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FACTORIZATION IN GROUP ALGEBRAS 

G. A. Willis 

The following describes a connection with some automatic continuity problems 

of the study of probability measures and random walks on groups. The connection is 

via some questions concerning factorization in certain ideals in group algebras. 

For this, let G be a locally compact group and M(G) denote the algebra of 

all bounded Borel measures on G with convolution product and total variation norm. 

The closed ideal in M( G), consisting of those measures which are absolutely 

continuous with respect to Haar measure, will be identified with the (topological) 

group algebra L 1( G) and the closed subalgebra of M( G), consisting of discrete 

measures, wUl be identified with the (discrete) group algebra e1(G). Further, the 

(algebraic) group algebra, (G, will be identified with the subalgebra of e(G) 

consisting of functions with finite support. Since L1(G) is an ideal in M(G), the 

convolution product defines a right module action on L 1( G) by each of the 

subalgebras, (G, ei(G) and L1(G). Three automatic continuity problems now arise, 

namely, whether module homomorphisms from L 1( G) to an arbitrary right {G-, 

e(G)- or L 1(G)-module X are continuous. 

The L1(G)-module problem was solved by B. E. Johnson, see [6]. 

THEOREM 1. Let T be a module homomorphism from L 1( G) to an arbitrary right 

L 1( G)-module X. Then T is continuous. 

Proof. The proof is included in order to motivate an approach to the e\ G)-module 

problem later. Let (Fn):=1 be a sequence in L1(G) which converges to zero in 

norm. Then, by an extension of Cohen's factorization theorem given in [6] there are F 

and F', n = 1,2,3, ... hi L1(G) such that 
n 

(i) 

(ii) lim IIF'II = 0. 
n 

n-loo 

n = 1,2,3, ... 



Hence T(F ) 
n 
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T(F)·F' , because T is a module homomorphism, so 
n 

T(F ) __, 0 as n __, oo. 
n 

Therefore T is continuous. 

The CG-module problem has been solved in various cases by several authors. 

Define a right CG-module action on the one dimensional space X= ( by 

(1) x·f=( L f(g))x, (fE(G,xEC). 
gEG 

Then a CG-module homomorphism from L1(G) to X is just a translation invariant 

linear functional on L 1( G). There are discontinuous translation invariant linear 

functionals on L 1( G) if G is u-compact but not compact, see [16], or if G is 

infinite abelian, see [16] and [8]. 

We come now to the problem of continuity of el(G)-module homomorphisms 

from L1(G). It is closely related to the CG-module problem as t(G) is the closure 

of CG in M(G). Hence every e(G)-module homomorphism is a CG-module 

homomorphism. Conversely, it is easily seen that every continuous CG-module 

homomorphism is an el(G)-module homomorphism. However, if the operator is not 

assumed continuous, then requiring it to be an J;l(G)-module homomorphism is a 

strictly stronger condition than requiring it to be translation invariant. In constrast 

to the CG-module case, it may be shown that el(G)-module homomorphisms from 

L 1( G) are automatically continuous, see [11]. This result has an application to the 

problem of automatic continuity of module derivations from group algebras. In [12] it 

is shown that, if t( G)-module homomorphisms from L 1( G) are automatically 

continuous for all locally compact groups G, then there is a discontinuous derivation 

from L 1( G) for some locally compact group G (if and) only if there is a 

discontinuous derivation from e( G) for some discrete group G. It is further argued 

that one can restrict attention to G = IF w' the free group on a countably infinite 
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number of generators. The complete proof of continuity of el(G)-module 

homomorphisms will not be given here. Instead, two unsuccessful attempted proofs 

will be discussed. These attempts provide some partial results towards the complete 

proof and one of them leads to an investigation of probability measures on groups. 

The first approach is to try to copy the proof that L 1( G)-module 

homomorphisms from L 1( G) are continuous. For this to work, a factorization result 

similar to Cohen's factorization theorem is required. More specifically, we need to 

know that, given a sequence (F n):=1 in L 1( G) which converges to zero in norm, 

there is F E L1(G), and a sequence (fn):=1 c el(G), which converges to zero in 

norm, such that F = F*f for every n. An indication that this might be so is 
n n 

provided by the fact that if F1,F2, ... ,Fn E L1(G) and e > 0 are given, then there is 

FE L 1(G), and f1,f2, ... ,fn E i(G), such that 

(2) IIF .-F*f.ll < e and IIFIIIIf.ll ~ IIF -II for each j= 1,2, ... ,n. 
J J J J 

This attempt to prove the continuity of i(G)-module homomorphisms fails 

because, for example, the sequence of functions F ( 0) = l cosnO, n = 1,2,... on the 
n n 

circle group converges to zero in the L 1 norm but cannot be factored in the required 

way, see [12]. However, the above mentioned approximate factorization (2) does 

imply a much weaker factorization result which is useful for the proof that 

e(G)-module homomorphisms are automatically continuous. 

THEOREM 2. Let G be a compact group, (F n):=1 be a sequence in L 1( G) which 

converges to zero in norm and (1):=1 be a sequence of finite sets of irreducible 

unitary representations of G. Then there is FE L1(G), and (£):=1 c e1(G) such 

that: 

(i) 

(ii) 

llf II ..., 0 as n ..., oo; and 
n . 

p(F ) = p(F*f ) for each p E 1 , n = 1,2,3, .... n n n 

The proof will be given in [11]. Although this result was inspired by Cohen's 
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factorization theorem it is really quite different and less delicate as the factor F 

depends only on the sequence (1):=1 and the rate at which ( IIF nil ):=1 converges to 

zero, it does not depend on the particular functions F . 
n 

The second approach is connected with the study of random walks on groups 

and produces some further factorization results. Showing that every .el(G)-module 

homomorphism from L 1( G) is continuous entails showing in particular that 

L~(G) = L1(G)·~(G)::: span {F*fiF E L1(G), f E ~(G)}, 

where L~(G)={FEL1(G)IJ F=O} and ~(G)={fei{G)I t f(x)=O}. 
G xEG 

(3) 

It is easily seen that the factorization (3) holds if and only if every .el(G)-module 

homomorphism from L1(G) to the one dimensional right .el(G)-module with action 

defined by (1) is continuous. 

The proof of (3) in [11] requires different techniques for different types of 

groups. For example, if G is a connected Lie group, use is made of its one parameter 

subgroups, whereas, if G is totally disconnected, then Theorem 2 above is required 

together with the fact that every totally disconnected group has a compact, open 

subgroup, see [5], Theorem II.7.7. The connection with random walks on groups arises 

from the proof of (3) in the case when G is compact. The idea for this proof is 

suggested by the proof of the following factorization result for L~ (G). 

In [13] it is shown that every element of L~( G) is a sum of four products of 

elements in L~(G). Given an element, FE L~(G), it is first written as a product, 

F = E1*F'*E2, where E1, E2 E L1(G) and F' E L~(G). Then F' is split into its 

real and imaginary parts, which belong to L~(G), and they in turn are split into their 

4 
positive and negative parts to yield F = k~1Uk*(be-Pk)*Vk, where Pk is a 

probability measure in L 1( G) and Uk and V k are scalar multiples of E1 and E2. 

The proof that F is a sum of four products is completed by factoring be-P k' which 
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may be done by applying Cohen's factorization theorem or by noting that it has a 

square root. Now, by using factorization on one side only, we find that each F in 

1 4 
L0(G) has the form F \~1Uk*(8e-Pk). It follows that one way to prove (3) would be 

to show that U*(6e-P) belongs to L1 (G)·C~(G) whenever P is a probability 

measure on G. 

Define now, for each probability measure, /.1, on G, 

Then J tt is a closed, left ideal in L 1( G) which is contained in L~( G) and has a right 

bounded approximate identity, see [14]. This subspace is also a right Banach module 

over the subalgebra, A/.1, of M(G) generated by {je and tt· Furthermore, the 

subalgebra A 0 = {v E A lv( G) = 0} has a bounded approximate identity for J . 
~ /.1 /.1 

Since, if /.1 is discrete, A 0 =A n C~(G) it follows that, if /.1 is discrete, J 11 is 
tt, tt "' 

contained in L 1( G)· C~( G). Therefore, we can prove ( 3) if we can show that 

(4) for every probability measure, /.1, on G there is a discrete probability 

measure, 1-1', such that J /.1 ~ J 1-1' • 

Unfortunately, (4) does not hold for all probability measures on all groups, as 

will be shown later. However, it can be proved for amenable groups by applying the 

following 

LEMMA 3. Let G be a locally compact group and 1 be a norm closed, convex set of 

probability measures on G which is closed under convolution. Let X be a separable 

subspace of L 1 (G) such that: 

(i) J /.1 ~ X, ( 1-1 E 1); 

(ii) for every f E X and £ > 0, there is p E J such that d(f,J /.1) < c 

Then there is a 1-1' E 1 such that X= J tt' . 
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The proof is modelled on the proof of Cohen's factorization theorem, see [14]. 

Now let J denote the set of all ideals in L 1 (G) of the form J Jt for some tt. As ( 4) 

is, partly, a statement about inclusion relations in J, regard J as partially ordered 

by inclusion. The following result is proved in [14]. 

THEOREM 4. Let G be a separable group. Then: 

(i) every J tt is contained in a maximal element of J; 

(ii) if G is amenable, then there is a probability measure tt, which may be 

chosen to be discrete, such that L~( G) = J tt' 

Part (ii) of this result provides a new proof of a conjecture of Furstenberg, see 

[2], which was proved in 1981 by Kaimanovich and Versik and independently by 

Rosenblatt, see [7] and [10]. That the measure Jt in part (ii) may be chosen discrete 

is new and proves ( 3) and ( 4) for amenable groups. In particular, it proves ( 3) for 

compact G, which is what is required at one point in [11]. 

The connection with random walks on groups is through the ideals J 11-· A 

function, r.p E L 00( G) is said to be tt-harmonic if J..t*'P = r.p, where convolution by /l­

is defined to be the adjoint of the operator f H hJ..t on L 1 (G), L 00 ( G) being identified 

with the dual of L1(G). It is clear then that r.p is J..t-harmonic if and only if it 

annihilates J 11- and that the space of J..t-harmonic functions, HJ.t, is isomorphic to 

( L 1( G) I J) '. One of the basic results of the theory of random walks on groups is that 

HJ..t is isomorphic to a space L00(S1,1]), where n is a certain measurable G-space 

with quasi-invariant measure fl. The G-space n is called the tt-boundary and its 

significance is that it may be adjoined to G in such a way that almost every 

trajectory of the random walk with transition probabilities given by J..t hits a point of 

fl II at infinity 11 • 

In [14] it is shown that L1(G)IJ with the quotient norm and a certain order 
It 

structure is an abstract L 1-space, from which it follows that L 1( G) I J J..t is 
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isometrically isomorphic to L 1(!1,7]) for some measurable G-space n and 

quasi-invariant measure 7]. Of course this is just the predual of the above mentioned 

result about HJ.L but it has another factorization of L~(G) as a consequence. A 

probability measure, J.L, on G is called nondegenerate if it is absolutely continuous 

with respect to Haar measure and if the closed semigroup generated by the support of 

J.L is G itself. Then 

THEOREM 5. If J.L is a nondegenerate probability measure on G, then 

Idea of proof. This is proved by applying the ergodic theorem, see [1] VIII:5.5, to the 

operator on L 1(!1,7]) of convolution by J.L, see [14]. 

Theorem 5 expresses L~( G) as an algebraic sum of a closed left ideal with a 

right bounded approximate identity and a closed right ideal with a left bounded 

approximate identity. We have then the following results. 

COROLLARY 6. If (F n):=1 is a se,quence in L~( G) which converges to zero in 

norm, then there are A, BE L~(G), and sequences (Hn):=1, (Kn):=1 c L~(G) such 

that 

(i) 

(ii) 

F = H *A + B*K , n = 1,2,3, ... n n n 

lim IIH II= o =lim IlK 11. 
n n n--+oo n--+oo 

COROLLARY 7. Every L~(G)-bimodule homomorphism from L~(G) is continuous. 

Corollary 6 is a big improvement on the factorization of L~( G) in [13] because 

it reduces the number of products required from four to two and because it factors 

sequences. However, the proof of Theorem 5 is much longer and more sophisticated 

than the argument in [13], which is outlined above. 
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Some problems are suggested by Corollaries 6 and 7. First, Corollary 6 shows 

that every function in L~( G) is a sum of two products rather than four as was known 

previously, but it is still not known whether every function in L~(G) is a product. 

Secondly, in view of Corollary 7 it would be of interest to know whether or not every 

left L~(G)-module homomorphism from L~(G) is continuous. If G is a discrete 

group, so that L1(G) has a unit, any left 1~(G) may be extended to be a derivation 

from 1 1(G). This question is thus a special case of the question as to whether or not 

every derivation from 1 1( G) is continuous and it may be worthwhile to work on this 

special case. Thirdly, it would be useful to generalize Theorem 5 so that it applied to 

certain other ideals in L 1( G). 

To explain what is meant by this third problem, let N be a closed, normal 

subgroup of G. Then the quotient map G -l G/N induces an algebra homomorphism 

T:L1(G) -l L1(G/N). If tt is a probability measure on G with support contained in 

N, then it is easily seen that 

What is required, is to find a probability measure tt supported in N such that the 

left hand side equals ker T. Suppose that such a fJ can be found when N is the 

commutator subgroup of G. Then ker T will be the algebraic sum of a closed left 

ideal with a right bounded approximate identity and a closed right ideal with a left 

bounded approximate identity and so Corollary 6 will hold with ker T in place of 

L~(G). Now let I be any codimension 2 ideal in L1(G). Then ker T ~I and so 

T(I) is a codimension 2 ideal in L1(G/N). Since G/N is abelian, every element of 

T(I) is a product. As every element of ker T is a sum of two products, it follows 

that every element of I is a sum of three products. The hoped for generalization of 

Theorem 5 would thus greatly improve on what is known about factorization in 

codimension 2 ideals of group algebras, see [15]. 

There is one non-trivial case where it is possible to find a probability measure 



342 

with the required property. Let IF 2 be the free group on two generators and N be its 

commutator subgroup. Then it is shown in [14] that the probability measure, /.1, on 

N constructed by Furstenberg in [4] satisfies [i(IF 2)*( 8e -f.lW + [( 8e -f.l)*el(lf 2W 
= ker T. The construction of f.1 relies on the fact that IF 2/N ~ 7P and that random 

walks on 712 are recurrent. It does not extend to groups with three or more 

generators because IF 3 modulo its commutator subgroup is isomorphic to 713 and 

random walks on 713 are transient. 

Finally, some other work of Furstenberg [3] provides an example which shows 

that ( 4) does not hold for all probability measures on all groups. The details of this 

example will appear in [9] but an outline follows. For this we need some more 

information about the isomorphism between L1(G)/J/l and L1(D,1]). If tt is an 

absolutely continuous probability measure, then it belongs to L 1( G) and is a right 

modular unit for J ll . It follows that tt + J /.1 is mapped to a probability measure v 

on n which is absolutely continuous with respect to 11 and satisfies f.1 * J/ = v, 

where the convolution is determined by the action of G on n. This measure v is 

said to be ,u-stationary and, since tt is a modular unit for J ll , it is clear that 

J ll = {F E L 1( G) I Fw = 0}. In some cases it is possible to obtain more concrete 

information about (i1,?]) and v. Furstenberg showed that, if G is SL(2,!R) and f.1 

is absolutely continuous, then the tt-boundary, is either the unit circle, or the one 

dimensional projective space, IP. It may be shown, see [14], that, if the f.l-boundary 

is IP, then is maximal in the sense of Theorem 4 above and we will need only to 

work with this case. The action of SL(2,1R) on IP is the action induced from the 

action of SL(2,1R) on IR2 by identifying IP with the set of all lines through the origin 

in IR2. Parametrize IP 0, -~ < ()::; ~' where 0 is the angle between a line 

through the origin and the horizontal axis in IR2. Then the measure 11 may be chosen 

to be Lebesgue measure on ( -~,~] because this measure is quasi-invariant for the 

action of SL(2,1R) and IP has a unique quasi-invariant measure class since it is 

transitive for the action of SL(2,1R). 
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With this choice of TJ, it may be shown that, if v is j.t-stationary for some 

dv absolutely continuous J.t, then the Radon-Nikodym derivative, dJ7' is a lower 

semicontinuous function on IP. Conversely, if F is any non-negative lower 

71 

semicontinuous function with J:.zr FdTJ = 1 whose support is contained in a proper 

2 

compact subset of ( -~,~], then an absolutely continuous probability measure, J.t, 

may be constructed on SL(2,1R) so that L1(SL(2,1R))/J.U ~ L1(1P,ry) and the 

j.t-stationary measure v satisfies ~~ = F, see [9]. 

Now let F be any non-negative function on (-~,~] whose support is 

contained in (0,~] and which is continuous everywhere except at three points 

1r 

pl'p2,p3. Assume further that F(p)..., oo as p..., pi and that J:.!!: FdTJ = 1. Then F 

2 

is lower semicontinuous and so there is a probability measure, J.t, on SL(2,1R) such 

that L 1( SL(2,1R)) / J J.t ~ L 1( ( -~,~], ry) and the p-stationary measure, v, satisfies 

dv d1} =F. Suppose that ,u' is a discrete probability measure on SL(2,1R) such that 

J J.t ~ J tt' . Since J J.t is maximal we have that J J.t = J tt' and so v will also be 

,u1-stationary. It follows that any matrix, x, in the support of p,' must permute the 

points p1,p2 and p3. Observe that each point p in IP which is fixed by x 

corresponds to an eigenvector of x in IR2. Hence, if x fixes all three of pl'p2 and 

p3, then x is a scalar matrix, i.e. x E { [ ~ ~ J , [ ~ 1 _ ~ J } . Since there are only six 

permutations of {p1,p2,p3}, it follows that the support of tt' is contained in a 

subgroup of SL(2,!R) of order 12. It is then impossible for L1(SL(2,1R)/J/t to be 

1 isomorphic to L (IP,1J). Therefore, there is no discrete p,' with J p' 2 J J.t. 
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