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WEAK (F)-AMENABILITY OF R(X) 

J. F. Feinstein 

1. INTRODUCTION 

In this paper we shall discuss the amenability and weak amenability of 

certain commutative Banach algebras. 

definitions. 

We begin by recalling the basic 

1. i DEFINITION Let A be an algebra, and let X be an A-bimodule. 

Then X is commutative if 

a.x x.a (a E A, X E X). 

If A is commutative, then an A-module is a commutative A-bimodule. 

Note that an algebra A is always itself an A-bimodule, with module 

operations given by multiplication in A. 

1. 2 DEFINITION Let A be a Banach algebra. A Banach A-bimodule is an 

A-bimodule X, equipped with a complete norm 11·11, satisfying 

lla.xll ::;; llallllxll, llx.all ::;; llallllxll (a E A, X E X). 

If A is commutative, then a Banach A-module is a commutative Banach 

A-bimodule. 

1. 3 DEFINITION Let A be an algebra. A derivation from A into an 
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A-bimodule X is a linear map D:A ~X satisfying 

D(ab) a.Db + Da.b (a, b E A). 

The derivation D is inner if there exists x e X with 

D(a) a.x- x.a (a E A). 

Let A be a Banach algebra, and E be a Banach A-bimodule. Set 

(a. f) (x) f(x.a), (f.a)(x) f(a.x) (f E E', a E A, X E X). 

Then with respect to these operations, E' becomes a Banach A-bimodule. 

The bimodule E' is called the dual module of E. It is clear that if A 

is commutative, then the dual of any Banach A-module is a Banach A-module. 

1. 4 DEFINITION Let A be a Banach algebra. Then A is amenable if, for 

every Banach A-bimodule X, every continuous derivation from A into X' 

is inner; A is weakly amenable if every continuous derivation from A into 

the dual module A' is inner. 

The notion of amenability for Banach algebras was introduced by Johnson 

in [6]. It has proved to be an important concept in many different areas of 

Banach algebra theory. (The original motivation for this definition is the 

following. Let G be a locally compact group. 

L 1 (G) is amenable if and only if the group 

[G,Theorem 2.5]). 

Then the Banach algebra 

G is amenable. See 

The concept of weak amenability was introduced for commutative Banach 

algebras by Bade, Curtis and Dales, in [1]. The above definition is the 

obvious generalization of their definition, in view of the following result 

from the same paper. 



99 

1.5 PROPOSITION Let A be a commutative Banach algebra, and suppose that 

there is a non-zero, continuous derivation from A into some Banach 

A-module. Then there is a non-zero, continuous derivation from A into the 

dual module A' . 

1. 6 DEFINITION Let A be an algebra, and let ~ be a character on A. 

A point derivation at ~ is a linear functional d on A, satisfying 

d(ab) ~(a)d(b) + ~(b)d(a) (a, b e A). 

Point derivations at ~ can be identified with derivations from A 

into the one-dimensional commutative A-bimodule 

operations in C are given by 

C, where the module 

a.i\ i\.a ~(a)i\ (a E A, i\ E C). 

Let A be a Banach algebra. It is clear that if A is amenable, then 

A is also weakly amenable. It is also clear that if A is 

commutative and weakly amenable, then there are no non-zero, continuous 

point derivations on A. If A is a commutative, amenable, unital Banach 

algebra, then every maximal ideal in A has a bounded approximate identity 

([4,Proposition 3.1]). By Cohen's factorization theorem, M2 = M for each 

maximal ideal M, and so there are no non-zero point derivations at all on 

A. 

In this paper we shall discuss the amenability and weak amenability of 

an important class of uniform algebras, the algebra of all continuous 

functions on a compact plane set X which can be uniformly approximated by 

rational functions with poles off X. 

NOTATION Let S be a set, · and let f be a bounded, complex-valued 
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function on For each set E contained in s, the 

uniform norm of f on E, denoted by lfiE' is defined by 

lfiE sup{jf(x)l:x e E}, 

If A is a uniform algebra on a compact space X, then A is trivial 

if A= C(X), the uniform algebra of all continuous functions on X, 

1, 7 DEFINITION Let X be a compact subset of t. Then R0(X) is the 

set of restrictions to X of rational functions with poles off X, and 

R(X) is the closure of R0 (X) in C(XL The coordinate functional is 

denoted by Z. 

It is well-known that for any compact space X, C(X) is always 

amenable, The following result can be found, for example, on page 178 of 

[3]. 

1. 8 PROPOSITION Let X be a compact plane set. Then R(X) C(X) if 

and only if there are no non-zero point derivations on R(X). 

It was conjectured by Browder that this result would be false if "point 

derivation" were replaced by "continuous point derivation". This conjecture 

was proved by Wermer in [12], where he gave an example of a Swiss cheese X 

for which R(X) is non-trivial and has no non-zero, continuous point 

derivations. This contrasts with the following result of Sheinberg (see 

[7]). 

1.9 THEOREM Every amenable uniform algebra is trivial. 

We are interested in the question: Is every weakly amenable uniform 
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algebra trivial?. In particular, we are interested in the case where 

A = R(X) for some compact plane set v 
LL We are unable to resolve this 

question, but we shall obtain, in Theorem 2. 13, a criterion for R(X) to be 

trivial in terms of derivations into modules more general than Banach 

R(X)-modules. 

We would be interested in an example of a compact plane set X such 

that R(X) has no non-zero, continuous point derivations, but R(X) is not 

weakly amenable. 

The following result is immediate. 

1.10 PROPOSITION Let X be an infinite compact plane set, let E be an 

R(X)-module, and let D be a derivation from R(X) into E. Then 

D(f) f' .D(Z) (fER (X)). 
0 

1.11 PROPOSITION Let X be a compact subset of ~- Then R(X) is not 

weakly amenable if and only if there exists a complex Borel measure ~ on 

X which does not annihilate R(X), and C > 0 with 

f f' c z) g( z) d11C z) 

X 

Proof If R(X) is not weakly amenable, then there is a non-zero, 

continuous derivation D from R(X) into R(X)'. By the Hahn-Banach and 

Riesz representation theorems, there exists a non-zero, complex Borel 

measure 11 on X with 

D(Z)(g) Jg(z)dM(Z) 

X 

(geR(X)). 



102 

The existence of the constant C for this M follows from Proposition 1.10 

and the continuity of D. 

Conversely, given M and C > 0 satisfying the conditions of the 

proposition, there is a non-zero, continuous derivation D: R(X) ~ R(X)' 

satisfying 

D(f) (g) Jf'(z)g(z)dM(z) 

X 

NOTATION Throughout this paper we shall denqte Lebesgue measure on the 

plane by m. 

The following result is an immediate corollary of Proposition 1.11. 

1 . 12 COROLLARY Let X be a compact plane set, and suppose that there 

exists C > 0 and a Borel set E contained in X with m(E) > 0 such 

that 

Jf'(z)g(z)dm(z) 

E 

Then R(X) is not weakly amenable. 

Let X be a compact plane set with R(X) "'- C(X). By the 

Hartogs-Rosenthal theorem ([3,p.161]), m(X) > 0. We would be interested to 

know whether there always exists a Borel set E satisfying the conditions 

of the above corollary for some C > 0. We would also like to know whether 

there always exists a Borel set E of positive Lebesgue measure contained 

in X such that the map 

1 f ~ f' IE, R0(X) ~ L (E,dm), 
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is continuous. 

2. TOPOLOGICAL MODULES 

2. 1 DEFINITION Let (E,<) be a topological linear space. Then E is 

locally bounded if there exists a bounded neighbourhood of 0, and E is an 

(F)-space if there is a complete metric on E inducing the topology T. 

2.2 DEFINITION Let E be a linear space, and let d be a metric on E. 

Then d is invariant if d(x,y) = d(x-y,O) (x,y e E}. 

2.3 PROPOSITION [8,p.163] If (E,<) is a topological linear space with a 

countable base of neighbourhoods at the origin, then there is an invariant 

metric d on E which induces the topology •· 

2.4 PROPOSITION [B,p. 165] If (E,<) is an (F)-space, then (E,<) is 

complete, and every invariant metric inducing the topology • 

complete. 

is also 

2. 5 DEFINITION [8, p. 159] Let E be a linear space. A function 11.11 

on E is a quasi-norm if it satisfies the following conditions: 

( i) llxll ~ 0 (x e E); 

(ii) llxll 0 if and only if x = 0; 

(iii) llaxll = lalllxll (x e E, a e 0::); 

( iv) there exists K ~ 1, with llx+yll s K(llxll+llyll) (x,y e E). 

2.6 PROPOSITION [8,pp.159-160] Let E be a linear space, and let 11.11 

be a quasi-norm on E. Then the sets 
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(k E IN) 

form a countable base of neighbourhoods at 0 for a locally bounded 

topological linear space topology T on E. 

2. 7 DEFINITION With E, 11.11, T, as in 2.6, we call (E,T) a 

quasi-normed space and we denote it by (E,II.II). 

Remark There are many discontinuous quasi-norms on the topological linear 

space Thus it is not always true that a quasi-norm is continuous with 

respect to the topology it generates. 

Note that by Proposition 2. 3 any quasi-normed space (E, II. II) has a 

topology that can be induced by an invariant metric d. The following 

result is elementary. 

2. 8 PROPOSITION Let (E, II. II) be a quasi-normed space, and let d be an 

invariant metric on E inducing the same topology as II. II. Let g e E, 

and let (f ) be a sequence of elements of E. Then (f ) converges to g 
n n 

in (E,d) if and only if llfn-gll -7 0 as n -7 oo. Also (f 
n 

) is Cauchy in 

(E,d) if and only if lim sup llf -f II ""0. n m 
m,n-7110 

2. 9 DEFINITION Let A be a commutative topological algebra, and let E 

be a topological linear space which is a (commutative) A-module. Then E 

is a topological A-module if the module operation 

(a,x) H a.x, AxE HE 

is jointly continuous; E is an (F)-A-module if it is a topological 



105 

A-module which is also an (F)-space. 

2. 10 DEFINITION Let A be a commutative Banach algebra. Then A is 

weakly (F)-amenable if there are no non-zero, continuous derivations from A 

into any (F)-A-module. 

The following is a slight generalization of a result in [1]. 

2.11 LEMMA Let A be a commutative, unital Banach algebra, let E be a 

topological A-module, let D be a continuous derivation from A into E, 

and let a e A. Suppose that either of the fo~lowing conditions holds: 

(i) a e Inv(A) and 

lim llanlllla-nll/n 
n~ 

(ii) lim llexp(na)llllexp(-na)ll/n 0. 
n~ 

Then D(a) 0. 

0· 
' 

Proof We set Q = {a.Db:a,b e A,llall,llbll :s 1}. Then, by the joint 

continuity of the module operation, Q is a bounded subset of E. 

Firstly, consider the case where a satisfies condition (i). Then we 

have 

n-1 
na .Da (neiN). 

Thus 

Da 

and so 

-n+1 n Da e (lla IIIIa 11/n) Q (n E IN). 

It follows from (i) and the boundedness of Q that Da = 0. 

Secondly suppose that a satisfies (ii). Then exp(a) satisfies (i), 
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and so D(exp(a)) 0. But a simple calculation shows that 

D(exp(a)) exp(a).Da. Thus 

D(a) l.D(a) exp(-a).exp(a).D(a) 0, 

where the first equality follows from the derivation identity, and the fact 

that D(l) = 0. 

2.12 COROLLARY Let X be a compact space. Then there are no non-zero, 

continuous derivations from C(X) into any topological C(X)-module. 

Proof Let E be a topological C(X)-module, and let D be a continuous 

derivation from C(X) into E. We shall show that D(h) = 0 (h e C(X)). 

Clearly it is sufficient to consider the case where h is a real-valued, 

continuous function on X. But then the function ih satisfies condition 

(ii) of Proposition 2.11. Thus D(h) = 0. 

In particular, C(X) is always weakly (F)-amenable. 

The main new result in this paper is the following theorem. We shall 

not give a proof of this result until §5. We \oiould be interested in any 

similar result for more general uniform algebras. 

2.13 THEOREM Let X be a compact plane set. Then R(X) = C(X) if and 

only if there are no non-zero, continuous derivations from R(X) into any 

locally bounded (F)-R(X)-module. 

Thus, for any compact plane set X, R(X) 

is weakly (F)-amenable. 

C(X) if and only if R(X) 

We shall develop the tools needed to prove this theorem in the next two 

sections. 
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3. WEAK-L1 AND THE Lp SPACES 

NOTATION Let X be a locally compact space. Then we denote by ~(X) the 

Banach space of all complex, regular Borel measures on X. 

3.1 DEFINITION Let X be a locally compact space, and let 1.! be a 

positive measure on X. Then weak-L 1 with respect to 11. denoted by 

1 
L*(X,dJ.L), 

functions 

is the set of all equivalence classes 

f on X satisfying 

sup t11( {x E X: !f(x) I > t}) < oo, 

t>O 

of Borel measurable 

where the equivalence relation is almost everywhere equality with respect to 

For the rest of this section X will be a fixed compact space, and 1-1 

a positive measure on We define a function 

3.2 LEMMA 

( i ) If 

llfll sup tiJ.({x EX: lf(x)l > t}) 
t>O 

A E (0,1), then 

In particular, llf+gll s 2(11fll+llgll). 

( i i ) If and a E IC, then 

llo:fll lo:lllfll. 

( iii ) 
1 

(L* (X, diJ.), II. II) is a quasi-normed space. 

11.11 on 1 
L*(X,dj..!) 

and 

1 
o:f E L*(X,dj..!) 

by 

and 
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( i v) The quasi-norm 11.11 is continuous on 1 ( L* (X, d!!) , II . II L 

Proof (i) This is clear from the inclusion 

{x e X: lf(x)+g(x) I > t} ~ {x e X: lf(x) I > At} u {x e X: lg(x) I > (1-ll.)t}. 

(ii) This is trivial, and (iii) follows easily, since llfll 0 if and only 

if f 
1 is zero a.e. (j.l) (f e L*(X,dj.l)). 

(iv) Let 1 
g e L* (X, dj..t), and let ( :f l 

n 
be a sequence of elements in 

1 L*(X,dj..t) converging to g. Then by (i), for each II. e (0, 1) and n e ~. 

we have 

and 

Thus 

lim sup llfnll :s (1-11.)-lllgll 
n~ 

:s (1-11.)-2 lim in:f ll:f II 
n 

The result now follows, on letting I\ tend to 0. 

(A E (0, 1)). 

The following results are well known, but we are unable to give a 

reference, and so we include proofs for the sake of completeness. 

3.3 LEMMA Let g be a measurable function on X, and suppose that (f ) 
n 

is a sequence of elements of with a. e. (p.L and with 

sup{llf ll:n e ~} < oo. 
n 

Then 

n~ 

1 
g E L*(X,dfl) and 

m,n~ 

Proof Take n e ~. and t > 0. We have 

(1) 
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:s: 1-1.[ U ~ {x E X: If (x)-f (x) I > t} ] 
k=l m=k n m 

:s: lim sup Il({x E X: If (x)-f (xli> t}) 
n m 

It follows that f - g E L;CX,d/l), and that 
n 

Thus 

IIfn - gil :s: lim sup llfn - fmll. 
ffi->OO 

1 
g E L*(X,d/l), and (1) holds. 

3.4 LEMMA If Il is finite and pE (0,1), then 

in LP(X,dll), and the inclusion map is continuous. 

Proof Take 

J If(x) - g(x) IP d/l(x) 

X 

00 

Then 

pyP- /le {x E X: I f(x) - g(x) I > y}) dy J 1 . 

o 

:s: inf [/-Lex) 
0>0 

o 
J pyp-ldy + IIf-gll 

o 

-1 P :s: (/l(X)+p( 1-p) ) !If-gil . 

00 

py- dy· f p-2 ] 

is contained 

3.5 LEMMA If 11 is (J'-finite, then cLlex,d/l),II.lIl is complete. 
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(f ) 
n 

Let (f ) 
n 

converges in 
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be a Cauchy sequence in 

Clearly 

sup IIf II < 00, 

nelN n 

and, by Proposition 2.8, 

lim sup IIfn-fmll o. 
m,n~ 

We shall show that 

It follows from Lemma 3.3 that we need only show that some subsequence of 

(fn) converges a.e. (~) on X. For this, we may assume that ~ is finite, 

as the general case follows by a diagonalization argument. 

By Lemma 3.4, (f ) 
n 

. C h . Ll12(X, d ll ), and so for IS a auc y sequence In ~ 

some subsequence (fn )~=1 we have 
k 

JI 
11/2 k 

f (x) - f (x) . d~(x) < 2- (k e IN). 
nk+1 nk 

X 

Thus 

00 

JI 
1112 L f (x) - f (x) d~(x) < 00. 

~+1 nk 
k=l X 

It follows that 

00 I 1/2 
L f (x) - f (x) < 00 a.e. (~) , 

k=l 
nk+1 ~ 

and hence that 

00 

I < 00 L f (x) - f (x) a.e. (~). 
nk+ 1 ~ k=l 

This shows that (f ) converges a.e. (~), as required. 
nk 
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Remark The last part of the above proof is essentially the proof that 

L1/2 is complete. 

3.6 LEMMA 

(i) For each P E (0,1), is a locally bounded 

(F)-LOO(X,d~)-module with respect to pointwise multiplication. 

(ii) If is ~-finite, then is a locally bounded 

(F)-LOO(X,d~)-module with respect to pointwise multiplication. 

Proof Part (i) is clear. For part Cii), note that 

00 1 
(f E L (X,d~), g E L*CX,d~)). 

The following result is an easy consequence of Lemma 3.6. 

3.7 PROPOSITION Let X be a compact plane set, and let ~ be a finite, 

positive Borel measure supported on X. Then is a locally 

bounded (F)-CCX)-module with respect to pointwise multiplication. 

4. THE BEURLING AND CAUCHY TRANSFORMS 

Let ~ E MCC). We set 

ilCz) .!. Jdl~ICw) 
1I I w-z I 

Cz E C), 

C 

where the integrand is defined as +00 when w = z. For those z E C with 

ilCz) < 00, we set 
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IJ.(z) ! f dll(W) 
l'l w-z 

II: 

Note that for all such Z He have jl( {z}) '" O. 

It follows from Fubini's theorem that Il E 
1 

Ll (tC,dm), oc and so 

1 
/J. E L1 (lC,dm) also. The function jl is called the Cauchy transform of oc 

For each £ > 0, we set 

We set 

We also set 

1 
17 I 

Iw-zl2:£ 

sup I (B 11) (z) I 
£>0 £ 

(BI.d (z) 

for those Z E II: for which this limit exists. 

(Z E IC). 

(Z E Ie). 

The function EM is called the Beurling transform of M. 

By the Radon-Nikodym theorem, the map 

1 f H fdm, L (IC, dm) -7 .M(IC), 

(2) 

is an isometric linear embedding whose range is the set of elements of .M(tC) 

which are absolutely continuous with respect to m. From nOH on we shall 

identify 1 
L (tC,dm) with its embedded image. 

The following resul t is a special case of an important resul t of 
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Calder6n-Zygmund theory ([11,p.42]). 

4.1 PROPOSITION 

(i) Let f e L1 CIC,dm), and set d/-L fdm. Then the limit in (2) exists 

a. e. (m). 

1 maps L (IC,dm) into L!(IC,dm), and there exists a constant c1 > 0 

with 

1 (f E L (IC,dm)). 

Thus B and both map 1 L (IC,dm) continuously into For 

our purposes we need to extend this result by showing that B and B* also 

map .M(IC) continuously into These results are known "folk" 

theorems, but we include proofs because there seem to be no explicit 

statements of these results in the literature. First we shall modify the 

usual definition of dyadic square, (see, for example, [5,p. 136]). 

4. 2 DEFINITION A dyadic square is a subset of ~2 of the form 

for some k, l, n e I. 

Note that if two dyadic squares have non-empty intersection, then one 

must contain the other. 

* NOTATION Let Q be a dyadic square. We shall denote by Q the closed 

square which has the same centre as Q, but 2312 times the side length of 

Q. Let a e IC, and r > 0. Then Ma,r) denotes the set 

{ z e IC: I z-a I < r} . 



114 

4.3 DEFINITION Let ~ E M(C), and let z e C. Then we set 

sup { ~ I~I(D.(z,r)) 
n:r 

4. 4 PROPOSITION [lO,p. 1371 Let ~ E .M( C). Then 
1 

MIL e L ... Cc, dm), and 

4.5 PROPOSITION [10,p. 142] Let 1J. E M(C) with 1J. i m. Then 

;~+ rr~ 2 1111 (D. ( z, r) l 0 a.e. (m). 

NOTATION Let F be a Borel subset of ([; with 0 < m(F) < oo. We set 

-1 
m(Fl f-!(Fl (IJ. E .M(t)), 

and we call the average of over F. For any real-valued, 

measurable function f on IC, and t > 0, we shall denote the set 

{z E IC:f(z) > t} by {f > t}. 

Let 11 E .M(IC), and let t > 0. We shall denote by ~t(IJ.) the set of 

all dyadic squares Q satisfying: 

Cil IJ..LICQl > tmCQl; 

(ii) if Q' is a dyadic square strictly containing Q, then 

IJ..LI(Q'l s tm(Q'l. 

It is clear that ~t(~J.) is countable, and that 

~ {m(Q): Q e ~t (J..L)} :S 111111/t (3) 

since the dyadic squares in ~t(J..L) are pairwise disjoint. It is also clear 

that 
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IJ-11 (Q) oo 4tm(Q) 

We are now in a position to prove the results that we shall need in §5. 

We shall first deal with a special case. The proof of this result is very 

close to the proof of Proposition 4.1 to be found in [11], with only slight 

modifications needed to replace functions by measures. 

4.6 LEMMA Let J-1 be a finite, positive Borel measure on t, with M L m. 

Then 1 
B*J-1 E L,(O::,dm). Furthermore, there is a constant which does 

not depend on J-1, with 

Proof Take t > 0. We shall estimate m({B*J-1 > t}). We set 

* By (3) we have m(Q ) s 8llj..tll/t. 

We next show that J-1(0:: \ Q) = 0. To see this, let F be a Borel set 

with m(F) = 0 on which 1-l is supported. It follows from the definition of 

Q that for any dyadic square Q, 

f.1(Q \ 11) :s tm(Q). (4) 

Given <: > 0, we can cover F with countably many dyadic squares (Qn) 

satisfying 

Thus, by (4) and (5), 

Oil 

L: m(Qnl < <:/t. 
n=l 

(5) 
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00 

~(~ \ Q) ~ L ~(Qn \ Q) ~ 
n=l 

00 

t I: m(Q } 
n=l n 

< £. 

Since c > 0 was arbitrary, it follows that ~(t \ Q) 

We now set 

Thus {3 is supported on Q, llgll 1 :s 11~11, ll(jll :s 211~11, and 

{3(Q) 0 

Also 

and so 

m({B*~>t}) 

~ m({B*g > t/2}) + m({B*(j > t/2}). 

Thus, by Proposition 4.1, 

* Since m(Q ) :s 8111111/t, it follows that 

* 

0, as claimed. 

(6) 

(7) 

m({B*Il > t}) ~ (2C 1+8)111lll/t + m({z E IC \ Q: (B*{3)(z) > t/2). (8) 

We now estimate B*/3 on 0::: \ Q. We first enumerate {gt (!J.) as 

{Q 1 ,Q2 , ... }, and for each j, we denote the centre of the square Qj by 

wj. The fact that ~t(M) may be finite will not cause any difficulty in the 

following. 

Take c > 0, and z E 0::: \ Q. Then 

(B (3) ( z) 
c 

1 I d(3(w) 
2 

(w-z) 
lw-zl2:c 

L ! (9) 

j 

To estimate I (B (3) (z) I, we proceed with a slight modification of the 
c 
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argument on pages 43, 44 of [11]. For each we consider separately the 

two cases: 

(a) Qj n A(z,e) * ¢; 

(b) Qj ~ t 'A(z,e). 

* In case (a), since z e t ' Q , we have diam(Q.) s 2 dist(z,Q.) < 2e. 
J J 

Thus 

Thus 

Qj 'A(z,e) ~ A(z,3e) 'A(z,e). 

In case (b), we have Qj = Qj 'A(z,e). 

It now follows from (9) that 

ICB /3Hzll e 

s ~E 
j 

s ~E 
j 

I df3(w) 2 I + 
1 I dl/31(;) -

(w-z) Tr 
jw-zj 

Qj A( z, 3e hAC z, e) 

I df3(w) 2 1 
+ 

(w-z) Tre 
Qj 

I (Bef3)(z) I s ~ L 
j 

2 
I /31 C AC z. 3d l . 

I df3(w) 2 I + 9(Mf3)(z). 
(w-z) 

Qj 

We now take the supremum over e to obtain 

We set 

I CB.f3)(z) I s ~ L 
j 

I df3(w) 
2 

(w-z) 
Qj 

+ 9(Mf3)(z). ( 10) 
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* f(z) I d{3(w) 
2 

(w-z) 
Qj 

(zeiC\Q). 

f(z) 

0 for each j, we obtain 

1 

(w .-z) 2 
J 

} d{3(w) I * (z E IC \ Q ). 

We now estimate the size of this integrand for each j. Clearly 

lw-zl "' lw.-zl/2 
J 

1 1 

(w-z) 2 (w.-zl 2 
J 

16 lw-w .I 
J 

:5 

* (w e Qj' z E IC \ Qj ) . 

lw-w .I { 2 } sup ---
J !';eQ . I !';-z I 3 

J 

This gives us the estimate 

I lw-w .I 
f(z) :s 1 ~ L -1 w-.--~"'----:13,- dlf31 (w) 

j ~ J 
L.!j 

* (zeiC\Q). 

From (10) we have 

~f 

m({z e IC \ Q: (B*(3)(z) > t/2}) 

* :S m( {z E .IC \ Q : f(z) > t/4}) + m( {9(Mf3) > t/4}) 

:s f [ Jf~z) dm(z) + 162 111-!11 J , 
IC\Q 
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by Proposition 4.4, since 11{311 :s 2llf..lll. But 

Thus 

:s 1: ~ I 
J Q. 

J 

:s 1: ~ I 
J Q. 

J 

32 ~ I 
J Q. 

J 

I lw-w.l 
----'J"'--=_ dm ( z) d I (31 ( w) 

lw .-zl 3 
J 

I lw-w.l 
------'J"'--=_ dm ( z ) d I 131 ( w) 

lw.-zl 3 
J 

I z-w. I ~diam(Q .) 
J J 

lw-w.l 
------'J"-- d I 131 C w l 
diam(Q.) 

J 

* 

:s 1611 {311 :s 32-ll·f..lll . 

m( {z e IC \ Q : (B./3) (z) > t/2}) :s 776llf..lll/t . 

To conclude the proof, we combine (8) and (11) to obtain 

m({B*{3 > t}) :s (2C1+784)IIf..lll/t. 

(11) 

The general result is now an easy consequence of the above preliminary 

results. 

4.7 THEOREM There is a constant c3 > 0 such that 

(f..L e .M(IC)). 
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Proof This follows from the previous result, and Proposition 4.1, on 

applying the Lebesgue and Jordan decomposition theorems. 

We conclude this section with a proof that the Beurling transform maps 

M(IC l into 

4.8 THEOREM Let ~ e M(IC). Then the limit in (2) exists a.e. (m), and 

the Beurling transform maps M(IC) continuously into LZ(IC,dm). 

Proof By the Lebesgue decomposition theorem, ~ = ~ + fdm for some ~ ~ m 

and 1 
f e L (IC,dm). 

For each v e M(IC), and for each we IC with (B.v)(w) < oo, we set 

Ev(w) lim sup Re(B v)(w) - lim inf Re(B v)(w) +lim sup Im(B v)(w) 
c~+ c c~+ c c~+ c 

- lim inf Im(B v) (w). 
c 

Clearly 0 ~ (Ev) (w) ~ 4(B.v) (w) a. e. (m). 

We shall show that (E~)(w) = 0 a. e. (m). By Proposition 4. 1, E~ E~ 

a.e. (m), so we shall work with ~. 

Set 

!! = { z e IC: lim 1 I~I(A(z,r)) = 0 }• 
r~+ nr 2 

'!! 
c 

{w e IC: (E~) (w) ~ d (e > 0), 

By Proposition 4.5, m(IC \ !f) = 0. Take z e !!, and c > 0. We shall 

show that '!lc has full area density at z. Given 1) > 0, there exists 

o > 0 such that 

1 
nr 2 1~1(~(z,r)) < C1J (0 < r < o). 

Take r e (O,o), and set a= x~(z,r) d~. Then 
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(Ea-J ( w) 

a.e. (m) on 8(z,r). Thus 

m( {w E Mz, r): (Ea-)(w) > d) :s m( {B*oc > e/4}) 

and so 

--1--m(~ ~ ~(z,r)) ~ 1 - 4C3~ 2 e 
n:r 

This shows that ~8 has full area density at z. 

(r < oL 

Thus for each c > 0, ~c has full area density at a.e. (m) point of 

IC, and hence m(IC \ ~ ) 
8 

0. It follows that (Eo·)(w) = 0 a.e. (m), as 

claimed. 

The continuity of the Beurling transform is now a trivial consequence 

of Theorem 4.7. 

5. DERIVATIONS FROM R(X) 

With the theory developed in sections 3 and 4, we can now work towards 

a proof of Theorem 2. 13. 

In the following, let X be a compact plane set for which 

R(X) *- C(X), and let 11 be a non-zero element of Ji(IC) supported on X, 

and annihilating R(X). It is standard that 11 = 0 off X, and that it is 

not true that 11 = 0 a.e. (m) on IC. Thus 11IX is a non-zero element of 

1 L*(X,dm). The statement of equality in the next lemma is due to O'Farrell: 

it can be found on page 379 of [9], where the Beurling transform of a 

distribution with compact support is defined as a distribution. We shall 

supply a proof of the equality of the corresponding elements of 

5.1 LEMMA Let f E R0 (X). Then 
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f' (z) lJ.(z) B{flJ.) (z) - f(z) (BlJ.) (z), 

and 
A 

lf'(z) lJ.(z)l ~ B*(flJ.)(z) + lf(z)I(B*lJ.)(z) 

a. e. (m) on X. 

Proof We set 

~ = {z e X ~(z) < oo}. 

By the comment immediately following the definition of lJ., 

Ill I ({z}) = 0 ( z e ~). 

Let z 0 e ~. Then there exists g e R0(X) with 

g(w) 
f(w)- f(z 0)- (w-z 0 )f'(z 0 ) 

(w-z ) 2 
0 

We know that both g and f'(z0)/(w-z0) 
1 belong to L (X,dllJ-1), that 

and that 

and that 

~ J g(w) dlJ.(W) 0, 

X 

I 
f'(z) 

~ ---0- dlJ.(w) 
w-z 

0 
X 

0, it follows that 



lim 
£~+ 
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1 I f(w)-f(: 0) 

(w-z 0 ) 

X\il(z , £) 

n: 

0 

dp.(w) 

lim ( B (ffl)(Z) - f(z) (B fl)(Z )), 
£ 0 0 8 0 

because IMJ({z0}) = 0 and p. is supported on X. 
A 

It is now clear that f' (z) 11-Czl = B(f~L) (z) - f(z) (Bp.) (z) a. e. (m) on 

!!', and that 

If' (z) f.L(Z) I :s B*(fll)(z) + !f(z) I (B..,I-!)(z) (z E !!'). 

Since m(X \ !!') 0, the result now follows. 

5.2 THEOREM Let X be a compact plane set such that R(X) * C(X), let fl 

be a non-zero element of M(~) supported on X such that ll l R(X), and 

set h = p.IX. Then the map 

1 
D: f H f'. h, R0 (X) --7 L* (X, dm) 

is a non-zero, continuous linear operator, and the extension D of D to 

R(X) is a non-zero, continuous derivation, given by 

D(f) B(f;.t) IX - f. (Bp.) IX (feR(X)). 

Proof The continuity of the 1 inear operator D, and the fact that D 

extends D are immediate consequences of Lemma 5. 1, and Theorems 4.7, 4.8. 

The derivation identity is obvious. Since D(Z) = h, a non-zero element of 

L;(X,dm), the result is proved. 

Note that the continuity of D follows from Theorem 4.7, and does not 
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need Theorem 4.8. 

Theorem 2.13 now follows, because if X is a compact plane set with 

R(X) ~ C(X), then Theorem 5.2 provides a non-zero continuous derivation from 

R(X) into a locally bounded (F)~R(X)-module. 

We shall conclude with another condition that R(X) satisfies whenever 

it is non-trivial. 

5.3 THEOREM Let X be a compact plane set such that R(X) ~ C(X). Then 

there exists C > 0 with 

inf{lf'(z)l:z e X} ~ C If IX (12) 

Proof Let ~ and D be as in 5.2. Then D(f) = f' .D(Z) (f e Ro(X». 

of 

Set Q 

1 
L*(X,dm). 

{D(r): f e Ro(X), If IX ~ 1}. Clearly Q is a bounded subset 

Suppose, for a contradiction, that (12) is not satisfied for 

any C > O. Let (fn ) be a sequence in Ro(XJ satisfying 

and set 

Thus D(Z) 

inf{lf '(z)l:z e X} ~ n 
n 

(nelN), 

l/f ' (n e IN). 
n 

D(Z) 

Then gn ~ 0 uniformly on X, and so 

g .D(f ) ~ 0 as n ~ 00. 
n n 

0, a contradiction of 5.2. 

Note in particular that if X is Wermer's Swiss cheese [12] for which 

R(X) has no non-zero continuous point derivations, then condition (12) 

still holds. 

I should 1 ike to thank A. G. 0' Farrell for helpful discussions and 

guidance on Calder6n-Zygmund theory. 
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