
3. INTEGRALS 

Besides an integrating gauge, p, on a family of functions, K, we consider a 

functional, fJ" on K which can be extended to a continuous linear functional, fJ, p , 

defined on the whole of C = C(p,K). The continuity is understood with respect to the 

seminorm, qp' induced by p on [, defined in the previous chapter. More generally, 

we consider a map, fJ" from K into an arbitrary Banach space, E, and a continuous 

linear map, fJ, , from £ into E, generated by fJ,. Given a function f E [, the p . 

number, or vector, fJ, p(f) is looked upon as the integral of f with respect to fJ,. 

The classical case of integration with respect to a (positive) measure, t, is 

obtained by taking for K a sufficiently rich family of (characteristic functions of) sets 

of finite measure and putting both p and fJ, equal to (the restriction to JC of) t. If fJ, 

is an additive set function having finite and u-additive variation, then integration with 

respect to fJ, can be introduced by choosing p equal to the variation of j1. Of course, 

this choice is not available in general, and so, given an additive set function, fJ" the 

problem of integration with respect to p, is reduced to that of finding a suitable p. 

This problem will be treated more systematically in Chapter 4. 

Here we show how the integration with respect to Banach space valued 

measures, due to R.G. Bartle, N. Dunford and J.T. Schwartz, [2), fits into the 

presented scheme. Also in this chapter, the definitions of the Orlicz, the Sobolev and 

the Hardy spaces are shown to be special cases of the construction of the space £(p,K) 

for suitable choices of JC and p. 

A. Let JC be a nontrivial family of functions on a space n. Let E be a 

Banach space. Let j1: K -l E be a linear map. Recall that the domain of a linear map, 

or a linear functional, is not necessarily a vector space. (See Section IE.) 

We shall say that a gauge, p, on JC integrates for the map j1 if it is 

integrating (see Section 2D) and I fJ,(f) I :::: cqp(f), for some number c::: 0 and every 

function f E sim(K) . 
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If the gauge p integrates for the linear map p,: lC -l E, then there exists a 

unique linear map /hp : £(p,lC) -l E such that /hp(f) = /h(f), for every f E lC, and 

I fJ, p(f) I :S cqp(f), for some number c:::: 0 and every f E £(p,t). In fact, fL has a 

unique linear extension on sim(lC). In fact, fL has a unique linear extension on 

sim(K) (see Section IE) which, by the assumption, is continuous with respect to qp 

and sim(K) is qp -dense in £(p,K) . 

We shall also use the conventional notation 

for every f E £(p,lC). The subscript is omitted when p is understood or immateriaL 

If K happens to be a vector space, then an integrating gauge p on lC 

integrates for the additive map /h: K -l E if and only if there exists a constant c ~ 0 

such that I /h(f) I :S cpU), for every f E lC . In fact, in this case, sim(K) = K and 

qp(f) = p(f) for every f E lC. For an arbitrary nontrivial family of functions K, we 

have the following 

PROPOSITION 3.1. An integrating gattge p on K integrates for the additive map 

/h : K -l E if and if there exists a constant c ~ 0 such that I fJ,(f) I :S cpU), for 

every f E K, and 

(A.2) lim I f c flU) I = 0 
n-l co j=l J 

for any numbers c and functions f. E lC, j::: 1,2, ... , such that 
j J 

co 
(A.3) L Ic.lp(f.) < 00 

j=l J J 

and 

00 

(A.4) I cj.(w) = 0 
j=l J J 

for every wEn for which 

co 
(A.5) L I c.f.(w) I < co. 

j=l J J 
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Proof. Let the gauge p integrate for p,. Let c. be numbers and f. E JC functions, 
J J 

j = 1,2, ... , satisfying condition (A.3), such that (AA) holds for every wEn for which 

(A.S) does. Then, Proposition 2.1, 

limq [f cl.] =0. 
n-loo P pI J J 

Because, by the assumption, 

I I c.p,(nl s; cqp [ I cr] , 
j=1 J J j=l ) J 

for some c ~ 0 and every n = 1,2, ... , the equality (A.2) follows. 

Conversely, assume that p is an integrating gauge on JC, that there exists a 

number c ~ 0 such that I p,(f) I s; , for every f E JC, and that (A.2) holds for 

any numbers c. and functions !. E JC, j = 1,2, ... , satisfying (A.3), such that (AA) 
J J 

holds for every wEn for which (A.5) does. Then, for any function f E £( l'lC), let 

iJ,(f) be the element of the space E such that 

00 

iJ,(f) = L cp(f.) , 
j=l J J 

where the c are some numbers and the f. some functions from lC, j = 1,2, ... , 
j J 

satisfying condition (A.3), such that 

00 

f(w) = L cJ.(w) 
j=l J J 

for every wEn for which the inequality (A.5) holds. By the assumption, the vector 

iJ,(f) depends on the function f alone and not on a particular choice of the numbers c. 
J 

and the functions f., j = 1,2,.... Consequently, jj(f) = p,(f) for every f E sim(K) . 
J 

Furthermore, for every £ > 0, we can choose these numbers and functions so that 
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Hence, IZi(f) I ::; cqp(f) + f, because I tt(!) I ::; cp(fj) for every j = 1,2,.... So, 

IZi(f) I ::; cqp(f) , for every f E £(p,JC) . 

Whenever applicable the following proposition is of course easier to use. By 

Proposition 2.27, it can be used, in particular, when JC is a quasiring of sets. 

PROPOSITION 3.2. Let p be an integrating gauge on JC such that, for every 

function f E sim(JC) , 

n 
qp(f) = inf L I c.lp(f.) , 

;=1 J J 

where the infimum is taken ove?' all expressions of f in the form 

with arbitrary n = 1,2, ... , numbers c. and functions f. E K, j = 1,2, ... ,n. Let 
J J 

j.l : K -l E be an additive map such that I j.l(f) I ::; cp(f) , for some c ~ 0 and every 

f E K. 

Then the gauge p integrates for the map j.l. 

Proof. The assumptions imply that I tt(f) I ::; cqp(f) , for every f E sim(K) . 

B. Let Q be a quasiring of sets in a space n. Let t be a 17-additive 

non-negative real valued set function on Q. (See Sections 1D and IF.) 

Because I t(f) I ::; t{ I II), for every f E sim(Q), by Proposition 2.13, t is a 

gauge which integrates for itself. So, there exists a unique linear functional, tt' on 

C(t,Q) such that [t(X) = t(X) for every X E Q, and the inequality I i[U) I ::; qN) 

holds for every function f E C( t,Q). Conforming to standard notation, we shall of 

course write 

t(f) ::: J jd{ = r f( w)t( dw) = 
n ·n 

for every function f E l( t,Q) . 
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PROPOSITION 3.3L If IE £(i,Q) , then also III E £(t,Q) and q/f) == t( III) for 

every function I E £( t,Q) . 

Proof. Let p(f) == i( I II), for every f E sim(Q). Then the seminorm p is monotonic 

and, by Proposition 2.13, C(t,Q) == C(p,sim(Q)). Hence, by Proposition 2.20, if 

f E £(t,Q) , then also I II E C(i,Q). Now, the seminorms I H i(! II) and f H qt(f) , 

f E £(i,Q) , are both qt-continuous and they agree on a qt-dense subspace, sim(Q), 

of· C( t,Q). Therefore, they agree on the whole of C( t,Q) . 

The Beppo Levi monotone convergence theorem and the Lebesgue dominated 

convergence theorem are now special cases of the two respective statements of 

Proposition 2.21. The Fatou lemma can then be deduced in the well-known manner. 

(See e.g. [59], no. 20.) 

Let 1(/') be the family of all i-integrable sets, that is, sets with characteristic 

function belonging to C(t,Q). Then ll(i) is a 8-ring of sets in n. The existence of a 

(finite) non-negative Il-additive extension of i onto the whole of 1l(t) is now 

obvious. Moreover, by Proposition 2.7, C(t,1l(t)) == C(t,Q). Therefore, we may 

suppress the domain, Q, of t in the symbol for the space of t-integrable functions 

and write simply C( d == C( t,Q) . 

There are now several possibilities of defining t-measurable sets and functions. 

We may call a set {-measurable if it belongs to the Il-algebra or just the o--ring of 

sets generated by l(t). A larger family of {-measurable sets is obtained if we call 

t-measurable any set Xc n such that X n n such that X n Z E ll(t) for every 

Z E ll(t). The choice of the definition depends of course on the purpose to which it is 

to be used. But in either case, it is customary to put {(X) == 00 for every {-measurable 

set X which is not {-integrable. 

So, the set function { determines a measure in the space n which is of course 

denoted still by t. 

It should be noted perhaps that the term "measure" is not used in the same 

fashion throughout the literature. It often designates a non-negative extended real 

valued (00 is allowed as a value) set function on a Il-ring of sets covering the whole 
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space or a IT-algebra. Other authors designate by this term the corresponding 

integral, that is, the linear functional whose value at an integrable function, f, is 

equal to the integral of f with respect to the measure in question, or even its 

restriction to a linear subspace dense in the L I-seminorm in the space of all integrable 

functions. 

This lack of uniformity will not cause any inconvenience in the sequel, because, 

however the term II measure " is interpreted, specifying a measure, t, entails the 

specification of the following objects: a vector lattice, £( i), of functions on n and a 

positive linear functional, t, on £( t) such that C(p,£( t)) = C( t}, where p(f) = t( I f I ) 

for every f E £( t), and if 1( t) is the family of sets (with characteristic functions) 

belonging to C(t), then £(p,1(t)) = £(t). The functions belonging to £(t) and sets 

belonging to 1(t) are then called integrable with respect to the measure t or 

/,- integr able. 

Now, returning to the the measure, t, determined by its values on the 

quasiring Q, let us note that, in view of Proposition 2.13 and Proposition 3.1, the 

definitions adopted in Sections 2A, 2D and 3A, give us a direct and economical 

representation of integrable functions circumventing the CaratModory theory of 

extension of t onto all measurable sets. Namely, a function f is t-integrable if and 

only if there exist numbers c. and sets X. E Q, j == 1,2, ... , such that 
J } 

00 

Lie .1 t( X.) < 00 

j=l J J 

and 

00 

f(w) == L c.X.(w) 
j=l J J 

for every wEn for which 

00 

L 1 c.IX.(w) < 00. 

j=l J J 

The integral of such a function f is then given by the formula 

J fdt = ~ c.t(X.l. 
n j=l J J 



83 3B 

It is striking how close this characterization of integrability and integral is to 

the ideas of Archhnedes, especially to one of his calculations of the area of a parabolic 

section; see e.g. [21J. As noted by J. Mikusinski in the Preface to his book [50], it 

makes the presentation of the Lebesgue integral at elementary level more viable than 

that of the Riemann integral. For further elementary comments, see [33]. 

An approach to integration along similar lines was suggested by J.1. Kelley and 

T.P. Srinivasan, [28]; see also [29]. 

As suggested, a measure in the space it is sometimes specified by specifying 

the values of the corresponding integral on a sufficiently rich vector subspace of the 

space of an integrable functions. It is done by invoking a theory of the Daniell integral 

or its generalization. Such theories too are instances of the general scheme presented 

in Section A. To describe the main points, let us recall some notation. 

For a real valued function, f, on n, we write t = H I II +f), r = t( I fl-f) 
and /l\l=g, where g(w)=!(f(w)+l-II((u)-lll for every wEi1- For a nontrivial 

family, K, of real valued functions on it, we write K+ = {f E K: f ~ O} and 

K+ - K+ = {f-g: f E K+,g E X+} . 

Let K be a vector lattice of real valued functions on the space n. A positive 

linear functional, t, on K (see Section 2E) is called a Daniell integral, if t(f ) -) 0 , 
n 

as n -t 00) for any functions f E X such that I (w) :::: f l(W) , n = 1,2, ... , and 
n n n+ 

f (w) -t 0, for every w E it, as n -l 00 • 
n 

It is easy to show using Proposition 2.12, say, that a positive linear functional, 

t , on X is a Daniell integral, if and only if, the seminorm, p, defined by 

p(f) = t( I II) , for every f EX, is integrating. 

Assume now that t is a Daniell integral on X. It is then obvious that the 

seminorm p integrates for the functional t. Let us write C(t) = C(p,Kl and denote 

by 1( /,) the family of sets (with characteristic functions) belonging to C( t) . 

We say that the Daniell integral t satisfies the Stone condition if the function 

fl\l belongs to C(t) whenever the function f does. It is well-known that, if fill 

belongs to r.; whenever f does, then t satisfies the Stone condition. 
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Let Lp be the unique continuous linear functional on C(t) that extends L. 

(See Section A.) Its restriction to 1(/') is a non-negative a-additive set function. 

IVI.H. Stone has shown, [62], that C(l) = C(/' ,1(t)) if and only if L satisfies the Stone 
p 

condition. 

M. Leinert, [40], and H. Konig, [36], have generalized the notion of a Daniell 

integral by requiring that JC be merely a vector space and not necessarily a vector 

lattice. Such generalization is interesting because it represents the abstract core of 

situations not infrequently occurring in analysis; see [37], [41]. 

So, let JC be a vector space of real valued functions on n and let l be a 

positive linear functional on JC. For any real valued function I on n, let 

+ 00 

/, (f) = inf L t(f.), 
j=l J 

where the infimum is taken over all choices of functions t. E JC+ , j = 1,2, ... , such that 
J 

00 

(B.l) f(w):::; L f.(w) 
j=l J 

for every (<.! En. The possibility that p(f) = 00 is of course admitted. Let, further, 

00 

I(f) = inf L t(f.l, 
j=l J 

where the infimum is taken over all choices of functions 11 E J( and 

j = 2,3, ... , such that (B.ll holds for every wEn. 

We say that the functional satisfies the Konig continuity condition, if 

t(t) = t(f) + f.,+(f) , for every function f E J( . 

We say that the functional L satisfies the Leinert continuity condition, if 

/(t) ~ t(f) , for every f E K . 

Clearly, if l satisfies the Konig continuity condition then it satisfies the 

Leinert continuity condition. Moreover, if J( happens to be a vector lattice, then l 

satisfies the Konig continuity condition if and only if it is a Daniell integral, and also it 

satisfies the Leinert continuity condition if and only if it is a Daniell integral. 
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+ +. 
Now, assume that K = r -K Then we can define gauges, PI and P 2' on K 

by letting PI(/) = 1( If I ) and p2(f) = /( If I ), respectively, for every fEr. Let, 

further, P3 be the gauge on r+ such that P3(f) = + , for every f E K . 

If satisfies the Leinert continuity condition, then the gauge is 

integrating. The gauge P2 , which is a seminorm, is automatically integrating. If t 

satisfies the Konig continuity condition, then PI = P2' the gauge PI is integrating 

and = .c(p3,r+) .We may note that, while the Konig condition is sufficient, it 

is not necessary for the gauge PI to be integrating. However, the Konig condition is 

convenient to use without loss in the context of uniform algebras. 

For a more complete consolidated exposition we refer to [37]. 

c. Natural semi norms in the classical function spaces defined in terms of a 

measure usually turn out to be integrating. 

Let i be a measure in a space n and p a real number such that 1 S P < 00 • 

The family of all functions f on n such that flfl P- 1 E £(t) is denoted by t?(i). 

So, in particular, i) = £(t). It is well-known that £P(t} is a vector space. 

Moreover, if 

for every f E .cP(t), then 11·11 is an integrating seminorm on £P(t) such that 
p,i 

£(11 ·11 ,,.cP(l)) = .cP(t). This fact is implicit in the standard proof of the completeness 
P,u 

of CP(l) which avoids the notion of convergence in measure. The induced normed 

space is of course denoted by LP(t). M.H. Stone, [62], introduced the LP-spaces 

along these lines in the context of Daniell integrals instead of measures. 

These spaces (based on a measure rather than a Daniell integral) are special 

cases of the general Banach function spaces studied systematically by 

W.A.J. Luxemburg and A.C. Zaanen in a series of papers of which the first one, [47], 

contains an introduction to the subject with the relevant historical background. See 

also [72], §§63-64. 
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Let S be a a-algebra of sets in the space n and let Z be a a-ideal in the 

space n (see Section ID) such that Z c S. Let )(::)(( S) be the family of all complex 

valued S-measurable functions and Jt the family of non-negative real-valued 

functions belonging to )( 0 Let )f:: )f(Z) be the family of all functions I on n such 

that the set {w: I( w) -f O} belongs to Z. Clearly, ),f c j{ because Z c S 0 

Following [48], Definition 3.1, a functional, p, from j{ into [0,00] (the value 

00 is allowed) will be called a function norm (with respect to Sand Z) if it has the 

following properties: 

(i) p(f) == 0 if and only if IE)f; 

Oi) p(f) :: p( I I I) for every I E j{ ; 

(iii) p( Cit) == I Ci I p(f) for every number Ci and every function f E j{ ; 

(iv) p(f + g) ::s p(f) + p(g) for every f E Jt and g E )(; and 

(v) if f E Jt, 9 E Jt and f::s g, then p(f) ::s p(g) . 

Given a function norm, p, let K == {f E )( : p(f) < oo}. Then the restriction of 
p 

p to Kp is a seminorm; it will be called the seminorm induced the function norm 

p and still denoted by p. Our aim is to characterize those function norms which 

induce in this manner integrating seminorms such that Kp == C(p,Kp) and the family of 

p-null functions coincides with ),f. 

The function norm, p, is said to have the Riesz-Fischer property, see [48), 

Definition 4.1, if, for any functions !. E Jt , j == 1,2, ... , such that 
J 

00 
( C.l) I p(J.) < 00 , 

j==l J 

the set, Y, of all points wEn for which 

00 
I f.(w)==oo 
pI J 

belongs to Z, and, if f is a function on n such that 
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00 

(C.2) f( w) = L /.( w) 
j=l J 

for every wEn not belonging to Y, then f E l p . 

For the sake of unity of style, our formulation differs from that of W.A.J. 

Luxemburg and A.C. Zaanen, but the difference is merely technical. Luxemburg and 

Zaanen achieve some simplicity of the formulation by admitting into .u also functions 

with infinite values. However, the resulting theories are equivalent because then, for 

every function f E){ such that p(f) < 00, the set Y = {w: I f( w) I = oo} belongs to Z. 

Indeed, Ys n-1Ifl, and, by (iii) and (v), p(Y) S n-1p(f) , for every n= 1,2, .... 

So, p( y) = 0, and, (i), Y E Z . 

The following lemma and proposition are due to 1. Halperin and W.A.J. 

Luxemburg, [20]. 

LEMMA 3.4. If P has the Riesz-Fischer property, then 

00 

p(f) s L p(fJ, 
j=l ) 

whenever f. E){, j = 1,2, ... , are functions satisfying condition (C.I) and f E){ is a 
J 

junction such that 

for every wEn. 

Proof. If not, there exist such 1'., j = 1,2, ... , and f as in the statement of the 
J 

lemma, but 

00 

p(f) > 0: + L p(f.) 
j=l J 

with some 0: > o. Consequently, for each k = 1,2, ... , there exist functions f kj E .if , 
j = 1,2, ... , and a function fk E Jf such that 

for every wEn for which 
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and 

(C.3) 

Because 

for every r = 1,2, ... , we can assume that, besides (C.3), 

for every k =: 1,2, .... Let us arrange the functions fkj , j =: 1,2, ... , k =: 1,2, ... , into a 

single sequence q , n = 1,2,00 .. Then 
n 

Let 9 be a function such that 

00 

g(w) = L 9 (w) 
n=l n 

for every WEn for which 

00 

L g(w)<oo. 
n=l n 

Then, for every k::: 1,2, ... , there is a function hk E )f such that g(w) :::: fk(w) + hk(w) , 

for every WEn, and, hence, 

So, p(g)::: 00, contrary to p having the Riesz-Fischer property. 

PROPOSITION 3.5. The function norm p has the Riesz- Fischer property if and 

only if the induced seminorm on X; p is integrating and [(p,X; p) ::: X; p . 
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Proof. If p has the Riesz-Fischer property, let Ij E JCp ' j = 1,2, ... , be functions 

satisfying (3.2) and let f be a function on n such that (C.2) holds for every wEft 

,c~uch that 

Then 

00 
'\' L ,< ;.flJ," 

i=l 

and p(f) < 00, that is, f to 

n .co 
f(w} - E = r 

j=l j=n+l 

because Z c Sand p has the 

every wEn w.hIeh Lemma 

pI! - :C~ 

< L 
j=n+l 

fOI every n= 1,2, .... Therefore, p is integrating and C(p,JCp) = JCp . 

Conversely, if the semi norm induced by p is integrating and £(p,JC p) = Kp , 

p has the Riesz-Fischer property. 

Besides tl1e the classical spaces which are covered by this 

proposition include notably the Orlicz spaces. 

Let t be a cr-finite measure in the space n; that is, the space ft is equal to 

the union of a sequence of [-integrable sets. Let J.{ be the family of all i-measurable 

functions; the assumption of a-finiteness implies that the definitions of measurability 

mentioned in the section are equivalent. )f is the family of l-null functions. 

Let ij) be a Young function. (See Section lG.) 

For any function f E J.{, let 

We are using the convention that, if the function w H ~(I f(w) I), WEn, is not 

t-integrable, then M~(f) = 00. Let, further, 
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for every f E j,{. Now we are using the convention that the infimum of the empty set 

is 00. 

PROPOSITION :.t6. The functional PiJ) is a function norm having the Riesz-Fischer 

property. 

ProoL For brevity, we write P = PiJ) 0 

If the set {w: I f( w) I > o} has non-zero measure, then, for some t > 0, the 

set X = {w: I f( w) I ?:: (} has non-zero measure and, hence, MiJ)U) :::: ([>( t)/,(X) > 0 . 

Consequently, 0 < p(f) :S 00 • Conversely, if t( { w: I f( w) I > O}) = 0 , then 

MiJ) (0::/) = 0, for every a > 0 , and, hence, p(f) = 0 . 

Assume that 0 < p(g) < 00. Choosing a decreasing sequence of numbers k , 
n 

n = 1,2, ... , tending to p(g) and applying the sequential form of the Beppo Levi 

theorem on the functions k-1Igl, n= 1,2, ... , tending point-wise monotonically to 
n 

o (p(g)r1Igl , we deduce that MiJ)((p(g)r1g):s 1. From this observation we deduce 

further that, if 1/1:s Igl, then p(f):s p(g). For, if If I :S Igl, then 

M(p((p(g)rlf) :S M([>((p(g)rlg):s 1 . 

Now, assuming that f:::: 0, g:::: 0, p(f) + p(g) =: "( > 0, let p(f) = a"( and 

p(g) = Ih , so that a + ;3 = 1. Then, the Jensen inequality, 

and so, p(f+g):s "(. 

From these remarks and from the definition of p, it follows easily that p 

satisfies all the requirements (i) - (v), which means that it is a function norm on ,I( 0 

To prove that p has the Riesz-Fischer property, let 9n E ;t, n = 1 , be 

functions forming a non-decreasing sequence such that 0 < a = sup{p(g ) : 
n 

} ( -1) ... n = 1,2,... < 00. Because Mif> a 9 :S 1, lOr every n = 1,2, ... , by the Beppo Levi 
'l! n 

theorem, M(p(a- 1g):s 1. Hence, p(g):S a. Inparticular gElp' It is now evident 

that p has the Riesz-Fischer property. 
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The proof of Proposition 3.6 gives slightly more than the Riesz-Fischer 

property of the function norm P <!i . For more details we refer to [72]. 

Let us note that the space K p' for p = P il'i' consists of all functions f E )( for 

which there exists a number k > 0 such that MiJ!(kf) < 00. Furthermore, if the 

Young function ~ satisfles condition (Ll,J, then f E JC if and only if MiT-.(f) < 00 • 
~ P 'I' 

If l(D) < 00 and il'i satisfies condition (Ll2) for large values of the argument, then 

f E Kp if and only if MiJ!(f) < 00 • 

The space K, p is conventionally denoted by [iJ! (l) and the corresponding 

normed space by LiJJ(t). These spaces are known as Orlicz spaces. One writes 

IlflliJJ l = pqp(f), that is, , 

IlflliT-. = inf{k>O : f <!l(k-1If(w) I )l(dw) :s; I} , 
'Y,l n 

for any function f E [P(l). The semi norm 11·11.,; and the induced norm on Lil'i(i) 
'!! ,i 

are called the Luxemburg seminorm and the Luxemburg norm, respectively. Another 

semi norm on CiJJ (i) is defined by the formula 

Ilfll~t=suP{1 f fgdll:J w(lgl)dt:S; I}, , n n 

for every f E Cq} (t), where W is the Young function complementary to P. (See 

Section 10.) The so-defined serninorm and the corresponding norm on L(J)(t) are 

called the Orlicz serninorm and the Orlicz norm, respectively. The inequalities 

Iltll.p t:S; IIfll~ t:S; 211fllq} l , , , 

hold for every f E CP(t) , so that the Luxemburg and the Orlicz norms are equivalent. 

The classical reference about Orlicz spaces is [38]. Useful information can also 

be found in [39], especially Sections 3.1- 3.9, and of course elsewhere. 

For the definition of the class cq}(t) , the assumption that the measure l be 

d.'- flnite is of course not necessary. Explicitly, Cq} (t) consists of the /,-measurable 
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functions f on n for which there exists a number k > 0 (depending on f) such 

that 

D. Another class of important and extensively studied integrating 

seminorms is constituted by the semi norms inducing the natural norms of the Sobolev 

spaces. Following A. Kufner, O. John and S. FuCik, [39], Section 5.1, we present a 

general scheme for introducing these spaces which may be useful also in other contexts. 

Let X be a vector space of functions on a space n. Let Po be an integrating 

seminorm on K. Let J be an index set. For every 11' E J, let p 11' be an integrating 

seminorm on a vector space, C 11' ' of functions on a space n 11' such that 

C 11' ::: C(p 11',c 11') and let Sa: X.-, C 11' be a linear map. 

The maps Sa' 11' E J, will be called collectively closable if p 11'( h 11') = 0 for 

any functions h E C for which there exist functions 9 E K, n = 1,2'0'" such that 
11' 11' n 

(D.1) lim PO(gn) = 0 and lim PI1' (-1 9n -hl1' ) = 0 , 
n.-,oo n'-'oo 

for every a E J 0 

PROPOSITION 3.7. If the set J is finite and the maps Sa' 11' E J, are collectively 

closable, then the functional, P, defined by 

(D.2) 

for every f E K, is an integrating seminorm on K. 

Proof. Clearly, p is a semi norm. Let f. E K, j = 1,2, ... , be functions such that 
J 

00 

L p(f) < 00 

j=l 

and 

00 

L f.(w) = 0 
j=l J 

for every wEn for which 



3.7 93 3D 

00 

2: I 1.( w) I < 00 • 

pI J 

Then 

00 00 

2: PoU.l < 00 and L PlY (fJ < 00 

j==l J pI J 

for every IY E J. Let 

n. 

1: 1'., 
pI J 

for n == 1,2, .... Then, by Proposition 2.8, po( 9 ) -l 0 as because the 
n 

seminorm Po is integrating. Furthermore, by Theorem 2.4, for every IY E J, there 

exists a function It E C such that .0 (S (/ -h ) -l 0 as n -l 00. Then p (h ) == 0 , a a . a Ot'n 0: a a 

for every IY E J, because the maps So: ' 0: E J, are collectively closable. 

Proposition 2.1, p (S (J ) -l 0, for every 0:' E J j and, hence, p(g) -j 0 as n -j 00 , 
IY Ot'n n 

because the set J is finite. By Proposition 2.8, the seminorm p is integrating. 

To describe the most important particular cases, let n 2: 1 be an integer. Let 

t be the Lebesgue measure in IRn. Let n be a non-empty bounded open set in IRn. 

Let k 2: 0 be an integer and 1:s p :S 00. For J, we take the set of all n- tuples 

For any such a E J, let 

n 
O<lal==La.:sk. 

j==l J 

operators of partial differentiation on with respect to the first, second, H', n-th 

variable, respectively. 

Now, for X;, we take the space of all restrictions to n of CW-functions on iRn 

and let 

for every fEr.;. For every a E J, we take CO:' to be the space of all l-measurable 
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functions on n such that (Pa(f))P < co and put P o/f) == POW, for every f E £ a . 

Finally, we putS at == D at, for every f E lC and every a E J . 

LEMMA 3.B. For every a E J, the map Sa: lC -i £0: is closable. 

Proof. Let 9 E lC, n == 1,2, ... , and h E £ , be functions such that (D.l) holds. 
n 0: a 

Then, by the Green formula and the HOlder inequality, 

J h cpdt::: 1 im 
0: n n-ioo 

for every ~ -function r.p whose support is contained in n. Consequently, 

This lemma obviously implies that the maps Sa' 0: E J, are collectively 

closable. So, by Proposition 3.7, the seminorm, P, defined by (D.2) for every f E J( , 

is integrating. The corresponding Banach space L(p,£) is usually denoted by 

wk,P(D) . 

Let lCo be the space of all ~ functions with supports contained in n. Then 

Ko C JC , but the restriction of p to Ko is still denoted by p. The corresponding space 

L(p,lCo) is denoted by ~'P(D). The spaces Wt,p(n) and W~,p(n) do not coincide, 

in general. 

For further discussion, examples and ramification along these lines we refer to 

[39], Chapters 5, 7 and 8. The literature on the Sobolev space is of course very large. 

E. Both the classical and the real-variable definitions of the Hardy spaces 

can be viewed as the special cases of the construction of the space L(p,K) with a 

suitably chosen integrating gauge p on a family of functions JC. Let us start with the 

classical definition. 

Let 1::; p ::; co. Let lC = K /5 be the family of complex functions on the closed 

unit disc D1 ::: {z E { : I zl ::; I} for which there exists a 0 such that 0 < /5::; 00 and 

f E lC if and only if f has an analytic continuation on the disc 

D1+/5== {ZE {: Izi < 1 + /5}. In particular, ,too consists of the restrictions to D1 of 
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the entire functions. Given an r such that 0 < r < 1, let 

for every f E JC. Finally, let 

p(f) = sup{Pr(f) : 0 < r < I} 

for every f E K . 

PROPOSITION 3.9. The functional p is an integrating seminorm on JC . 

Proof. We have p(f) < 00 for every f E lC because every function belonging to JC is 

bounded on ]\. Using the analyticity of the functions in lC, it is easy to deduce 

that each seminorm Pr ' 0 < r < 1, is integrating. Then, by Proposition 2.14, the 

seminorm p is integrating too. 

The space L(p,lC) is usually denoted by HP . 

It may be noted that, for K, the space of all complex polynomials could be 

taken, which is even smaller than K , or, on the other hand, the space of all functions 
00 

continuous in Dl and analytic in the open disc D1 , which is larger than all the 

spaces lC {j' {j > 0 . 

The given definition of the space HP can of course be adapted to the case of 

the space IR~ = {(x,y) : x E IR , y :::: O}, or even 1R.:+l = {(x,y) : x E IR n , y :::: O} for any 

n = 1,2, ... , replacing the disc ]\ . 

Let us turn now to the real variable definition. We will consider only the HI 

spaces on 1R1l. That will suffice for our purposes; any attempt to treat systematically 

the Hardy spaces, or even just their connection with the theory of integrating gauges, 

is out of place here anyway. We may refer, however, to the survey [6] in which the 

history and the richness of the subject are elegantly presented. 

Let n:::: 1 be an integer. Let t be the Lebesgue measure in IR n . 

By an HI-atom in n = IR n is understood any function, f, for which there 

exists a (solid) ball B such that If(w) I :S (t(B)r1B(w), for [-almost every WEn, 
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and t(f) = O. We say that the atom I is supported by the ball B. Let 

K:::. K (Hl(lRn)) be the family of all HI-atoms in n. 
a 

For every fEr:;, let 

00 

PaUl :::. inf L I c.1 , 
j=l J 

where the infimum is taken over all choices of the numbers cj ' j = 1,2, ... , such that 

(E.l) 
00 

I I c.1 < 00 , 

j=l J 

and there exist functions f. E K 1 j = 1,2, ... , such that 
J 

00 

(E.2) f(w) =: I e. f.(W) , 
j=l J J 

for every WEn for which 

00 

(E.3) L IC.IIf.(w)1 < 00. 
j=1 J J 

If e is a number and fEr:;, then, clearly, t( I ell) :::: I cl. Therefore, 

condition (E.1) implies that the inequality (E.3) is satisfied [-almost everywhere. So, 

by the Beppo Levi theorem, i( I f I ) :::: Pa (f) :::: I , for every f E K . 

PROPOSITION 3.10. The functional Pa is an integrating gauge on the family of 

functions r:; = Ka(H1(lRn)). A function f belongs to the space C(Pa,l) if and only if 

there exist numbers c., j:::. satisfying condition (E.I), and functions I. E K , 
J J 

j = 1,2, ... , such that the equality (E.2) holds for every wEn for which the inequality 

(E.3) does. 

Proof. Let aU) = 1 1 for every function f E K which does not vanish i-almost 

everywhere, and a(J):::. 0, if f(w) = 0 for almost every wEn. Then qaU) = PaW, 

for every f E K, by the definition of q (Section 2A) and that of P . Because, by a a 

Proposition 2.7, q(j is an integrating semi norm on £(a,K), its restriction, Pa , to 

the family K too is integrating. 
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Now, by Proposition 2.7, C( q(J'C( (J,K)) = C(6,K) and, by Corollary 2.5, 

C(PaX) = C(q(J,C((J,K)). So, C(Pa,K) = C((J,K) which means that the space C(Pa,K) 

consists precisely of those functions f for which there exist numbers c. and atoms 
J 

f. E K, j =: 1,2, ... , such that (E.1) holds and the equality (E.2) holds for all wEn for 
J 

which the inequality (E.3) does. 

In view of the atomic representation of li(lRn ), this proposition says that the 

spaces L(Pa,K) and 1f-(lRn ) are identical and their respective norms are equivalent. 

This fact can also be deduced from the consideration of their duals; d. the discussion 

in [6]. We will only identify the dual of the space L(Pa,lC) by showing that the 

continuous linear functionals on it are generated by functions of bounded mean 

oscillation. Let us recall the definition. 

A function F on n = is said to have bounded mean oscillation if it is 

locally integrable and there is a constant M such that 

(E.4) 

for every ball Ben. The infimum of all the constants M for which (E.4) holds is 

denoted by II.FlIBMo ' Let us note that IIFIIBMO = 0 if and only if the function F is 

t-almost everywhere equal to a constant. 

PROPOSITION 3.1L If F is a function of bounded mean oscillation, then there 

e,rists a unique continuous linear functional, C, on the space L(p,f) , lC = fa (Hl(lRn)) , 

p= 

(E.5) 

, such that 

c( [fl ) = f f( w)F( w)t( dw) , 
P n 

for every f E f; the norm of .e is equal to IIFllmvw' Conversely, for every continuous 

linear functional, C, on L(p,lC), there is a function F of bounded mean oscillation 

such that (E.5) holds for every f E f . 

Proof. Let the function F have bounded mean oscillation. Then the formula (E.5) 

determines the number C([fl ) unambiguously for every atom f. Moreover, if f E f , p 
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let c. be numbers satisfying (E.1) and f. E JC atoms, j = 1,2, ... , such that (E.2) holds 
J J 

for every WEn for which (E.3) does; let the atom !. be supported the ball B., 
J J 

j = 1,2,." 0 Then, by definitions of atoms and of IIFII BMO ' 

Itl f/ dtl =ifB fj(w)[F(W)- (t(Bj))-l IB Fdt]t(dv)) I :::: IIFII BMO ' 

j j 

for every j = 1,2,,,,, So, by the series version of the Beppo Levi theorem, 

e([J1 ) =] fFdt = I c.] f.Fdt, 
p n pI J n J 

Consequently, I C([flp) I :::: p(f)IIFIIBMO ' because the numbers cj ' j:=:; '" can be 

chosen so that the sum of their absolute values is arbitrarily close to p(f), This 

argument can obviously be applied to any function f E C(p,lC) , Alternatively, 

Proposition 3.2 implies that there is a unique continuous linear functional e on 

L(p,JC), satisfying (E.5) for every f E JC, whose norm is not larger than IIFIIBMO ' 

Because, however, there are atoms, f, such that p(f) = 1 and i(jF) is as close to 

11F1I BMO as we please, the norm of e is actually equal to IIFII BMO ' 

Conversely, assume that C is a continuous linear functional on L(p,JC) , For 

n = 1,2,.", let Cn be the subspace of C(p,JC) consisting of the (equivalence classes of) 

functions, f, represented in the form (E.2), where the numbers c. satisfy (E.l) and 
J 

the atoms fj are supported by balls wholly contained in B n = {w: I wi:::: n} , 

j = 1,2, .... Then en contains all essentially bounded functions supported by Bn with 

integral equal to O. Because the dual space of Loo (on a space of finite measure) is 

equal to Ll, there is a function F , determined uniquely i-almost everywhere on 
n 

Bn' such that C([~p) = t(fFn) , for every f E and 

J F dt = 0, 
B n 

n 

n :=:; 1,2, ... , Consequently, there is a locally integrable function F which coincides 

t-almost everywhere on B with the function F , for every n = 1,2, .. " Then, using 
n n 

a similar argument as in the first part of the proof, it is straightforward to deduce that 
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£([j]) p) = t(lF), for every f E C(p,K), or just for every f E K. By what we have 

proved already, the function F has bounded mean oscillation. 

F. Let E be a Banach space. Let Q be a quasiring of sets in a space n 

and j),: Q -j E an additive set function. (See Sections ID and lE.) 

For every set X E Q, let 

n 
t(X) ::: sup L I Jt(X.) I , 

1'=1 J 

where the supremum is taken over all integers n::: 1,2,... and all choices of pair-wise 

disjoint sets X. E Q, j::: 1,2, ... ,n, whose union is equal to X. Then l is an 
J 

extended real vaJued additive set function on Q such that 

(i) I m(X) I :s [(X) , for every X E Q; and 

(ii) if K, is any extended real valued additive set function on Q such that 

I Jt(X) I :s K,(X) , for every X E Q, then [(X) :S K(X) , for every X E Q. 

The set function is called the variation of j),. We write v(j),) = l , 

v(Jt,X) ::: t(X) for X E Q and even v(p"f)::: /,(f) for any function f such that t(f) is 

defined. Alternatively, we write I Jt I ::: t . 

The set function p, is said to have finite variation if v(p"X) < 00 for every 

XEQ. 

It is well-known that the variation of a O"-additive set function is O"-additive. 

Also, if the space E is finite-dimensional, Q is a O-ring and the set function 

p, : Q -j E is O"-additive, then p, has finite variation. 

The conventions about the integration twith respect to Jt' are not fixed even if 

the set function p,: Q -j E is O"-additive. The reason being that there may exist 

several gauges on Q, or sim(Q), integrating for p, but generating different spaces of 

integrable functions, all considered 'natural' from alternative points of view. 

If j), has finite variation which is O"-additive then we can let v(Jt) integrate 

for p,. That is to say, we let t = v(p,) and note that there exists a unique linear map 

P, t : C( l) -j E such that 
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(i) fj (f) = fj(X), whenever I is the characteristic function of a set X E Q; 
l 

and 

(iil I :s: t{ III) , for every IE C(I,) . 

Then we write C(fj) = Crt) and 

fjU) = J f dfj = r f( W)fJ,{ dw) = fJ, (f) 
n "n t 

for every f E C(fj). It is often assumed that Q is a a-algebra, or at least a o-ring, 

[10], but this assumption has no significant bearing on the theory. 

Another possibility arises when, for every x' E E' , the set function x' 0/1- has 

finite and a-additive variation and 

(F.l) sup{ v(x' ofJ"X) : x' E E' , I x' I :s: I} < 00 

for every X E Q. In that case, let 

. (F.2) = sup{ v( x' "fJ" I f I ) : Xl E E' , I x' I :s: I} , 

for every f E sim(Q). By Proposition 3.3 and Proposition 2.14, p is an integrating 

seminorm on sim(Q). Obviously, the seminorm p integrates for tt. So, one can 

define C(fj) = C(p,sim(Q)) and 

for every f E C(tt) . 

Condition (F.I) is surely satisfied and the seminorm (F.2) integrates for tt if fj 

has finite a-additive variation. In that case, C( v(fJ,)) c £(p,sim(Q)) and the inclusion 

may be proper even when Q is a cr-algebra. 

EXAMPLE 3.12. Let n = {1,2, ... } be the set of all positive integers and let Q be 

the family of all subsets of n. Let {x.} 00_1 be an absolutely summable sequence of 
J J-

elements of the space E. Let 



3.13 

for every X E Q > 

101 

fJ,(X) == L x 
wEX w 

3F 

Then veu)) consists of all functions f on n such that the sequence 

{f(j)xj } ~==l is absolutely summable. The space £(p,sim(Q)) consists of all functions f 

on n such that the sequence {j(j)xt'J_ 1 is unconditionally summable. 
J }--

if J.t has finite and (j-additive variation, then the symbol II £(,u) II is 

ambiguous and would remain so even if the domain of J.l were indicated. Though, if 

the space E is finite-dimensional, then == C(p,sim(Q)), with i == and p 

defined by (F.2), and the respective seminorms are equivalent. 

Of course, it might be possible to form the space £(p,sim(Q)), with .0 defined 

(F.2), also vvhen J.l does not have finite variation. By the following proposition, 

this space surely can be formed when Q is a 8-ring and J.t is o·-additive. 

PROPOSITION 3.13. Let Q be a 5-ring sets in the space n. Let S be the 

(i-algebra of all sets Xc n such that X n Z E Q for every Z E Q. Let J.t: Q -+ E be a 

(i- additive set function. 

Then, for every Xl E E', the set function x' 0 It has finite variation and the 

inequality (F.l) holds every X E Q. 

Let the seminorm p be defined by (F.2) for every f E sim(Q) 0 Then the 

seminorm p integrates It . The seminorm p is monotonic and the space 

£(p,sim(Q)) is a vector lattice. A function on n is .0- null if and only if it is 

v(x l ofl)-null for every Xl E E'. The seminorm p is equivalent to the scminorm (J 

defined by 

cr(f) == sup{ 1J.t(Xf) I : X E 

for every f E sim(Q) . 

Let f be a function on ft 0 Then the following statements are equivalent: 

(i) jEC(p,sim(Q)). 

(ii) There exist Q-simple functions f , n == 1,2, ... , such that 
n 
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(F.3) 

102 

f(w) = lim f (w) 
n 

n->oo 

3.13 

for p-almost every wEn and the sequence {Jl(Xfn)}~=l converges to an element of 

the space E, for every XES. 

(iii) For every x' E E' , the function f is v(x' 0ttl-integrable and, for every 

XES, there exists an element v( X) of E such that 

x' (v(X)) = J n Xfd(x' ott) 

for every x' E E' . 

Proof. Some of the statements were already proved. The equivalence of the 

seminorms p and a was noted by R.G. Bartle, N. Dunford and J.T. Schwartz in [2]; 

see also [14], Lemma IV.IO.4(b). They also noted that a set is p-null if and only if it 

is v(x' ott)-null for every x' E E' 0 Hence, by Proposition 2.2, a function is p-null if 

and only if it is v(x' oJl)-null for every x' E E' . 

Given a function f on n, the equivalence of the statements (i), (il) and (iii) 

was essentially proved by D.R Lewis in [44]. In fact, (i) obviously implies (ii) and (il) 

implies (iii). Now, let JC be the family of all functions f for which the statement (iii) 

holds. Define p(f) by (F.2) for every fEr. Then p(f) < 00, for every fEr 

because, by the Orlicz-Pettis lemma, the set function v is a-additive and 

p(f) = sup{v(x'ov,n): x' E E' I :s I}. 

By Theorem 3.5 of [44], for every fEr and t > 0, there exists a function 9 E sim(Q) 

such that p(f-g) < t. Hence, by Theorem 2.4, for every fEr, one can produce a 

sequence, {f n} ~=l ' of Q-simple functions such that 

lim p(f-f ) = 0 
n 

n->oo 

and (F.3) holds for p-almost every wEn. So, JC c C(p,sim(Q)) . 
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This proposition summarizes the main approaches to integration 'with respect 

to Banach valued measures I of not necessarily finite variation which appeared in the 

literature. RG. Bartle, N. Dunford and J.T. Schwartz, [2], used condition (ii) to 

define integrability in the case when Q is a o--algebra; see also [14], Section IV.IO. 

Property (iii) was used by D.R. Lewis in [44] and [45]. Different approaches, leading to 

different spaces of integrable functions are of course possible. One of them will be 

described in Example 4.27 (Section 4F). 

G. The structure described in Section 3A represents a possibility for 

defining, in a reasonably systematic manner, integrals of the form 

b J fdw, 
a 

where w is an arbitrary continuous function in the interval [a, b]. In this section, we 

present a way of doing so sketched in [32]. We shall return to this theme again in 

Sections 4C and 4D, where we impose on w some additional conditions, similar to but 

still much weaker than the finiteness of variation, and, on the other hand, extend the 

generality of the whole set-up. 

Let w be a bounded continuous real or complex valued function on the 

real-line, n::: (-00,00) . 

Let Co (( -00,00]) be the Banach space of all functions continuous on the 

two-point compactification, [-00,00], of the space n a.nd vanishing at -00, under the 

usual sup-norm, 11·11 . Let E be the space of all bounded sequences of elements of 00 
Co( (-00,00]) equipped with the norm defined by 

II'PII ::: sup{II'Pnt : n::: 1,2, ... } , 

for every element, 'P::: {cp n}~:::l' of E. Let F be the subspace of E consisting of 

those sequences of elements of Co( (-00,00]) which are convergent in Co( (-00,00]) . 

Let { be the Lebesgue measure in the space n. As usual, this measure is not 

shown in integrals written down using a dummy variable. For the functions f and 9 
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on n, we denote 

(f*g)(t) =: f n f(t-s)g(s)ds, 

for every tEn for which this integral exists (in the sense described in Section B). 

Now, let k , 
n 

n = 1,2, ... , be continuously differentiable functions on n, 

t-integrable together with their derivatives such that k *cp -l cp, as n -l 00, uniformly 
n 

on n, for every continuous function cp on n with compact support, and 

k' *cp -l cp', as n -l 00 j uniformly on n, for every continuously differentiable 
n 

function cp on n with compact support (the dash denotes the derivative). For 

example, we can take 

for every tEn and n =: 1,2, .... 

Given a function f E £( d, let 

v U)(t) =: It f(s)(k'*w)(s)ds, 
n n 

-00 

for every t E [-00,00] and n =: 1,2"00 . 

Let K be the vector space of all functions f E £(t) such that the sequence 

v(f) =: {v n (fn :=1 belongs to E, and let 

p(f) =: l( III) + Ilv(f)11 , 

for every f E K. Let J be the subspace of J( consisting of the functions f E K such 

that v(f) belongs to F. 

PROPOSITION 3.14. The functional p is an integrating seminorm on K such thai 

£(p,JC) =: K and £(p,J) =: J . 

Proof. It is obvious that p is a seminorm. So, let f. E JC, j =: 1,2, ... , be functions 
J 

such that 
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00 

L p(fJ < 00 

j=l J 

and let f be a function on n such that 

00 

f(t) = L f/ t ), 
j=l ' 

for every tEn for which 

00 

L I !.( t) I < 00 • 

j=1 J 

Then 

00 

L t(ll.l) < 00, 

j=l J 

and, by the Beppo Levi theorem (or Proposition 2.1 applicable by Proposition 2.13), 

f E C(t). Also 

00 

L 1111(1.)11 < 00 , 

pl J 

and, because the space E is complete, there exists an element, r.p = {r.p n} :=1' of E 

such that 

00 

L v(f.) = r.p 
p=l J 

in the sense of convergence in the space E. It follows that v (f) = r.p , because the 
n n 

continuity of the map vn: C(b) -l 00((0,00]) implies that 

00 

v (f) = L v (I.) , 
n j=l n J 

for every n = 1,2,.... So, by the definition of lC, the function f belongs to it, by 

Proposition 2.8, the seminorm p is integrating and, by the definition of the space 

C(p,lC) , the equality C(p,lC) = JC holds. Then also the restriction of p to J is 

integrating and the same argument shows that l(p,J) = J . 

Let LIM be a Banach limit. That is, LIM is a continuous linear functional 

on the space of all bounded sequences of scalars equipped with the sup-norm, 
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independent on any finite number of coordinates, such that 

LIM {a rlJ 1 = 1 i m a n n= n 
n-loo 

whenever the sequence {an}~=l is convergent. 

Given a function f E K = C(p,K) , we define 

for every t E [-00,00]. Then 

is a continuous linear functional on the complete space C(p,K) such that 

[00 fdw= - [00 !'(t)w(t)dt, 

for every continuously differentiable function f on n with compact support. This 

functional depends of course on the choice of the Banach limit LIM. However, its 

values on the functions belonging to J are determined uniquely. 




