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For example, J(IR,7l) is the set of Laurent series of the form 

00 

I a xn, where 
n 

n=n 
0 

n0 E 7l and (an) c 1R . This algebra is also denoted by IR( (X)) ; it is the quotient field 

of IR[[X]] , the algebra of formal power series in one indeterminate over IR . 

Part (i) of the following theorem is a slight extension of a classical result of 

Hahn ( [17, page 137]), and part (ii) is [1, 3.2]. A real field K is real-closed if its 

complexification K([=T) is algebraically closed. 

6.10. PROPOSITION. Let G be a totally ordered group. 

(i) J(IR,G) and J(l)(IR,G) are totally ordered real fields, with value 

gmups G. 

(ii) If G is a divisible group, then J(IR,G) and J(l)(IR,G) are real-closed 

fields. 

6.11. DEFINITION. Let (K,:s;) be an ordered field. Then K is : 

(i) an a:c field if (K,:s:) is an a1-set; 

(ii) a !31-field if K = U Kv, where {K) is an increasing chain of 

acreal-subfields; 

(iii) a (semi)-'f/1-field if (K,:s:) is a (semi)-1]1-set. 

The following result is a small variation of results in [18]. For details, see 

[8,§ 3.5], which is available on request. 

6.12. PROPOSITION. Let n be a compact space, and let P be a non-maximal, 

prime ideal in C(n) . Then: 

(i) KP is a real-closed field; 

(ii) KP is a semi-rye field; 

(iii) KP is an r; 1-field if and only if K/\ {0} does not contain a strictly 

decreasing, coinitial sequence. 
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In particular, each ultrapower 'J{K,/11 is a real-closed, 171-field. Thus, since we 

hope eventually to have examples of fields K of the form KP with ~K I = ~2 and 

IrK I = ~ 1 , we should restrict ourselves to real-closed, 171-fields. 

6.13. THEOREM. 

(i) 

(ii) 

~(l)(IR,G) is a totally ordered, real-closed, fJc111-jield of cardinality c. 

~1 
~(IR, G) is a totally ordered, 1·eal- closed, 711- field of cardinality 2 

Proof. All of this theorem follows easily from earlier results, save perhaps for the 

~1 ~1 
claim that I K I = 2 , where K = ~(IR,G) : we just prove that I K I ?: 2 

For u < w1 , {ja is the sequence in Q with 1 in the O"th position and 0 

elsewhere. Then (ocr : O" < w1) is a strictly decreasing sequence in Q . Now set 

/Ja = Xs - X5 ( fJ < w1) · 
1 <1+1 

Then S = {JJa : u < w1} is a strictly increasing sequence of length w1 in G . Each 

s ~o Nl 
f E IR5 belongs to K , and so I K I ?: IIR I = ( 2 ) = 2 

We have now obtained the example requested at the end of §5. 

6.14. EXAMPLE. Set K = ~(IR,G) = ~(IR, ~(l)(IR,Q)) . Then K is a totally ordered, 

Nl ~o 
real-closed, 11cfield with I K I = 2 and IrK I = 2 

Of course, with GCH , I K I = ~2 and IrK I = i-< 1 . 

Let me conclude this section by discussing the field ~(l)(IR,G) . A strengthened 

form of Theorem 5.5 holds; this important theorem was given by Esterle in [15], and a 

detailed proof is given in [8]. 
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6.15. THEOREM. 

(i) The set of infinitesimals in the field J(l)(!R,G) is normable. 

(ii) Let K be any real- closed, totally ordered, (31- field. Then there is an 

isotonic isomorphism from K into J(l)(IR,G) , and so K* is normable. 

To deduce Theorem 5.5 from this theorem, we proceed as follows. Let K be 

an ordered field with I K I = ~'\ . Then K has a real-closure : there is a real-closed, 

ordered field L and an isotonic embedding of K into L such that each element 

a E L is a root of some p E K[X] . Thus I L I = N1 . This implies fairly easily that L 

is a (31-field. By 6.15(ii) , L* is normable. The importance of Esterle's theorem 6.15 

is that it holds in the theory ZFC, whereas 5.5 is vacuous unless CH holds. 

The following well-known result is rather straightforward (it is essentially [9, 

1.13]). 

Let p E ,mi\IN . Then we set 

Ap = C((JIN)/Jp, 

and we write Kp for the quotient field of Ap. Thus Kp has the form 'Rw/li, where 

l1 is a free ultrafilter on w . 

6.16. PROPOSITION. Suppose that Ap is normable for some p E (31N\IN . Then there 

is a discontinuous homomorphism from C(n) into some Banach algebra for each 

infinite, compact space n . 

Thus, combining 6.15 and 6.16, we obtain the following result. 

6.17. THEOREM. Assume that there is a free ultrafilter l1 on w such that IRw/li is 

a (31- field. Then there is a discontinuous homomorphism from C( n) into some 

Banach algebra for each infinite, compact space ft . 



86 

With CH, IIRw/lll = ~1 for each ultrafilter ll on w, and so IRw/ll is a 

!31-field. Thus, with CH, there is discontinuous homomorphism from C(n) for each 

infinite, compact space n. But can we have IRw/ll as a t3cfield without CH being 

true? In this direction, we have a result of Dow ([111): if CH be false, then there 

exists a free ultrafilter ll on w such that IRw/ll is not a }11-field. Also, under the 

hypothesis MA + -.CH , there is no free ultrafilter ll on w such that IRw /ll is a 

}11-field ([9, Corollary 6.28]). (Here MA is Martin's Axiom: see [9, Chapter 5].) 

It is certainly not the case that it is a theorem of .ZFC that there is a 

discontinuous homomorphism from C(n) for each infinite compact space n . Indeed 

it is a theorem of Woodin from 1978 that there is a model of ZFC + MA (in which 

CH is necessarily false) such that every homomorphism from C(n) into a Banach 

algebra is automatically continuous for each compact space n . This theorem is the 

main result of the book [9]; the notion of a model of ZFC , and the interpretation of 

the existence of models in terms of the independence of certain results, is fully 

explained in that book. Thus we have known for 10 years that the existence of 

discontinuous homomorphisms from the algebras C(n) is independent of the theory 

ZFC. 

Nevertheless, it has been an important open question for some time whether or 

not CH is a necessary hypothesis for the existence of discontinuous homomorphisms 

from the algebras C(n) . I am grateful to Hugh Woodin for his permission to 

announce the following recent theorem of his at this meeting. 

6.18. THEOREM. (Woodin) There exists a model of ZFC in which: 

(i) CH is false; 

(ii) IRw/ll is a }11-field for some free ultrafilter ll on w; 

(iii) there is an isotonic isomorphism from IRw/ll into ~( 1 )(1R,G) . 

By combining Woodin's theorem 6.18 with Esterle's theorem 6.15, we obtain 

the following theorem. 
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6.19. THEOREM. There is a model of ZFC in which CH is false and in which 

there is a discontinuous homomorphism from C(n) into a Banach algebra for each 

infinite, compact space n . 

Thus the question of existence of discontinuous homomorphisms from the 

algebras C(U) is also independent of the theory ZFC + ·CH. Whether or not there 

is a model of ZFC + MA + ·CH in which these discontinuous homomorphisms exist 

is an interesting, and probably very deep, open problem; you will see that to find such 

homomorphisms would require quite new methods. 

7. EXPONENTIATION ON ORDERED FIELDS 

Let P be a non-maximal, prime ideal in an algebra C(U) . I said at the end of 

§5 that the question of the normability of the algebra KP * = Mp/P was resolved in 

every case save (with GCH) where I KP I = t{2 and IrK I = t{1 . In §6, I exhibited a 
p 

totally ordered, real-closed, 771-field K such that I K I = t{2 and IrK I = t{1 . 

However, we do not know that this field has the form KP for some P . In this 

section, I shall show that in fact the field K is not of the form KP : to do this, of 

course, we shall describe a property that all fields KP possess, but which K does not 

have. 

7.1. DEFINITION. Let K be an ordered field. A strong interval of K+ is a subset 

I of K+ such that 

(i) if a E I and b E K with 0 :::; b :::; a , then b E I ; 

(ii) if a E I , then 2a E I ; 

(iii) lEI. 

It follows that, if I is a strong interval in K+ , then K#+ c I , and that, if 

a, b E I, then a + b E I . 
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7.2. DEFINITION. Let K be an ordered field, and let I be a strong interval of 

K+ . Then an exponentiation on I is a map exp: I -1 K such that: 

(i) exp(a +b)= (expa)(exp b) (a,b E I); 

(ii) expO= 1, expl = el; 

(iii) exp a < exp b whenever a, b E I with a < b ; 

(iv) foreach cEK with c2:l,thereexists aEI with expa=c. 

It follows from (i)- (iii) that exp(al) = eal (a E IR), that 

exp(K#) c K#+\K* , and that exp(I\K#) c K#+\K# . The main effect of condition 

(iv) is to ensure that exp(I\K#) = K+\K# and that I :f K#+ . 

A function F on IR+ is locally Lipschitz if, for each k E IN , there exists a > 0 

such that 

is bounded. 

{ IF(s)-F(t)l: s,t E [O,k], s :f t] 
ls-t I a 

Now let n be a compact space, and let P be a non-maximal, prime ideal in 

C(n) . If f,g E C(n)+ with f-g E P and if F is locally Lipschitz, then 

Fof- Fog E P. For take n E IN and ME IR+ with IF(s)- F(t)l :S Mls-tll/n for 

s,t E f(n) u g(n) . Then 

I (Fof)(x) - (Fog)(x) In :S Mn I f(x) - g(x) I (x E n) ' 

and so IFof- Fogln :S Mnlf- gl in C(!l). Since P is absolutely convex, 

Fof- Fog E P . Thus, if F is locally Lipschitz, we can define F on AP + as follows: 

for a E AP +,take f E C(nt with 1rp(f) =a, and set F(a) = 7rp(Fof). Then F{a) 

is well defined. 

For example, take F(t) = et (t E IR+) . Then F is locally Lipschitz, and it is 

easily checked that the map a H F(a) = ea, AP + -1 AP , satisfies (i) - (iii) of Definition 

7.2. We now wish to extend the domain of F so that (iv) also holds. We fix a 

particular function G , namely 
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lexp [ -!] 
G(t) = 

0 (t = 0) 0 

Then G is locally Lipschitz, and so G(a) is defined for a E AP + . We set 

JG ={a E A/: G(a) = 0}, 

IG ={a E KP +\(0): a-1 ~ JG} U {0} 

= {b-1 : bE Kp+\JG} U {0}. 

(The prime ideal P is a z-ideal if f E P whenever f E C(fl) and 

:£1(0) = g-1(0) for some g E P. If P is a z-ideal, then JG = {0} and IG = K/, 

and this is the case to bear in mind. However, there are prime ideals in C(fl) which 

are not z-ideals.) 

It is easy to check that IG is a strong interval of K+ . 

7.3. DEFINITION. Let G and IG be as above. Set 

I claim that exp : a H exp a is an exponentiation on IG . 

Let me check a special case of 7.2(i). Tal(e a,b E IG \Ap + . We must verify 

that 

(14) 

Take f,g E C(nt with 1rp(f) = a-1 and 1rp(g) = b-1 , set X= :£1(0) U g-1(0), and 

set 
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1 
f(x)g(x} (x E !1\X) , 

f(x) + g(x) 
h(x) = 

0 (x E X) . 

Then hE C(n)+ 0 Set c = ?TP(h). Since (f + g)h = fg in C(fl), (a- 1 + b- 1)c = a-1b -l 

in AP,andso (a+b)c=l and c=(a+br1 . Since 

Goh = (Gaf)(Gog), and so (14) follows. 

Other cases of 7.2(i) , and 7.2(ii) and (iii) are trivial or are checked similarly. 

We finally verify that 7.2(iv) holds. Take c E KP with c ~ 1. If c E AP, 

then there exists a E AP with ea = c, and so we may suppose that c E KP +\Ap. Set 

b=c-1 EKP*+\{O}:werequire aEA/\Ja with G(a)=b.Take gEC(nt with 

1rp(g) = b ; we may suppose that I g I fl < 1 0 Let H : [0,1) -1IR+ be such that 

(GaH)(t) = t (t E [0,1)). Then Hag E C(fl): set a= ?TP(Hog). (We cannot say that 

a= H(b) in AP because H is not a locally Liptschitz function.) Then 

G(a) = 1rp( Go Hog) = ?TP(g) = b , as required. 

We have obtained the following result. 

7.4. THEOREM. Let n be a compact space, and let P be a non-maximal, prime 

ideal in C(fl) . Then there is an exponentiation on a strong interval of KP + . If P is 

a z-ideal, there is an exponentiation on K + itself. p 

On the other hand we have the following theorem. The proof appeals to the 

Continuum Hypothesis, but in fact the result holds as a theorem of ZFC ( [10]). 

7.5. THEOREM. It is not the case that there is an exponentiation on a strong interval 

of J(IR,G) . 
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Proof. (CH) Set K = J(IR,G). To obtain a contradiction, suppose that I is a strong 

interval of K+ and that exp : I -+ K is an exponentiation on I . Then there exists 

f0 E I\K#. Set y0 =- v(f0) and aP = v(y0), so that y0 E G+\{0} and a0 E Q. 
0 Take T < w1 such that a7 = 0 . 

We define a map + a H xo. , Q -1 G . For each p < w1 , fP is the sequence with 

{
1 ( 0" :::; T + p) , 

fp(u) = 
0 ( r + p < u < w1) . 

Then, for each p < w1 , fP E Q and a0 -< fP , and { fP : p < w1} is a well-ordered 

subset of Q. 

For a= ( a7 ) E Q , define x : Q-+ IR by setting 
0. 

xo.(fp) = aP for p < w1 , xo.((J) = 0 otherwise. 

Then supp x is a countable, well ordered subset of Q , and so x E G+ . The map 
0. 0. 

a H xo. , ( Q,~) -+ ( G,:::;) , is isotonic. Since y > 0 in G and v(xo.) ~ a0 = v(y0) , we 

have xo. < y0 in G for each a E Q . 

Now define t : a H xo.- y0 , Q-+ G . Then t is an isotonic map with 

t(Q) c G-\{0}. We identify Q with t(Q), and then we can regard J(IR,Q) as a 

subgroup of K. For each f E J(IR,Qt\{0}, we have v(f) > v(f0), and so f < f0 in 

K . By the definition of a strong interval, f E I , and so J(IR,Q)+ c I and 

J(IR,Q) n K# = {0} . 

Finally we define a map 

1/J: f H- v(expf) , J(IR,Q)+-+ G. 

I claim that 1/J is an injection. For take f,g E J(IR,Q)+ with f < g , say g = f + h , 

where hE I\K#. Since expg = (expf)(exph), we have 1/J(g) = 1/J(f) + 1/J(h) . Since 

exph E exp(I\K#) c K+\K#, v(exph) < 0 and 1/J(h) > 0 in G. Thus 1/J(f) < 1/J(g), 

and so 1/J is an injection. 

However Q contains a well-ordered subset of cardinality ~ 1 , and so 

~1 ~0 
I J(IR,Q) I 2: 2 , whereas I G I = 2 by 6.8. With CH (but not as a theorem of 

~1 ~0 
ZFC!) , 2 > 2 , and so we have reached a contradiction. 
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Thus, from 7.4 and 7.5 , we obtain the following result, proved in ZFC + CH, 

but true as a theorem of ZFC . 

7.6. THEOREM. The real-closed, T)1-field ;y(IR,G) is not of the form KP for any 

prime ideal P in an algebra C(O) . 

8. A SECOND EXAMPLE 

So far we have not found a field K of the form KP such that I K I = ~2 and 

IrK I = l\ . In this final section, I shall give an example of such a field which is an 

ultrapower, and so, in particular, is a field of the form KP. First we have a result 

which enables us to calculate some cardinalities. 

8.1. THEOREM. Let "' be a cardinal, let ?1 be a free ultrafilter on K. , and set 

K = IR"' /?1 . Then 

Proof. Certainly w(K) 2: IrK I . 

We show that w(K) :::; I Q"'/l!l by showing that QK'/ll is order-dense in K . 

Take [f], [g] E K with [f] < [g], and set S = {u < K.: f(cr) < g(u)}. Then S E ?1. 

For each (J E S, choose h(cr) E Q n (f(a), g((J)). Then hE QK./21 and [f] < [h] < [g] 

in K . Thus QK./U is order-dense in K . 

Finally we show that I I ::::: IrK I by giving an injection '¢ : Qh: /21---) r K . 

Let t : Q __, IN be a fixed injection, and let f0 be a fixed infinitely large element of K . 

For f E IRK , set 
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and set 1,b( [f]) = v K( [ 8~) , where v K is the archimedean valuation on K . Then 

¢( [f]) is well-defined on r K . Take [f], [g] E K with [f] ~ [g] , and set 

S = {O" < K: t(f(a-)) < t(g(O"))} and T ={a-< K: t(f/a)) > t (g(O"))}. Then S UTE l! 

because t is an injection, and so either S E l! or T E 11, say S E 11. For each O" E S , 

because l(f(a-)- g(O")) 2:1, and so [8f] > n[8g] for each n E IN. Thus ¢(f)< ¢(g), 

and ¢ is an injection, as required. 

8.2. DEFINITION. Let "' be a cardinal, and let l! be an ultrafilter on K . Then l! 

is uniform if IS I = K for each S E l! . 

Thus, if 11 is a uniform ultrafilter on w1 , the complement of every countable 

subset of w1 is in ll . The following proposition is a special case of a standard result. 

w 
8.3. PROPOSITION. Lei 11 be a uniform ultrafilter on w1 . Then IIR 1 /ZII 2: ~2 . 

Proof. To obtain a contradiction, suppose that { [f ~] : ~ < w1} is an enumeration of 

wl 
IR /Z!. For each ~ < w1 , {f71(~): 71 < 0 is a countable subset of fR, and so there 

exists f( ~) E fR with f( ~) ~ £71( ~) for each 'fJ < ~ . 

For each 'f/ < w1 , we have 

{ ~ < w1 : ~ < 'f/} c { ~ < w1 : f( ()f £17( ~)} , 

and the set on the left has a countable complement. Hence the set on the right 

belongs to l1, and so [f] ~ [fJ . Thus [~ ¢ {[fJ : 17 < w1} , the required contradiction. 
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w 
8.4. THEOREM. ( GCH) Let l1 be a uniform ultrafilter on w1 , and set K = IR 1 /ll. 

Then 

w ~ 
Proof. This follows from 8.1 and 8.3, noting that I K I :<::: IIR 1 1 = 2 1 = ~2 , with 

GCH. 

Thus we would achieve an ultrapower of the form we are considering if we 

w 
could show that there is a uniform ultrafilter lJ on w1 such that I Q 1 /lil = ~ 1 . 

It has been proved by Hugh Woodin that such an ultrafilter exists (using deep 

results that appear in the paper [16], and which in turn are based on earlier results of 

Woodin) but only under a certain "large cardinal'' axiom. A large cardinal axiom is a 

statement that a cardinal with certain properties exists; for example, analysts are 

familiar with the axiom that measurable cardinals exist (see [18, Chapter 12}). The 

large cardinal required for Woodin's theorem is a "huge" cardinal, although he allowed 

himself the remark that "a super-compact cardinal would probably suffice". These 

large cardinal axioms are known to be independent of the theory ZFC + GCH. Thus 

we finally obtain the following result. The theorem is in fact a "relative consistency" 

result, as before (see [9]). 

8.5. THEOREM. Assume that the theory 11 ZFC + GCH + 'there is a huge cardinal'" 

is consistent. Then the theory "ZFC + GCH + 'there is a uniform ultrafilter l1 on 

w1 such that 

w 
where K = fR 1 /l11 11 is also consistent. 

On the other hand, we also know that we cannot prove in ZFC + GCH that 

there is a uniform ultrafilter ll on w1 with the properties stated in the theorem: the 
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consistency of such a theory implies the consistency of a theory with some large 

cardinal axiom. 

Also, in this talk I have not given a construction in ZFC + GCH of a 

non-maximal, prime ideal P in an algebra C(n) such that I KP I = N2 , and 

IrK I = N1 . At the time of writing I do not have such a construction, but one will 
p 

probably emerge soon. 
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