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Remarks on Non-Commutative Interpolation 

PeteYf G. Dodds~. Theroesa K.-Y.- Dodds* arid Ben de·Pagtero 

We discuss a non-commutative extension of a well-known result of Calderon 
characterizing interpolation spaces for the couple (L1 , L 00 ). The characteriza­
tion is given in terms of the generalized singular value functions (or decreasing 
rearrangement) of measurable operators affiliated with a semi-finite von Neu­
mann algebra. 

0. Introduction 

The theme of this note is that many well-known interpolation theorems in rearrange­

ment invariant function spaces admit extensions to the corresponding spaces of measurable 

operators affiliated with semi-finite von Neumann algebras. Of course, this theme is not 

new: a non-commutative extension of the Riesz-Thorin theorem was first given by Kunze 

[Ku], extensions of the characterization of interpolation spaces for the pair (Ll,L00 ) due 

to Calderon [Cal] have been given by Russu [Ru], OvCinnikov [Ovl] and Yeadon [Ye] and 

applications of the real interpolation method in the non-commutative setting may be found 

in Peetre-Sparr [PS). It is our intention here to briefly survey some of this earlier work and 

to present extensions to the more general setting of some results for trace ideals due to 

Arazy [Ar]. These results permit the ready identification of certain operator spaces con­

structed via the application of an arbitrary exact interpolation functor and consequently 

reduce the non-commutative versions of the Riesz-Thorin and Marcinkiewicz theorems to 

the well-known commutative versions. The details, which will appear elsewhere [DDP4], 

draw on the earlier ideas of OvCinnikov [Ovl] and Yeadon [Ye) as well as the construction 

of symmetric operator spaces given elsewhere in this volume [DDP3], and to which we 

adhere for notation and terminology not further explained in present article . 
• 
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1. Spaces intermediate for the couple (L1(M), M) 

We suppose throughout that are semi-finite von Neumann algebras with (fixed) 

faithful normal semi-finite traces r, CJ respectively. By M (respectively fil) we denote the 

linear space of operators which are r-measurable (respectively a-measurable) in the sense 

of Nelson [Ne]. If x EM then the decreasing rearrangement f.l.(x) (or generalized singular 

value function) of x is defined to be the right continuous, non-increasing inverse to the 

(extended) real-valued distribution function 

for s E (0, oo). 

If x E M andy E fi! then we say that y is submajorized by x and write y -<-< x if and 

only if 
t t 1 p .• (y)ds:::; 1 p .• (x)ds, t::::: 0. 

We denote by "£(.M,.Af) the set of those linear maps T from L 1 (M) + M to 

L 1 (N) + whose restrictions to L1 (M), M are continuous linear maps of norm at most 

one into the spaces V(iJ), JV respectively and by I;(M,./11)+ the set of all T E I;(M,./11) 

such that Tx 2': 0 for all 0 :::; x E L 1(M) + M. An important example worth noting 

immediately arises when N is a von Neumann subalgebra of JA for which G is just the 

restriction of r (such a subalgebra will be called pTopeT). In this case, the conditional 

expectation of L1(M) + J\..1 onto L1 (.Af) +Af, defined initially on L1(M), M exactly as in 

the commutative setting via well known duality theory for the pair (L1(N),N), extends to 

a uniquely determined element of "£(M,N)+ which maps L1(M) + M onto L 1(iJ) +N. 

Our starting point is the following result. 

Theorem LL (i) If x E L 1 (M) + M andy E L 1 (N) + N then y -<-< x if and only if 

there exists T E 2:::(/vt,JV) such that y = Tx. 
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(ii) JfO S:: x E Ll(i\-1)+M and 0 S:: y E L 1 

1' E I:;( M, /v)+ such that y = Tx. 

+N then y -<--< x if and only if there exists 

For the special case that the von Neumann algebras .M, N are commutative, the 

preceding result is due to Calderon ([Ca2], Theorems 1 and 2) for measure algebras which 

are a-finite and to Fremlin ([Fr] Theorem for localizable measure algebras. In the 

non-commutative setting, :a restricted form of Theorem 1.1 was (essentially) proved by 

Ovcinnikov [Ov2) and stated, under the present assumptions, in Yeadon ([Ye2], Proposition 

3.4); however, the proof given Yeadon via [Ye2] Proposition 3.3 fails in general if the 

trace is not assumed to be finite. A direct proof of Theorem 1.1, following the ideas of 

Fremlin [Fr], is given in [DDP2] and is based on a separation argument via the following 

result which is of independent interest. 

Proposition 1.2. lf 0 ::;: x E + M and if 0 S:: y E then 

= sup{IY(yTx): T E L(M 

To mention some consequences, we introduce some convenient notation. For each 

x E we define 

E :y-<--< 

S:: y E jj : y --<-< 

Corollary L3" If x E L(/vl) + M, then each the .sets a1·e convex and 

+ (N) n corn pact, 

For the case that 

7) and is dosely related to earlier results of Luxemburg Theorem and Ryff 

([Ry], Theorem 2 of section In this connection, we mention the more recent result of 

F.A. Sukochev [Su] : }vl M has finite trace and if x E (M), then y is an 

extreme point of the orbit if and only if p.( y) = 
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A further simple consequence of Theorem 1.1 extends a commutative result of Lorentz 

and Shimogaki (LSl]. 

Corollary L4. If y E L 1 (fJ) +.A! and if X1, Xz E L1(M) + M satisfy y -<-< x 1 + x2, 

then there exist y 1 , y2 E L 1 (fJ) +.A! (which may be taken to be positive if y, x 1, x2 are all 

positive) such that 

Y = Y1 + Yz and Yi -<-< x;, i = 1, 2. 

The importa_nce of Theorem 1.1 in the commutative setting to interpolation theory 

is, of course, clear from [Ca]. We now formulate Theorem 1.1 as an explicit interpolation 

theorem. For terminology not otherwise explained we refer to [KPS]. 

Theo:rem 1 o5. Let E, F be linear sub spaces of L1 ( M) + M, L1 (fJ) +.A! respectively. 

(i) The following statements are equivalent 

(a) Each bounded operator from the couple 

maps E into F. 

(M), M) to the couple (L1(fJ),N) 

(b) lfllhenever x E E, y E L1 (fJ) + satisfy y -<-< x, it follows that y E F. 

(ii) If, in addition, the spaces E, F are normed spaces, then the following statements are 

equivalent. 

(a) Each bounded opemtor from the co·uple (L 1(M),M) into the co11.ple (L1(N),N) 

of norm at most one maps E into F with norm at most one. 

(b) Vflhenever x E E, y E L 1 (fJ) + N sati.ojy y -<-< x, it follows that y E F and 

IIYIIF:::; llxiiE· 

For symmetrically normed ideals of compact operators the preceding theorem was first 

proved by G.L Russu (Ru] and subsequently generalized by Oveinnikov [Ov2] to the present 

setting subject to the restriction that Pt(Y) ~ 0 as t __,co for all x E E, y E F. 

It is now convenient to introduce some further terminology. A Banach space E which 

is a linear subspace of L1 (A1) + M will be called 
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rearra.ngement invariant if and only if 

x E E, y E L1(M) + M and ?t(Y) $ f.l(x) =? Y E E and IIYIIE $ jjxj\Ei 

symmetric if and only if 

x, Y E E and Y -<-< x =? IIY\IE $ Jlxi\E; 

(iii) fully symmetric if and only if 

x E E, y E L 1(M) + M andy-<-< x =? Y E E and IIYI\E $ \\x\\E, 

We identify L 00 (1fi!+) throughout as a commutative von Neumann algebra acting by 

multiplication on L2 (~+) with trace given by integration with respect to Lebesgue measure, 

A Banach space E(ifi!+) of almost everywhere finite, measurable functions on ifi!+ will be 

called a rearrangement invariant (symmetric, Banach 

!fil+ if the conesponding conditions above hold with to the von Neumann algebra 

We note that the above terminology is 

from that of [KPS]; this, however, should cause no confusion in the 

If E(tR+) is a rearrangement invariant Banach function space on [R+, we 

set 

E E 

and if x E we define 

= jjp(x)\\E(!~+J, 

As is shown in [DDP3], this volume, (see also [DDPl] and [Su]) E(M) is a Banach 

space and it now immediately follows that E(M) is a rearrangement invariant symmetric 

operator space, 
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If the Banach space E is intermediate for the Banach couple (Xo, XI), then E will be 

called an interpolation space for the couple (X0 , X I) if every linear operator, which acts 

boundedly from X; to i = 0, 1, acts boundedly from E to E; E will be called an 

exact interpolation spttce for the couple , X I) (respectively, exact interpolation space of 

exponent e, 0::::; e s 1) if every linear operator which acts boundedly from X; to X; 'Nith 

norm at most one (respectively, at most i = 0, 1, acts boundedly from E to E with 

norm at most one (respectively, of norm at most Mg-e A1f). 

Corollary 1.6. (i) If E is a Banach space which is a linear subspace of L 1 (M) + Jvl, 

then the following statements are equivalent. 

(a) E is an exact inieTpolation space joT the couple (L 1(M), M). 

(b) E is fully symmetric. 

( ii) If E(IR+) is an exact interpolation space joT the cottple ( L 1 (fi~+ ), L 00 (IR+)) then E( M) 

is an exact interpolation space the couple (L1 (A--1),M). 

The preceding Corollary asserts that the exact interpolation spaces for the couple 

(L1 (M), M) are precisely the fully symmetric operator spaces in J\.1. Moreover, it is not 

difficult to see, as is noted by [Ye], Proposition 3.6, that any interpolation space for the 

couple ( L 1 ( .M), }Vf) is a fully symmetric space in an equivalent norm. 

It is now, of course, appropriate to point out that there exist rearrangement invariant, 

symmetric operator spaces which are not interpolation spaces for the couple (L 1 (M),M). 

The first such example was given Russu [Ru] and independently by Holub [Ho] in the 

setting of trace ideals. A further example is exhibited in [KPS] Theorem II 5.11 as a dosed 

subspace of a Marcinkiewicz space on [R+. Of course, the preceding corollary permits ready 

identification of many operator spaces which are exact interpolation spaces for the pair 

(L1 (}A),M). If E(IR+) is a rearrangement invariant function space which is either maxi­

mal in the sense that the natural embedding of E(IR+) into its Kothe bidual is a surjective 

isometry, or if E(IR+) is separable, then E(IR+) is an exact interpolation space for the pair 

(L1 (IR+), L 00 (IR+ the corresponding non-commutative spaces E(M) are then exact inter-
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polation spaces for the couple ( L 1 ( M), .vt). Examples ofrea.rrangement invariant function 

spaces on jR+ which are maximal include the familiar Orlicz, Marcinkiewicz and Lorentz 

spaces. An example of a rearrangement invariant function space which is separable but 

not maximal is given in [KPS) section 5 of Chapter II. We will show later (see Corollary 

2.2 below) that the only interpolation spaces for the pair (Ll(M), M) are those which can 

be constructed as the non-commutative spaces arising from some fully symmetric function 

space on jR+. Before proceeding we recall that if (X, Y) is a Banach couple, that is X and 

Y are Banach spaces continuously embedded in some separated topological linear space, 

then the Banach space X+ Y consists of those elements of the form x = y + z, y E X, z E Y 

equipped with the norm given by 

llxllx+Y = inf{IIYIIx + llzlly: y E X,z E Y,x = y + z}. 

We remark that underlying the proofs of the preceding results is the equality 

The norm equality implicit in the preceding identification is a special case of the identity 

t > 0. 

This identity has been proved by many authors: [Ov2), [PS), [FK), and implicitly in [Ye). 

The relevance of this identity to the application of the real method of interpolation in the 

present setting has been amply demonstrated by Peetre-Sparr [PS) and Kosaki [Ko). We 

now state a simple generalization. 

Proposition 1. 7. If Eo, E1 are fully symmetric function spaces on IR+, then 

with equality of norms. 
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The preceding Proposition is a simple consequence of Corollary 1.4. In fact, if x E 

E0(M) + E1 (M) and if x = Xo +xi with x; E E;(M), i = 0, 1, then Corollary 1.4 shows 

that there exist functions J0 , fi E L1 (JR+) + L 00 (1R+) with J; --<--< x;, i = 0, 1, and 

/l>(x) = fo +h. 

Since Eo(JR+), E1 (JR+) are fully symmetric, it follows that J; E E;(JR+), i = 0, 1, and that 

i = 0, 1. 

Consequently, 

and the proof of the converse inequality is almost identical. 

2. Main results 

A mapping :F from Banach couples to Banach spaces is called an exact interpolation 

functor if 

(i) for every Banach couple (X0 , XI) the Banach space .1-(X0 , X 1 ) is an exact interpolation 

space for the couple (Xo,XI), 

(ii) for every pair ( (X0 , X 1 ) ,(Yo, Y1 )) of Banach couples, each bounded operator from the 

couple "(X0 , X 1 ) to the couple (Y0 , Y1 ) of norm at most one acts as a bounded linear map 

from :F(X0 ,Xl) to .1-(Yo, YI) of norm at most one. 

If :F is an exact interpolation functor, and if 0 ::; e ::; 1 then :F will be called an 

exact interpolation functor of exponent e if, for every pair (X0 ,X1 ), (Y0 , Y1 ) of Banach 

couples and bounded operator V from the couple ( X 0 , X 1 ) to the couple (Yo, Y1 ), V maps 

:F(X0 ,XI) to :F(Yo,Y1) with norm at most Mt- 8Mf whenever V maps X; to Yi with 

norm IV!;, i = 0, 1. 

We now extend Proposition 1. 7 as follows. 
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Theorenn 2.1. If Eo(if.R+), E1 (if.R+) are fully symmetric function spaces on if.R+ and if F 

is an exact interpolation f1mctor, then 

Theorem 2.1 combined with the Aronszajn-Gagliardo theorem ([KPS] Theorem I 

[BL] Theorem 2.5.1) yields the following interesting consequence. 

Corollary 2.2, If E;O~+), i = 0, 1, are symmetric j1;.nction spaces on jR+ and if E 

is an exact space for the couple (E0(M), E1 then there exists a Banach 

function space F(iF!+) which is an exact interpolation space for (Eo(~FR+), E 1 (iF!+)) such that 

E = F(M). 

implies that each 

symmetric operator space is derived from a fully symmetric space on [R+ and this 

answers a question raised Yeadon [Ye]. Before showing that admits a 

similar extension, we recall first some relevant terminology. 

Let X 1), (Yo, ) be two couples of Banach spaces and let X, Y be intermediate 

spaces for the couples , Yi), respectively. The pair (X, 

exact interpolation pair for ((X0 ,X1 ),(Y0 , J:'i)) (respectively, exact 

will be called an 

of 

e, 0:::; e:::; 1) if every linear operator which acts boundedly from to with 

norm at most one at most 

norm at most one (respectively, at most 

Theorem 2.3. spaces 

invariant symmetric spaces on 

which are intermediate the Banach co1tples (Eo(iF!+),EI(iR+)), (Fo(lll+),FI(IR1+)), 

re8peciively. If the pair ( E( [R1+ ), F(IR+)) is an exact interpolation (respectively, ex-

act interpolation pair of exponent 
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paar (E(M),F(N)) is an exact interpola.tion pair (respectively, exact interpola.tion pair of 

exponent 0) for ((Eo(M),El(M)), (Fo(N),Fl(N)). 

Theorems 2.1, 2.3 above extend similar results of Arazy [Ar] for trace ideals. The 

details of proof will be given elsewhere ([DDP4]). The main tool in the proof is the 

following result which is based on a modification of the notion of Schmidt decomposition 

due to Ovcinnikov [Ov1]. 

Theorem 2.4. If 0 :::; x E M, there exists a proper von Neumann subalgebra Mx ~ 

L 00 (!R+) with J-l(x) E Mx, a proper commutative subalgebra Mx ~ M and a positive 

rearrangement preserving algebra isomorphism Jx of Mx onto Mx whose restriction to 

the projections of Mx is a Boolean algebra isomorphism onto the projections of Mx and 

for which 

1-lCJx(J-l(x))) = J-l(x). 

3. Non-commutative Riesz-Thorin and Marcinkiewicz theorems 

The effect of Theorems 2.1, 2.3 of the preceding section is to reduce certain non­

commutative interpolation results to the special case obtained by taking M to be L00(!R+). 

We illustrate their utility for two familiar interpolation methods. 

We recall first the following basic notions from the complex method of interpolation 

([KPS], Chapter IV). If (X0 , XI) is a Banach couple, then F(X0 , X 1 ) denotes the linear 

space of all complex functions z -t f(z) defined in the strip 

II = { z : 0 :::; Rez :::; 1} 

with values in X 0 + X 1 with the following properties. 

(i) f is continuous and bounded on II and analytic in the interior of II. 

(ii) The restriction off to the left (right) hand edge of II is a bounded continuous function 
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to Xo (respectively X1 ). 

With norm defined by setting 

llfll F(Xo,XJ) = max{ sup II!( it)llxo, sup ll.f(l + it)llx, }, 
t t 

the space F(Xo, X 1 ) is a Banach space. 

If 0 < (J < 1 , the Banach space [X0 ,X1]e consists of those elements ,-r; E 

the form x = f(B) for some f E F(X0 ,X1 ) with norm 

llxii[Xo,X,], = llxlle = inf{IIJIIF(X0 ,X,): X= f(O)}. 

It may then be shown ([KPS] Theorem IV 1.2) that for any pair ((X0 , ),(Y0 , Y1 )) of 

Banach couples the pair ([X0 , X1]e, [Yo, Yl]e) is an exact interpolation pair of exponent 8 

for ((Xo,Xt), 

If we specialise to the familiar LP-spaces, p ;?: 1, we obtain 

and 0 < e < 1, then 

with of norrns, where 
1 1- e e 
-=--+-. 
P Po P1 

See, for example, [BL] Theorem 5.1.1. 

From Theorem we obtain immediately that 

which yields the following non-commutative Riesz-Thorin Theorem, due to Kunze [Ku], 

(see also [Ov2]). 

Theorem 3.L Let 1 S Pi, q; S oo, i = 0, 1, let 0 < () < 1 and define p, q by 

1- e B 
-=---'r-, 
P Po P1 

1 1-8 () 
- = --+ -. 
q qo ql 
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If "\f is a bounded linear operator from LP'(Nl) to Lq'(fJ) with norm lll·"ll;,i = 0,1, 

then V acts as a bounded linear operator from £P(M) to Lq(fJ) with norm at most 

IIVII6-ei1VIIf. 

We recall briefly the K-method of real interpolation due to Peetre ([BL], Chapter 3). 

If (Xo, xl) is a Banach couple, and if X E Xo + xl, we define for every t > 0, 

K(t,x) = inf{llxollxo +tllx1llx,: x = xo +xbxi E X;,i = 0,1}. 

For 0 < 8 < 1, 1:::; q:::; oo or for 0:::; ():::; 1, q = oo, the Banach space [Xo,Xt]e,q;K 

consists of all elements X E Xo + xl for which 

with norm given by 

llxlle,q;K = <Pe,q(I<( ., x )). 

The functor [ . , . ]e,q;K is an exact interpolation functor of exponent 8 ([BL], Theorem 

3.1.2). 

\7\le now specialize to the special cases of Lorentz spaces Lpq(IRl+) (see [Ca2]). For 

1 < p < oo, 1 :::; q < oo, Lpq(IRl+) is the class of measurable functions f E L0 (1Rl+) such 

that 
p-1 

llfllpg={y 1 * dt 1 
(F f *(t))Lt F < oo; 

for 1 < p < oo, Lpoo(R+) is the class of measurable functions f E L0 (1Rl+) such that 

where 

'V<le define 

llfllpoo = supt~ f"*(t) < oo, 
t 

j**(t) = ~ t p,.(f)ds, 
t Jo t ~ 0. 
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The spaces Lpq(JR+) are Banach spaces with respect to the above norms and it is clear 

that they are fully symmetric spaces on JR+. 

It now follows from Theorem 2.1 and [BL] Theorem 5.3.1 that the equality 

holds (up to equivalent norm) where 

0 < 8 < 1, 
1 . 1 . 1 
- = (1- 8)- + 8- and 1 < po,Pl < oo, 
P Po P1 

or, Pi= 1 or oo and 1 < Pl-i < oo, i = 0, 1, 

or, Pi= 1 and Pl-i = oo, i = 0,1. 

This yields as a special case Kosaki [Ko) The01;em 2.4 (see also [PS)). The special case of 

the usual Marcinkiewicz Theorem for the spaces LP(JR+) ([BP) Theorem 5.3.2) now yields 

the following non-commutative version of the Marcinkiewicz Theorem. 

Theorem 3.2. If Vis a bounded linear operator from Lp1q1 (M) to Lr;s;(JIJ), i = 0, 1, 

where 

then V is a bounded linear operator from Lpt(M) to Lrt(.iJ) for 1 $ t $ oo, where 

1 1 1 
- = (1 - 8)- + 8-, 
P Po P1 

1 1 1 
- = (1- 8)- + 8-, with 0 $ 8 $ 1. 
r ro r1 

The result holds also if 

Pi = ri = 1 or oo and 1 < Pl-i, r1-i < oo, i = 0, 1, 

or if Pi = r; = 1 and Pl-i = r1-i = oo, i = 0, 1. 
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4. Interpolation for the couple (LP(M), M) 

We turn now to a characterization of interpolation spaces for the couple (LP(M), M), 

1 ::; p < oo, which is due to Lorentz and 8himogaki [182) in the commutative setting 

and to Arazy ([Ar), Corollary 2.12) for separable trace ideals. Following (182), if x, y E 

LP(M) + M, we define y --<Px if and only' if for each decomposition 

there exists a decomposition 

Y = Y1 + Yz, Y1 E LP(M), Yz EM, 

such that 

Lemma 4.1. If x,y E LP(M) + M then y --<Px if and only if p,(y) --<Pp,(x). 

Proof. Assume first that y --(Px and suppose that 

By Theorem 1.1 (i), there exists T E L:(L00(IR+), M) such that 

x = Tp,(x) = TJI + Tf2. 

Consequently there exists a decomposition 

with 

Y = Yl + yz, Y1 E LP(M), Yz EM 

IIYIIIP ::; liT !I liP ::; II !I liP 

I!Yzlloo::; IIThlloo::; llhlloo· 
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Again Theorem 1.1 (i), there exists S E 2:(M,L00 (1R+)) such that 

and 

The proof of the converse assertion is identicaL 

For x,yELP(J\,-1)-i-M, l:::;p<oo, wewrite y-<-~lx ifandonlyif 

p,~(y)ds:::; it p,~(x)ds, for all t > 0. 

The preceding Lemma 4.1 combined with [LS] Lemma 2 yields immediately the following. 

Lemma 4.2. If x,y E LP(./VI) + M, 1:::; p < oo, then 

if y -<·4 x then y -!,Px; 

each p > 1, there exists a smallest constant with 1 < Ap :::; , where 

l + l = 1, such that if x,y E LP(M) +M and y -~Px ihen y --<-<.P x. 
p q ' ~ 

Lemma 4.3. Let 0:::; y E I?(M) n M be simple, i.e., 

n 

Y = '\""" Oiei 
L.J 
i=l 

where e;, 1, · · ·, n, are mutually disjoint projections in lvl with finite trace and 

0 :::; o;, i = 1, · · ·, n. Let 0 :::; x E LP(M) + JV1. If y -<,-<,P x, then there exists a 

bounded positive operator T 

s·uch that y :::; Tx. 

the M) to norm at most one 

The of Lemma 4.3 may be reduced to its commutative version given by [LS] 

Lemma. 4 by a simple modification of the techniques used to prove Theorem 2.3. 
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Theorem 4.4. Let 1 < p < CXJ. 

(i) If E is intermediate for the Banach couple (LP(M),M) and if E satisfies the 

condition: 

(A) y E LP(M) + M, x E E and y -<-<P x ===> y E E, 

then E is an interpolation space for (LP(M), M). 

( ii) If E is an interpolation space for (LP(M), J\lt) and if E has the following property: 

then E satisfies the above condition (A) . 

The proof of part (i) via Lemmas 4.1, 4.2 preceding is now exactly like the proof of 

the corresponding assertion of [LS] Theorem 2. For the proof of part (ii), the proof given 

in [LS] Theorem 2 again carries over, via Lemma 4.3. 

5. Operators of weak type 

Following [Ca2], for 1 :::; p < =, the linear map T: Lp1(M)-+ jj is said to be of 

weak type (p,q), 1:::; q:::; CXJ if 1' maps Lp1(M) continuously into jj and ifthere 

exists a constant c such that 

for all x E Lp1(M). 

Throughout this section we denote by w a closed segment in the unit square with 

end points (..!., 1..), ( ..L, 1..) with p 1 :f. P2, q1 :f. q2. We denote by W(w, M,N) the 
Pl q1 P2 q2 

class of linear maps on Lp11 (M) + Lp21 (M) into jj which are simultaneously of weak 

types (Pl , qi), (P2, q2) · 

Following [Ca2], the operator S(w) is defined on functions on IR+ by setting 

S(w)f(t) = 100 f(s)di¥w(s,t), t > 0, 
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where 

s,t > 0. 

We now indicate how to extend Theorem 8 of [Ca2) by a simple modification of the 

proof given in [Ca2]. 

i.3 simultaneously of weak types 

(Pll ql), (P2, q2) then there exists a constant c = c( w, p, q) such that 

p.(Tx)::; cS(w)p.(x), 

1JJhere w is the segment 1JJith end points ( l, l ), (l, l). 
P1 q, P2 q2 

Proof. There exists a constant c1 such that 

for ally E Lp;I(.M), i = 1,2. Let x E fix t > 0 and let a= f-Ltm(x) 

where m is the slope of the segment w. Let x = ulxl be the polar decomposition of x 

and write 

lxl = (lxl- al)+ + lxl/\ na. 

Note that it follows from [FKJ Lemma 2.5 that 

Suppose now that p1 < p2 • If t > 0, then 

P.t(Tx)::; f-LL(Tu(lxl- al)+) + (Tu(lxll\ 
2 

::; c'(Cfl!IP.(u(lxl- al)+)llp,I + c* 
::; d(Ci1ll(,u(x)- al)+llp, 1 + c* 

slfp, 
::; c (p.(x)- al)d( tlfq,) + 

=C tt(x)d(ww(s, t)) 

= c:(O',p,q) S(w) p(x). 

lxl/\ al))IIP2I) 

/\a)lip2l) 

8 1jp, (m 8 lfp, \ 

p.(x)d(tl/q;) +a Jo d(tl/q2 )) 
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Via Theorem Ll and Proposition 5.1 preceding, the proofs of the following results 

reduce to those given in [Ca2] Theorem 9 and Theorem 10. 

Proposition 5.2" (cf. [Ca2] Theorem 9) If q11 q2 > 1, if x E Lp,1(M) + Lp21 (M) 

and if y E JJ then the following statements are equivalent. 

(i) There exists T E W(w,M,N) such that Tx = y. 

( ii) There exists c > 0 such that 

p.(y):::; cS(w)p.(x). 

Proposition 5.3. ( cf. [Ca2] Theorem 10) If q1, qz > 1 and if A1, A2 are linear 

subspaces of Lp11 (M)+Lp21 (M), JJ respectively, then the following statements are equiv­

alent: 

(i) W(w,M 

(ii)xEA1,yE 

) ~ Az. 

:::; S(w)JL(x) implies Y E A2. 

Finally, let us note that in the commutative setting, the result of Proposition 5.2 is 

essentially the starting point of the work of Boyd [H1] and we leave to the interested reader 

the task of extending the results of [B t] to the non-commutative setting. For trace ideals, 

this task has been carried out in [Ar]. 
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