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Ho. Functional Calculus of Second Order Elliptic
Partial Differential Operators on L? Spaces

Xuan Thinh Duong

Abstract. Let L be a strongly elliptic partial differential operator of second order, with real coefficients
on LP(Q), 1 <p <o, with either Dirichlet, or Neumann, or "oblique"” boundary conditions. Assume that Q is

an open, bounded domain with C2 boundary. By adding a constant, if necessary, we then establish an He,

functional calculus which associates an operator m(L) to each bounded holomorphic function m so that

Im@i < Mlimll,

where M isa constant independent of m.

Under suitable asumptions on L, we can also obtain a similar result in the case of Dirichlet boundary

conditions where £ is a non-smooth domain.
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1. Introduction and Notation
We denote the sectors
S¢ = {ze Clz=0orlargz! <06}
Se={zeClz#0orlargzl<8)

A linear operator Lis of type w in a Banach space X if L is closed, densely defined,
o(L) is a subset of SguUu{ o=} and for each 6 € (@ ,x], there exists Cg <eo such that

Il (L-zI) 11 € Cg I z 1 for allzeS::, 2# 0.

For O0<pu <=, denote
H“,(Sﬁ) - f:s:’L — C| fanalytic and Il fll..<eo }
where Il fli.=sup { 1f@)llze 33 Y,

clzls }
1+z|2s

w(S ) ={ feH,(S )| 3s50,c20 such that | £(z)I <

Let T be the contour defined by
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- {-t exp(i@) for -ee< t <0

t exp(i6) for 0 <t <+eo
Assume that L is of type @, ® <8 <x. We then define the bounded linear operator

w(l) by

Y= Qaiyt [y iy@dz v e WS ).
r
If Lis 1-1 with dense range, then

m(L) = (y(L))! my)(L)
where W(z) =z (1+2)2and m € He(S )

Details of these definitions can be found in [ 10 ].

We consider the following properties:

(D The boundedness of the purely imaginary powers:
LV y€ R }is a continuous group and
NLY Il <Cy exp(ulyl) wherep and Cy are positive constants,

(II) The H_, functional calculus
Im@I€ climl,  for me H“(Ss)’ L>o ,

(IIT) The quadratic estimate when X=LP:

- dt 12
I f WO = 15, < Kiflly for some ye (S .
[}

It is known that
(i) In Hilbert spaces, (1) 1I) < (II).
(i) (I) = (@) but the reverse is not true in Banach spaces.

(iii) (I) = (II) for suitable wye ‘I‘(Sg) and (III) = (II) for me Hw(Sﬁ) with suitable

conditions on |
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The aim of this paper is to show that property (II), hence property (IIl), is satisfied by
second order elliptic partial differential operators in LP spaces, 1 < p <eo, under suitable

assumptions on the smoothness of the coefficients and of the boundaries of domains.
2. Transference Methods and Multiplier Theorems.

The main technique that we employed in this paper to obtain He functional calculus is
transference method. We define an operator A to be a subpositive contraction if there exists
a positive contraction P such that P+Re{ei®A} are positivity preserving for all q. The
following theorem appeared in [2]:

THEOREM 1: Let X be a measure space and assume that
m(L)= el ¢(t) dt
0

is a linear operator from LP(X) into LP(X), 1< p < o, where ¢ is integrable with compact
support and e is a subpositive contraction semigroup, then

Hm@) Il < W= Il
where lig« Il is the norm of the convolution operator f— ¢«f on LP(R).

We now prove a multiplier theorem:

THEOREM 2: Let X be a measure space and L an operator of type @, © <g, from

LPX) into LP(X), 1<p <oo. Assume that L generates a subpositive contraction semigroup
eL, Then there exists a constant M >0 such that
Im@)I < Miimll_

for all meH.,o(Sg), h>y.

Proof:Let me ‘I’l(S:), i >—;—, where

clzls

0 0
¥1(S | )={geHu(S Y| 1g@I S Lo s> 1)

Let ¢ be defined by m(it)=§(t), te R, where § denotes the Fourier transform of ¢ on [R.
Then ¢ has its support included in [0, ), and ¢ belongs to L2(R).
Let vi(t)=max {11, 0}, then %) 0 and
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+ o0
f 0.0 d¢ = 2m.
We fix an arbitrary constanst ¢o>0 and let L,=L + ¢, Then
hetlo n =it ™y < et

Consider

my(L,)u =d[<e“L° W(Vid)(D) dt

= J(C-mu)(vk-a)(t) dt  where a(f)= ot o(t)
0

and

co Py

m(LJu =J(e"L° w)o(t) dt =Oj(e"Lu) ot)-dt
It is not difficult to check that the above integrals are absolutely convergent. It follows

from theorem 1 that
Tm (LI < 1 (vieo)s I

On the other hand

+ oo + oo

I(vi.0)% u "p =l j 51; { J (L) eit€ dC}ou(t) u(x-t) dt ||p

+ oo + oo
< 2;{ [P dc) 1 [ o eitx eLod ugx- dt 1

S WXy (@ Xgu)lly  where Xg(h)= itk

< laxlillualp

Therefore
Tm (L < Has il

We also have

+ oo

my(Low - m(Lulp =1 JeetT u) (1- vid®e (1) dt llp
0
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+ oo
< JreTuiy 1(1- v@ai dt
0

k, "
< lullp (f glo@ide + fla(t)l dt)
0 k

It is clear that the right hand side — 0 as k — oo. Hence
ITm(L)I < o .

From the definitionsof o and ¢,we have
(1) = m( co +it),

and it follows from Mikhlin's multiplier theorem that
Tos I < Milmll,,

Hence
lm(L)ll < Milmll,,

Using Fubini's theorem, it can be shown that the definition of the operator m (L,) as

above is consistent with the usual definition of functional calculus, e.g. that of section 1.

We also note that ‘I‘I(S:l) is dense in H”(S:l) in the sense of uniform convergence on

compact subsets in the complex plane which do not contain 0. Thus
lm (L)l € Miimll

for all neHa(SY) 1 > 5
W,
Since the constant M is independent of ¢y, we let ¢, — O and obtain the estimate
Im(L)I £ Milmll

for all meHw(SS) n > ch"

We can always employ complex interpolation to improve the condition | >12—t. For
example, with the additional assumption that L is positive self -adjoint in L2, we have the

following estimate which appereared in [4]:
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THEOREM 3 : Suppose m is a bounded holomorphic function in the sector S 3, where

O<p < . Then the following estimate holds, provided that I; Lk
b

Im@ns c(E 1L 1)52)my
x P 2 ”

where C is an absolute constant, 1 <p <ee.

3. Hoe Functional Calculus of Second Order Elliptic Partial Differential

Operators on C2 Domains.

Let © be an open, bounded subset of R™ The operator L is a second order strongly
elliptic operator in €, and B is a real boundary operator of order d (d=0 or d=1).We
shall also make the following assumptions :

The boundary 0Q of Q is of class C2
The operator L is in divergence form:
v 9,0
Lu=-— lglé"{—i( au axj u)
with ajj =aj C‘”(fl) and there exists y>0 such that
E an;(X)CxC; 2 quz

ij=1
for all xeQ and {eR"

B is either the identity operator (thus d=0) or

B Ilb 0
’ -igl tox

n
with bje COMQ), 1<i <, (then d=1) andz bjvi # 0 everywhere on 9Q (In other
i=1
words, 002 is nowhere characteristic for B ).
We define
D) = [u e W) | Bu 0 on Q}

where Wz’p(Q) {ue LP(Q) f=— au belong to LP(2) in distribution sense fori,j =1,...,n }
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THEOREM 4 :
(i) L generates a positivity -preserving contraction semigroup el on LP(Q),l <p<eo
(i) L has an H.. functional calculus as in theorem 2, i.e. there exists a constant M >
0 such that
FTm@)Il < Milmll_

0 w
for me H“(Su)’ K>3

Proof :

(ii) follows directly from (i) and theorem 2. For simplicity, we present the proof of (i)
where L is positive and self-adjoint. The general case of " oblique " boundary conditions can
be handled in the same way as in [9], chapter 2, inequality (2,3,1,11) with some
modifications for complex-valued functions.

Let ue CXQ) ,which is a dense set of D(L).

Let u' = (ui +&) P22 e LYQ), e>0 and %+§= 1. We have :
£

Qle

{Lu, u* ) = (alj u) (uu +6)@ D2 § dx
£

Gy
"'u‘M=

o]

(ui +&)P22 51 dx

lajax Bx L

Do, Do
‘™M= "T|M=

e
[
il

- ou_ - -
lalJ { (ui +5)®2/2 aBTu s Bu —(uu +&)P D2} dax

Note that —(uu +&) P2 - —(p -2) (uu +e)(p'4)/2(u 3t u ) We denote
lule42g 2L
Ixj

]

o +Bj

and |ul@425 g—uj = oj+Bj.

Let e 0 and it follows from the Lebesgue dominated convergence theorem that for

u*=(ui )P D2, we have

(Lu, u¥) = ‘{ 2 al] {(p- Dojoy+BiB+ i((p-1aB; 'ajﬁl)} dx
ij=1

Hence Re (Ly,u*)= | 2 aij{(p—l)ai(xj+BiB j} dx 20 from the ellipticity of L.
Q ij=1

Therefore, for A >0:

K@+ yu u®l = Re(Lu ,u) + 0 (v, u¥)
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2A{u, u*)=2l ullg
Thus

MiulR <1 J(@+A)) P2 G dx |
Q

< { [ienyup ax J P [ qui-1)adx } e
Q Q
- Pl
Il Hul P

Thus we obtain Allully < II(L+A)ullp. This inequality and the semi-Fredholm property
of L shows that L generates a contraction semigroup on LP(Q).

The positivity-preserving property of the semigroup follows from that of the resolvent

(L+a)! which is a consequence of maximum principle.See [12], chapter 2 for details of
various forms of maximum principle for second order elliptic partial differential operators.

Hence the theorem is proved.

We now extend a result of purely imaginary powers of operators in [6] to obtain He

functional calculus of elliptic operators which are not in divergence form. Let the operator T

be defined by

Ta= - % %(ag%u)-i— ﬁki%u +cu
=1 T X

L nk 0
u + izl laXiu +cu

where k;j and ¢ are real-valued functions and belong to L°°(Q2).With the same domain and

boundary conditions as for L, we have the following result :
THEOREM S : There exist constants ¢;, N, pg,(p, <), such that

Im(T+c) I € Nlimll

for all meHn(S,), 1 > I,
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Proof: That (T+c,) is of type w=u, for sufficiently large c, is well-known, e.g. [1].
Since we can always assume that 0 e p(T+c), there exists K >0 such that

I@LAD < K(1+1) 1 for & € p(T+c,).Denote A =(T+c,]) —L, we have:
I mL+A) u - mLyu lly < ||2—‘7 [ m)[L+A-LDtu - AT Tu] d Jip
Tl r

IN

L= [ mO)[L+A-1) T LABAS@LA ) 1u] di llp
2r1 r

for a fixed o, <e <1

Kliml uunpj m dr

IA

< Kjltmll IIuIIp

Hence Ilm(T+c) Il = Im(@L+A) Il € Nlimll,

Note that in the above estimate, we have employed the boundedness of the operator LA

and the momentum inequality.

Remark:
1) Under suitable boundary conditions so that L is positive self-adjoint in L%(Q) we
obtain an Heo functional calculus as that of theorem 3 with p > =« I—-—I

2) When the boundary condition is Dirichlet condition, we can reduce the smoothness of
the boundary 0Q to being CL1,

4. H.. functional calculus of elliptic operators on Lipschitz domains :

We first recall a well-known result which characterizes the generators of contraction
semigroups. Let E be a complex Banach space and let p: E — R* be a seminorm on E,
i.e. p(f+g) < p(H)+p(g) and p(Lf) <p(f) for all f,geE and e L. The subdifferential dp(f)
of p at f € E is defined by

dp(H) = {¢e E* | Re(f,g) < p(g) for all ge E and {f,0) = p(D)}
We assume in addition that p is continuous.Then it foliows from the Hahn-Banach

theorem that dp(f) is not empty for any feE.
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A linear operator L is called p-accretive if forall fe D(L), there exists e dp(f) such that
Re(Lf,0) = 0. Then it can be proved that an operator L is p-accretive if and only if
p((tL-1)) 2 p(f) forall feD(L)and t>0.

A linear operator L is called accretive if it is p-accretive for the norm p(f) =1l fll, fe E.

THEOREM 6 (Lumer-Phillips): Let L be a densely defined operator on a complex Banach
space E. The following assertions are equivalent :

()L is closable and the closure of L generates a contraction semigroup e,

(ii) L is accretive and (L-AI) has dense range forsome A <0,

Proof of this theorem can be found in [11].

We now assume £ to be an open bounded subset of IR" with Lipschitz boundary 2Q. Let
a3, 0 ‘
Lu == lgl'a'z( ai_] gju)
with a =aj; ¢ CLQ) N C(Q),0<a<1, and there existsy>0 such that

230G 2 g

ij=1
for all xe$ and LeR™
Let DIL) = { ue CHQ) N C@)Iu=0 onoQ and LuelP(Q) }

Following is the main result of this section

THEOREM 7: The operator L is closable, the closure L of L generates a positivity-
preserving contraction semigroup in LP(Q).Thus L has an H., functional calculus:
Im@ I < Mliimll

[t}
for all meHe(S ) with u>n!;—)- I

1
2
Proof:

It is obvious that D(L) is dense in LP(Q).

That (L-ADD(L), A <0, is dense in LP(Q) is well-known in the theory of

partial differential equations, e.g. Theorem 6.13,8].
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The inequality IAL-DfIl 2 IIfll can be verified as in (i), theorem 4.

The positivity-preserving property of the semigroup follows from the maximum principle.

Thus theorem 7 follows from theorem 6.

Remark: Let
n

3, LA
Tu= _i‘jz=15—<xi alJanU)-’-i:_z-'lkl aTiu)+cu
L 5 k 9
= Lu+ igl ,Eu +cu

where ki and ¢ are real-valued functions and belong to C%%(Q), 0 <a<1, with the domain
D(T) = { ue C2(QNC(Q) lu=0 onoQ and TueLP(Q) }
It is not difficult to see from perturbation theory that there exists a constant ¢, such that

('T‘+c°I) is of type @ for some ® <m. A similar proof to that of theorem 5 shows that

(T+c,D) has an H,, functional calculus as in theorem 5.
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