, then to define a kind of the Besov spaces $B_{p}^{s, q}(D)$ so that they characterize the Schatten-von Neumann class S_{p} of T_{b}.

As is well known, the disk multiplier is bounded only on $L^{2}\left(\mathbb{R}^{2}\right)$. It is quite different from the cube multiplier. Our results on the Schatten-von Neumann class criteria of Hankel operators on $P W(D)$ are also different from either classical case or the case of cube. In fact we get the necessary and sufficient condition of $T_{b} \in S_{p}$ only for $1 \leq p \leq 2$, that is $T_{b} \in S_{p}$ if and only if $b \in B_{p}^{\frac{3}{2}, p}(2 D)$. For $2<p \leq \infty$, we get only the necessary condition. (See below Theorems 3.1 and 4.1.)

Note that

$$
\begin{equation*}
\widehat{\chi_{D}}(x)=a \frac{e^{i|x|}}{|x|^{3 / 2}}+b \frac{e^{-i|x|}}{|x|^{3 / 2}}+O\left(|x|^{-5 / 2}\right), \quad|x| \rightarrow \infty \tag{1.5}
\end{equation*}
$$

it is interesting to point out the index $\frac{3}{2}$ is different from either that of classical case or of the case of cube, but is same to the degree of principal part of $\widehat{\chi_{D}}(x)$.

The sufficient conditions of $2<p \leq \infty$ are still open.
In $\S 2$, we give a decomposition of D, define a kind of Besov spaces of PaleyWiener type $B_{p}^{s, q}(D)$, and discuss their elementary functional properties. In $\S 3$, we prove the sufficient conditions for $1 \leq p \leq 2$. In $\S 4$, we prove the necessary conditions for $1 \leq p \leq \infty$.

2. $\operatorname{BESOV} \operatorname{SPACES} B_{p}^{s, q}(D)$

Let $S_{D}=\left\{f \in S\left(\mathbb{R}^{2}\right): \operatorname{supp} \hat{f} \subset \bar{D}\right\}, S_{D}^{\prime}=\left\{f \in S^{\prime}\left(\mathbb{R}^{2}\right): \operatorname{supp} \hat{f} \subset \bar{D}\right\}$, and let I^{σ} denote a kind of fractional integration operators defined by

$$
\left(I^{\sigma} f\right)^{\wedge}(\xi)=(1-|\xi|)^{\sigma} \hat{f}(\xi), \quad \text { for } \sigma \in \mathbb{R}, f \in S_{D}^{\prime}
$$

Definition (2.1). For $1 \leq p \leq \infty, S \in \mathbb{R}$,

$$
H_{p}^{s}(D)=\left\{f \in S_{D}^{\prime}:\|f\|_{H_{p}^{s}(D)}=\left\|I^{s} f\right\|_{L^{p}}<\infty\right\}
$$

It is obvious that I^{σ} maps $H_{p}^{s}(D)$ isomorphically onto $H_{p}^{s-\sigma}(D)$, and that $H_{2}^{0}(D)=P W(D)$.

To define a kind of Besov spaces of Paley-Wiener type on D, we give a decomposition of D as follows.

Let $Q_{j, k_{j}}=\left\{r e^{i \theta} \in D: 4^{j-1} \leq 1-r \leq 4^{j},\left(k_{j}-1\right) 2^{j} \pi \leq \theta \leq k_{j} 2^{j} \pi\right\}$, for $j=-1,-2, \ldots, k_{j} \in\left\{1,2, \ldots, 2^{-j+1}\right\}, Q_{0, k_{0}}=\left\{r e^{i \theta} \in D: 0 \leq r \leq \frac{3}{4},\left(k_{0}-1\right) \pi \leq\right.$ $\left.\theta \leq k_{0} \pi\right\}, k_{0}=1,2$, thus

$$
\begin{equation*}
D=\bigcup_{\substack{j \in \mathbb{Z}_{-} \\ k_{j} \in\left\{1, \ldots, 2^{-j+1}\right\}}} Q_{j, k_{j}}, \quad \text { where } \mathbb{Z}_{-}=\{0,-1,-2, \ldots\} \tag{2.1}
\end{equation*}
$$

Each $Q_{j, k_{j}}$ has its height $3 \times 4^{j-1}$ which is comparable to the distance from the boundary, and has its length $r 2^{j} \pi$ which is comparable to the square root of the distance from the boundary.

Definition (2.2). Let $\Phi(D)$ be the collection of all test function systems $\left\{\varphi_{j, k_{j}}\right\}$ such that
(i) $\operatorname{supp} \hat{\varphi}_{j, k_{j}} \subset \bar{Q}_{j, k_{j}}=\left\{r e^{i \theta} \in D: \frac{3}{4} \times 4^{j-1} \leq 1-r \leq \frac{5}{4} \times 4^{j},\left(k_{j}-\frac{3}{2}\right) 2^{j} \pi \leq \theta \leq\right.$ $\left.\left(k_{j}+\frac{1}{2}\right) 2^{j} \pi\right\}$,
(ii) $\hat{\varphi}_{j, k_{j}} \geq 0, \hat{\varphi}_{j, k_{j}}(\xi) \geq C>0$ for $\xi \in Q_{j, k_{j}}, \hat{\varphi}_{j, k} \in C_{0}^{\infty}$,
(iii) $C_{1} \leq \sum \hat{\varphi}_{j, k_{j}}(\xi) \leq C_{2}$ for $\xi \in D$.

Moreover, we can also require that $\sum \hat{\varphi}_{j, k_{j}}(\xi) \equiv 1$ for $\xi \in D$.
Definition (2.3). Let $s \in \mathbb{R}, 0<p, q \leq \infty,\left\{\varphi_{j, k_{j}}\right\} \in \Phi(D)$.

$$
B_{p}^{s, q}(D)=\left\{f \in S_{D}^{\prime}:\|f\|_{B_{p}^{s, q}(D)}=\left[\sum_{\substack{j \in \mathbb{Z}_{-} \\ k_{j} \in\left\{1, \ldots, 2^{-j+1}\right\}}}\left(4^{s j}\left\|f * \varphi_{j, k_{j}}\right\|_{p}\right)^{q}\right]^{\frac{1}{q}}<\infty\right\}
$$

The following Theorem contains some of the elementary functional properties of $B_{p}^{s, q}(D)$.

THEOREM (2.1).

(i) $B_{p}^{s, q}(D)$ is a quasi-Banach space if $s \in \mathbb{R}, \quad 0<p, q \leq \infty$ (Banach space if $1 \leq p, q \leq \infty$), and the quasi-norms $\|f\|_{B_{p}^{s, q}(D)}^{\varphi}$ with $\varphi \in \Phi(D)$ are equivalent.
(ii) $B_{2}^{s, 2}(D)=H_{2}^{s}(D)$.
(iii) $S_{D} \subset B_{p}^{s, q}(D) \subset S_{D}^{\prime}$.
(iv) If $p, q<\infty, S_{D}$ is dense in $B_{p}^{s, q}(D)$.
(v) $\forall \sigma \in \mathbb{R}, I^{\sigma}$ maps $B_{p}^{s, q}(D)$ isomorphically onto $B_{p}^{s-\sigma, q}(D)$.
(vi) $\left(B_{p}^{s, q}(D)\right)^{\prime}=B_{p^{\prime}}^{-s, q^{\prime}}(D)$, for $S \in \mathbb{R}, \quad 1 \leq p, q<\infty, \frac{1}{p}+\frac{1}{p^{\prime}}=1, \quad \frac{1}{q}+\frac{1}{q^{\prime}}=1$.
(vii) $\left(B_{p_{0}}^{s_{0}, q_{0}}(D), B_{p_{1}}^{s_{1}, q_{1}}(D)\right)_{[\theta]}=B_{p^{*}}^{s^{*}, q^{*}}(D)$, for $s_{0}, s_{1} \in \mathbb{R}, 1 \leq p_{0}, p_{1}, q_{0}, q_{1} \leq \infty$, $0<\theta<1, s^{*}=(1-\theta) s_{0}+\theta s_{1}, \frac{1}{p^{*}}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \frac{1}{q^{*}}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}}$.

Proof. All of the conclusions can be proved similarly to the ones of classical case. (See, e.g. Peetre [7], Triebel [15], also cf. Peng [11] for (vi) and (vii)).

We can also define $B_{p}^{s, q}(2 D)$ similarly according to the decomposition of $2 D$:

$$
2 D=\sum_{\substack{j \in \mathbb{Z}_{-} \\ k_{j} \in\left\{1,2, \ldots, 2^{-j+1}\right\}}} Q_{j, k_{j}}^{\prime}
$$

where $Q_{j, k_{j}}^{\prime}=\left\{r e^{i \theta} \in 2 D: 2 \times 4^{j-1} \leq 2-r \leq 2 \times 4^{j},\left(k_{j}-1\right) 2^{j} \pi \leq \theta \leq k_{j} 2^{j} \pi\right\}$ for $j=-1,-2, \ldots, k_{j} \in\left\{1,2, \ldots, 2^{-j+1}\right\}, Q_{0, k_{0}}^{\prime}=\left\{r e^{i \theta} \in 2 D: 0 \leq r \leq \frac{3}{2},\left(k_{0}-1\right) \pi \leq\right.$ $\left.\theta \leq k_{0} \pi\right\}$. And $B_{q}^{s, q}(2 D)$ have the properties in Theorem (2.1).

3. SUFFICIENT CONDITIONS FOR $1 \leq p \leq 2$ 。

We adopt the notation of Janson and Peetre [4] for $\|k(\xi, \eta)\|_{S_{p}(U \times V)}$. Extending the definition of T_{b}, we consider $T_{b}^{s, t}$ defined by

$$
\begin{equation*}
\widehat{T_{b}^{s, t}} f(\xi)=\int_{\mathbb{R}^{2}} \hat{b}(\xi-\eta)(1-|\xi|)^{s}(1-|\eta|)^{t} \chi_{D}(\xi) \chi_{D}(\eta) \hat{f}(\eta) \mathrm{d} \eta \tag{3.1}
\end{equation*}
$$

for $s, t \in \mathbb{R}$.
THEOREM (3.1). Suppose that $1 \leq p \leq 2, b \in B_{p}^{\frac{3}{2 p}, p}(2 D)$. Then $T_{b} \in S_{p}$ and

$$
\begin{equation*}
\left\|T_{b}\right\|_{S_{p}} \leq C\|b\|_{B_{p}^{\frac{3}{2 p}, p}(2 D)} \tag{3.2}
\end{equation*}
$$

We need two lemmas.

LEMMA (3.1). For $b \in S_{D}^{\prime}, T_{b} \in S_{2}$ if and only if $b \in B_{2}^{\frac{3}{4}, 2}(2 D)$ and that

$$
\begin{equation*}
\left\|T_{b}\right\|_{S_{2}} \simeq\|b\|_{B_{2}^{\frac{3}{2,2}}(2 D)} \tag{3.3}
\end{equation*}
$$

Proof. According to Janson and Peetre [4], we have

$$
\begin{aligned}
\left\|T_{b}\right\|_{S_{2}}^{2} & =\iint\left|\hat{b}(\xi-\eta) \chi_{D}(\xi) \chi_{D}(\eta)\right|^{2} \mathrm{~d} \xi \mathrm{~d} \eta \\
& =\int_{2 D}|\hat{b}(\xi)|^{2}\left(2 \arcsin \frac{1}{2} \sqrt{4-|\xi|^{2}}-\frac{|\xi|}{2} \sqrt{4-|\xi|^{2}}\right) \mathrm{d} \xi \\
& \simeq \int_{2 D}|\hat{b}(\xi)|^{2}(4-|\xi|)^{\frac{3}{2}} \mathrm{~d} \xi \\
& =\|b\|_{H_{2}^{\frac{3}{4}}(2 D)}^{2} \\
& \simeq\|b\|_{B_{2}^{\frac{3}{2,2}(2 D)}}^{2}
\end{aligned}
$$

\square
LEMMA (3.2). If $b \in B_{1}^{s+t+\frac{3}{2}, 1}(2 D), s, t>-\frac{1}{2}$. Then $T_{b}^{3, t} \in S_{1}$ and that

$$
\begin{equation*}
\left\|T_{b}^{s, t}\right\|_{S_{1}} \leq C\|b\|_{B_{1}^{o+t+\frac{3}{2}, 1}(2 D)} \tag{3.4}
\end{equation*}
$$

Proof. Let $\left\{\varphi_{j, k_{j}}\right\} \in \Phi(2 D)$ such that $\sum_{\substack{j \in \mathbb{Z}_{-} \\ k_{j} \in\left\{1,2, \ldots, 2^{-j+1}\right\}}} \hat{\varphi}_{j, k_{j}}(\xi)=1$ on $2 D$. Then

$$
\begin{aligned}
\left\|T_{b}^{s, t}\right\|_{S_{1}} & \leq \sum_{\substack{j \in \mathbb{Z}_{-} \\
k_{j} \in\left\{1,2, \ldots, 2^{-j+1}\right\}}}\left\|\hat{b}(\xi-\eta) \hat{\varphi}_{j, k_{j}}(\xi-\eta)(1-|\xi|)^{s}(1-|\eta|)^{t}\right\|_{S_{1}(D \times D)} \\
& =\sum_{\substack{j \in \mathbb{Z}_{-} \\
k_{j} \in\left\{1,2, \ldots, 2^{-j+1}\right\}}} I_{j, k_{j}}
\end{aligned}
$$

If $j<-10$, let us estimate $I_{j, k_{j}}$ as follows. Note that
$\operatorname{supp} \hat{\varphi}_{j, k_{j}} \subset \bar{Q}_{j, k_{j}}^{\prime}$

$$
=\left\{r e^{i \theta} \in 2 D: \frac{3}{2} \times 4^{j-1} \leq 2-\gamma \leq \frac{5}{2} \times 4^{j},\left(k_{j}-\frac{3}{2}\right) 2^{j} \pi \leq \theta \leq\left(k_{j}+\frac{1}{2}\right) 2^{j} \pi\right\}
$$

if $\xi \notin\left\{r_{1} e^{i \theta_{1}}: 1-r_{1} \leq 4^{j+2},\left(k_{j}-4\right) 2^{j} \pi \leq \theta_{1} \leq\left(k_{j}+3\right) 2^{j} \pi\right\}$ or $\eta \notin\left\{r_{2} e^{i \theta_{2}}: 1-r_{2} \leq\right.$ $\left.4^{j+2},\left(k_{j}-4\right) 2^{j} \pi+\pi \leq \theta_{2} \leq\left(k_{j}+3\right) 2^{j} \pi+\pi\right\}$ then $\xi-\eta \notin \bar{Q}_{j, k_{j}}^{\prime}$.

Thus we have, by Lemmas 3.1 and 3.3 of Janson and Peetre [4],

$$
I_{j, k_{j}} \leq C\left\|b * \varphi_{j, k_{j}}\right\|_{1} \sum_{l_{1}=-\infty}^{j+2} \sum_{l_{2}=-\infty}^{j+2}\left\|(1-|\xi|)^{s}(1-|\eta|)^{t}\right\|_{S_{1}\left(Q_{l_{1}, k_{j}} \times Q_{l_{2}, k_{j}^{\prime}}\right)}
$$

(where $Q_{l, k_{j}}=\left\{r e^{i \theta}: 4^{l-1} \leq 1-r \leq 4^{l},\left(k_{j}-4\right) 2^{j} \pi \leq \theta \leq\left(k_{j}+3\right) 2^{j} \pi\right\}, \quad k_{j}^{\prime}=2^{-j}+k_{j}$)

$$
\begin{aligned}
& \leq C\left\|b * \varphi_{j, k_{j}}\right\|_{1} \sum_{l_{1}=-\infty}^{j+2} \sum_{l_{2}=-\infty}^{j+2} 4^{l_{1} s} \cdot 4^{l_{2} t} \cdot\left(4^{l_{1}} \cdot 2^{j}\right)^{1 / 2} \cdot\left(4^{l_{2}} \cdot 2^{j}\right)^{1 / 2} \\
& =C 4^{j\left(s+t+\frac{s}{2}\right)}\left\|b * \varphi_{j, k_{j}}\right\|_{1}
\end{aligned}
$$

If $j \geq-10$,

$$
\begin{aligned}
I_{j, k_{j}} & \leq C\left\|b * \varphi_{j, k_{j}}\right\|_{1} \sum_{l_{1}=-\infty}^{0} \sum_{l_{2}=-\infty}^{0} 4^{l_{1} s} \cdot 4^{l_{2} t} \cdot\left(2 \pi \cdot 4^{l_{1}}\right)^{1 / 2} \cdot\left(2 \pi \cdot 4^{l_{2}}\right)^{1 / 2} \\
& \leq C\left\|b * \varphi_{j, k_{j}}\right\|_{1} \\
& \leq C 4^{j\left(s+t+\frac{3}{2}\right)}\left\|b * \varphi_{j, k_{j}}\right\|_{1}
\end{aligned}
$$

This completes the proof.
The proof of Theorem (3.1). Theorem (2.1)-(vii), Lemma (3.1) and Lemma (3.2) give the proof of Theorem (3.1) by complex interpolation.

4. NECESSARY CONDITIONS FOR $1 \leq p \leq \infty$.

The necessary conditions can be treated in more generality.
THEOREM (4.1). If $1 \leq p \leq \infty, b \in S_{2 D}^{\prime}$ such that $T_{b}^{s, t} \in S_{p}$, then $b \in$ $B_{p}^{s+t+\frac{3}{2 p}, p}(2 D)$, and

$$
\begin{equation*}
\|b\|_{B_{p}^{s+t+\frac{3}{2 p}, p}(2 D)} \leq C\left\|T_{b}^{s, t}\right\|_{S_{p}} \tag{4.1}
\end{equation*}
$$

Proof. Suppose that $\left\{\varphi_{j, k}\right\} \in \Phi(D)$. Let $P_{j, k_{j}}$ denote the projection defined by $\left(P_{j, k_{j}} g\right)^{\wedge}=\chi_{\bar{a}_{j, k_{j}}} \hat{g}$.

Since $\left\{P_{j, k_{j}}\right\}$ are joint at most 9 times we have

$$
\begin{equation*}
\left\|T_{b}^{s, t}\right\|_{S_{p}}^{p} \geq C \sum_{\substack{j \in \mathbb{Z}_{-} \\ k_{j} \in\left\{1,2, \ldots, 2^{-j+1}\right\}}}\left\|P_{j, k_{j}} T_{b}^{s, t} P_{j, k_{j}^{\prime}}\right\|_{S_{p}}^{p},\left(k_{j}^{\prime}=k_{j}+2^{-j}\right) \tag{4.2}
\end{equation*}
$$

Let

$$
\hat{\psi}_{j, k_{j}}(\xi)=4^{-j\left(s+t+\frac{3}{2}\right)} \int \hat{\varphi}_{j, k_{j}}(\xi+\eta)(1-|\xi+\eta|)^{s}(1-|\eta|)^{t} \hat{\varphi}_{j, k_{j}^{\prime}}(\eta) \mathrm{d} \eta
$$

It is easy to show that
(i) $\operatorname{supp} \hat{\psi}_{j, k_{j}} \subset\left\{r e^{i \theta}: \frac{3}{2} \times 4^{j-1} \leq 2-r \leq \frac{5}{2} \times 4^{j},\left(k_{j}-\frac{5}{2}\right) 2^{j} \pi \leq \theta \leq\left(k_{j}+\frac{5}{2}\right) 2^{j} \pi\right\}$,
(ii) $\hat{\psi}_{j, k_{j}} \in C_{0}^{\infty}, \hat{\psi}_{j, k_{j}} \geq 0$ and

$$
\begin{aligned}
& \hat{\psi}_{j, k_{j}}(\xi) \geq C>0 \text { for } \xi \in\left\{r e^{i \theta}: 2 \times 4^{j-1} \leq 2-r \leq 2 \times 4^{j}\right. \\
&\left.\left(k_{j}-\frac{3}{2}\right) 2^{j} \pi \leq \theta \leq\left(k_{j}+\frac{1}{2}\right) 2^{j} \pi\right\}
\end{aligned}
$$

(iii) $C_{1} \leq \sum_{\substack{j \in \mathbb{Z}_{-} \\ k_{j} \in\left\{1, \ldots, 2^{-j+1}\right\}}} \hat{\psi}_{j, k_{j}}(\xi) \leq C_{2}$ for $\xi \in 2 D$, therefore $\left\{\psi_{j, k_{j}}\right\}$ can be used to define $B_{p}^{s, q}(2 D)$.

Now we claim that

$$
\begin{equation*}
\left\|P_{j, k_{j}} T_{b}^{s, t} P_{j, k_{j}}\right\|_{S_{p}} \geq 4^{j\left(s+t+\frac{3}{2 p}\right)}\left\|b * \psi_{j, k_{j}}\right\|_{p} \tag{4.3}
\end{equation*}
$$

In fact, for $p=1$, it is true by Lemma 3 of Timotin [16]. For $p=\infty$,

$$
\begin{aligned}
& 4^{j(s+t)}\left|b * \psi_{j, k_{j}}(x)\right| \\
= & 4^{-\frac{3}{2} j}\left|\left\langle\varphi_{j, k_{j}}, T_{b}^{s, t} \varphi_{j, k_{j}^{\prime}}\right\rangle\right| . \\
\leq & C\left\|P_{j, k_{j}} T_{b}^{s, t} P_{j, k_{j}^{\prime}}\right\|_{S_{\infty}}
\end{aligned}
$$

So by interpolation, (4.3) holds.
Finally, (4.2) and (4.3) imply (4.1).

ACKNOWLEDGEMENT

I would like to thank the Centre for Mathematical Analysis, the Australian National University, for its financial support and additional travel support.

REFERENCES

[1] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223. Springer-Verlag, Berlin-Heidelberg-New York. 1976.
[2] C. Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330-336.
[3] J.R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc. 12 (1985), 45-90.
[4] S. Janson and J. Peetre, Paracommutators-boundedness and Schatten-von Neumann properties, Report of Dep. of Math., Stockholm, 15 (1985).
[5] S. Janson, J. Peetre and R. Rochberg, Hankel forms and the Fock space, Report of Dep. of Math., Uppsala, 6 (1986).
[6] S. Janson and H. Wolff, Schatten classes and commutators of singular integral operators, Ark. Mat. 20 (1980), 301-310.
[7] J. Peetre, New thoughts on Besov spaces, Duke Uni. Press, Durham, 1976.
[8] V.V. Peller, Wiener-Hopf operators on a finite interval and Schatten-von Neumann classes, Report of Dep. of Math., Uppsala, 9 (1986).
[9] V.V. Peller and S.V. Hruschev, Hankel operators, best approximation and stationary Gaussian processes I, II, III, Russian Math. Surveys, 37 (1982), 61-144.
[10] L.ZH. Peng, Multilinear singular integrals of Schatten-von Neumann class S_{p}, to appear in Approximation Theory and its Application.
[11] L.2H. Peng, Hankel operators on the Paley-Wiener space in \mathbb{R}^{d}, Research Report of CMA, The Australian National University, CMA-R20-87.
[12] R. Rochberg, Toeplitz and Hankel operators on the Paley-Wiener space, Integral Equations and Operator Theory, 10 (1987), 186-235.
[13] R. Rochberg and S. Semmes, A decomposition theorem for BMD and applications, J. Funct. Anal., 67 (1986), 228-263.
[14] P. Sjölin, A counter-example for the disc multiplier, Report of Dep. of Math., Stockholm, 13 (1983).
[15] H. Triebel, Theory of function spaces, Birkhäuser Verlag, 1983.
[16] A. Timotin, A note on C_{p}-estimates for certain kernels, INCREST, preprint 47 (1984), Bucharest.

Centre for Mathematical Analysis,
The Australian National University, GPO Box 4,

Canberra ACT 2601,
Australia.

Home Institution

Department of Mathematics, Peking University, Beijing, China.

