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A General lVIarkus Inequality 

Peter G. Dodds, TheresaK.-Y. Dodds* and Ben de Pagter 

An inequality of A.S" Markus for the singular values of compact operators is 
generalized to measurable operators; this inequality is then used as a tool to 
construct a wide class of rearrangement invariant Banach spaces of measurable 
operators" 

Oo Introduction 

In this note we wish to outline a method of construction of a wide class of Banach 

spaces of operators which are the non-commutative analogues of the rearrangement in

variant Banach function spaces studied, for example, in Luxemburg [Lu], Fremlin [Fr] and 

Krein, Petunin and Semenov [KPS]" We gather first some convenient notation" 

If x is a compact operator on the Hilbert space H then the real sequence {,un( x) : 

n = 0, 1, 2," ""} of eigenvalues of !xi = ( x*x )112 , arranged in decreasing order and repeated 

according to multiplicity is called the sing~tlar value sequence of x" If, for any bounded 

real sequence { an}~=O we denote by { a~}~=O the decreasing rear:rangement of the sequence 

{ianj}~=O' then we say that the sequence {bn}~=O is submajorized by the sequence { an}~0 

(in the sense of Hardy, Littlewood and Polya), and we write 

if and only if 
k k 

'' b': <"\""""'a* ~ J-L-:· J' 
j=O j=O 

for k = 0, 1, 2, . " ". 

Suppose now that x, y are compact operators on the Hilbert space H" It is a well-known 

result of Markus [Ma] that 
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An analogous result concerning decreasing rearrangements of measurable functions is due 

to Lorentz and Shimogaki [LS]. The basis of our approach to the construction of non

commutative Banach function spaces is to show that the inequalities of Markus and of 

Lorentz- Shimogaki admit a common generalization to arbitrary measurable operators (in 

the sense of Nelson [Ne]) affiliated with a semi-finite von Neumann algebra, via the notion 

of generalized singular value studied by Ovcinnikov [Ovl], Yeadon [Yel] and Fack [Fa]. 

This general Markus inequality permits the application of standard methods to prove the 

triangle inequality and norm completeness of a class of non-commutative Banach function 

spaces which seems to be somewhat more general than has been so far considered in the 

literature. Let us mention that, for the case of finite trace, a similar result has been 

obtained by F.A. Sukochev [Sul], [Su2]. We take here the opportunity of thanking V.I. 

Chilin, F.A. Sukochev, A.V. Krygin and A.M. Medzhitov for kindly communicating their 

results on the present as well as related themes and, in particular for pointing out, at least 

implicitly, the sharpening of [DDPl] Theorem 4.5 that is outlined in Theorem 2.1 below. 

1. A general Markus Inequality 

Let 1i be a Hilbert space and .C(H) be the set of all bounded linear operators on H. 

Let M ~ .C(?-l) be a von Neumann algebra with a normal faithful semifinite trace r. A 

closed densely defined linear operator x in 1i is said to be affiliated with M if and only if 

u*xu = x for all unitary u which belong to the commutant M' of M. If x is affiliated 

with M then x is called r-measurable if and only if, there exists a number s 2 0 such 

that 

We denote by M the set of all r-measurable operators. Sum and product in M are 

defined as the respective closures of the algebraic sum and product. For x E M, the 

generalized singular value function fL. ( x) of x is defined by 

f.Lt(x) = inf{s 2 0: r(X(s,oo)(lxl)) ~ t}, t 2 0. 

It follows simply that f.L.(x) is a decreasing, right-continuous function on the half line 
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[0, oo). 

The idea of measurable operators with respect to a trace goes back to I. Segal [Se]. The 

above definition of measurability is due to E. Nelson [Ne] .While the class of measurable 

operators defined by Nelson is in general a proper subset of Segal's class, it is the natural 

setting in which to consider properties related to generalized singular values. 

We define a translation invariant metric on M by setting 

d(x,O) = inf{t ~ 0: J.lt(x)::; t}, for x EM, 

and 

d(x, y) = d(x- y, 0), for x,y EM. 

The topology defined by d is called the measure topology. It is not difficult to see that 

the measure topology has a neighbourhood basis of zero, consisting of all sets of the form 

N(€,8) = {x EM: 3 projection e EM such that llxell::; € and r(l- e)::; 8} 

where E, 8 are positive numbers, which is the definition given by Nelson [Ne]. It is shown 

in [Ne] and [Te] that M equipped with the measure topology is a complete, Hausdorff, 

topological *-algebra in which M is dense. 

For the convenience of the reader, we gather here some of the basic properties of 

generalized singular values. The proofs of most of these properties can be found variously 

in Ovcinnikov [Ovl], Yeadon [Yel], Fack and Kosaki [FK]. We follow [FK] Lemma 2.5. 

Proposition 1.1. Let x, y E M. 

(a) The singular value function JJ(X) admits the characterization 

J.lt(x) = inf { IJxelloo : e is a projection in M, r(l - e) ::; t}, 

(b) limt-0+ J.lt(x) = IJxlloo E [0, oo]. 

(c) For each t > 0 and a E C, 

t > o. 



1-t:(x) = Jxl) = 1-tt(x*) 

f-Lt(ax) = Ja!,ut(x). 

(d) The equality 

[lt(<P(IxJ)) = ¢(!-Lt(lxl)) 
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holds for each t > 0 and any continuous increasing function ¢; on [0, oo) with ¢;(0) ;::: 0. 

(e) fht+a(x + y)::; ,Ut(x) + J-L 8 (y), 

!ht(uxv) S Jiullool!vllool-tt(x), 
t, s > 0. 

t > 0, u, v E /VI. 

(g) f-lt+s(xy)::; Pt(x)p.(y), t,s > 0. 

We now consider the partial ordering defined on .!Vi by setting 

X ;::: 0 if and only if < X e, e >;::: 0 

for all ~ in the domain of x. This partial order may be shown to have the following 

properties [DDP2], [FK]. 

P:roposi.tion L2. (M, ::;) is an ordered 11ector space a.nd the positive cone IS 

closed in for the measure topology. 

(b) M is order complete in the sense that every increasing order bounded net in the positi11e 

cone of j\;1 has a sv.premum in M. 

If { x 0J is an increasing net in A-1+ and if 

x =sup Xa 

holds in M, then 

holds in the space all Lebesgue measurable functions on [0, 

(d) The trace T can be extended to the positive cone J\.1+ and this extension 

is additive, positi11e homogeneous, 1mitarily invariant and normal. 

(e) The eqMlity 

r(<;b(lx!)) = { q\(Jlt(x))dt, .T EM 
J[o,oo) 
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holds whenever ¢ is a continuous strictly increasing function on [0, oo) with ¢(0) = 0. 

It is now worth pausing to consider three special examples. 

Example 1.3. If M = £(11.) and r is the standard trace, then M = JVi and the measure 

topology coincides with the operator norm topology. If x E M is compact, then it is not 

difficult to see that, for each n = 0, 1, 2, o o ·, 

!Jn(x) = flot(x), n::; t < n + 1, 

and {ttn(x )}~=O is the sequence of eigenvalues of lxl, in decreasing order counted according 

to multiplicity. Of course, in the setting of this example, the assertions of Proposition 1.1 

(a) reduce to well known consequences of the Courant-Fischer minimax characterizations 

for the singular values of compact operators as given, for example in the monograph of 

Gohberg and Krein [GK]. 

Example 1.4. If the trace r is finite, then M coincides with the set of all closed densely 

defined linear operators affiliated with M. 

Example 1.5. If Jlvi is commutative, then .A-1 can be identified as L 00 (:11, 2:::, v) for some 

measure space E, v) with a localizable measure v, acting by multiplication on the 

Hilbert ~pace L 2 (fl, E, v). If the trace r is defined by setting 

r(f) = L fdv, O:SfEM, 

then M is the set of all v-measurable functions bounded except on a set of finite measure, 

and, the measure topology is the topology of convergence in measure. In this case, the 

generalized singular value function 1-l(x), x E L 00 (!1, E, v) is given by 

!Lt(x) = inf{s ~ 0: v( {wE :11: kc(w)l > s}) :S t}, t>O 

so that the singular value function tAx) coincides with the classical non-increasing rear

rangement of x. In this case, the results of Proposition 1.1 are familiar from Luxemburg 

[Lu], Fremlin [Fr] or Krein-Petunin-Semenov [KPS]. 
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Before proceeding to the main result of this section, we introduce a notion of subma

jorization which goes back to Hardy, Littlewood and Polya. 

Definition 1.6. For x,y EM, we say that xis submajorized by y, written x -<-< y, 

if and only if 

vVe may now state the principal result of this section. 

Theorem 1.7. If x,y E /'VI, then 

J.l(x)- J.l(Y) -<-< J.l(X- y) 

(wher-e the submajor-ization is taken in the von Neumann algebra L00 ([0, oo )) as in Example 

1. 5 ). Equivalently, 

sup 
IEI~a 

where lEI i.s the Lebesgue measure the set E. 

- y)dt, 

The details of proof of Theorem 1.7 are given in [DDPl]. We note that Theorem 1.7 

is due to AJ\1. Markus [Ma] for the case that Jv1 = £(11.), r the standard trace and x, y 

compact. The method of Markus is based on an older result of Wielandt and the method of 

[DDPl] is an extension of that of Markus. For the case that the trace r is finite, Theorem 

1.7 was also proved by F. Hiai andY. Nakamura [HN] a different method. Finally, let 

us observe that Theorem 1.7 is due to G.G. Lorentz and T. Shimogaki [LS] in the case 

that J\.1 is commutative. 

2. Non~commutative Banach function spaces 

Let L0 (!fi!+) be the linear space of all (equivalence classes of) real-valued Lebesgue 

measurable functions on the half line [0, oo ). A Banach space E which is a non-zero 
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linear subspace of L0 ([~+) , is called a Banach function space on the half line tR+, if and 

only if, 

f E E,g E L0 (~+) and lgl::; lfl =='i" 9 E E and II9IIE::; IIJIIE, 
Let E ~ L0 (fR+) be a Banach function space on tR+, We say that E is rearrangement 

invariant if and only if 

We say that E is symmetric, if and only if 

If E is a rearrangement invariant Banach function space on R+, we define 

E(M) = {x EM: f-!(x) E E} 

and set 

llxiiE = lltt(x)IIE, X E E(M), 

Our principal result on the construction of non-commutative Banach function spaces 

now follows. 

Theorem 2.1. -lf E is a symmetric rearrangement invariant Banach function space on 

R+, then 11-IIE defines a norm on E(Jvi) and (E(M), 11-IIE) is a Banach space. 

Outline of proof. 

From the inequality 

\ft ?_ 0 

it follows that E(M) is a linear subspace of 

M. The triangle inequality follows by observing that 

+y)--<--< y E E(ivt), 
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which is a consequence of Theorem 1.7. 

To show norm completeness, let {xn} be a Cauchy sequence in E(M). Since the 

natural inclusion of (E(M), 11·11) into (M,d) is continuous and (M,d) is complete, there 

exists x E M such that 

Xn~X In (M,d), 

which implies that 

p.(xn) ~ p.(x) a.e .. 

On the other hand, the general Markus inequality implies that 

Vn,m, 

and since the norm on E is symmetric, it follows that the sequence {p.(xn)} is Cauchy 

in E, and hence convergent in E. From this it follows that p.( x) E E and consequently 

X E E(M). 

It remains to show that 

llx- XniiE ~ 0 as n -roo. 

Again using the general Markus inequality, and the fact that E is symmetric it follows 

that for each n = 1,2, · · ·, 

as k,l-? 00. 

Now 

jjp.(x- Xn)IIE:::; ll,u(x-

hence 

llx ~ XniiE = jjp.(x- Xn)IIE ---t 0 as n -roo, 

and the proof is complete. 
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For the case that the trace Tis finite, the preceding Theorem 2.1 has been proved by 

F. Sukochev [Sul], [Su2]. The proof given above is almost identical to that given in [DDPl] 

Theorem 4.5, 'Nhere it is assumed that the norm on E is lo-wer-semicontinuous with respect 

to pointwise sequential convergence in E a Fatou norm in the terminology of [Za]). 

This property however implies that E is symmetric, via a well-known theorem of G.G. 

Lorentz and W.A.J. Luxemburg and consequently Theorem 2.1 preceding in fact sharpens 

the result, if not the proof, of [DDPl] Theorem 4.5. To indicate the scope of applicability 

of Theorer.n 2.1, it suffices to point out that the hypotheses o:f Theorem 2.1 (indeed even 

the hypotheses of [DDPl] Theorem 4.5) are readily seen to be satisfied, :for example, by 

the familiar Orlicz spaces, :for the Lorentz and Marcinkiewicz spaces as defined in [KPS], 

[Ca] or for the class of (maximal) Kothe spaces given in Oveinnikov [Ov2]. All of these 

spaces as v,rell as those considered by Yeadon [Ye2] are, in addition, interpolation spaces 

for the Banach couple (L1 (~+), L00 (1F!1+)). It is therefore not without interest to point out 

symmetric: fundion spaces on the half-line which are not interpolation spaces such as that 

given by [KPS] Theorem 5.11. 

It should also be observed that if E is one of the familiar LP-spaces, 1 :=:; p < co, 

then the spaces LP(h1) given the preceding construction coincide with those defined by 

Nelson [Ne]; indeed, this observation is a consequence of Proposition 1.2( e). In addition, 

it is easy to see that the equality L 00 (.A1.) = }vi holds with equality of norms. 

We mention finally that it has been shown, for example in [Ov2], [PS] and [FK] that 

the equality 

holds with equality of norms. As shown in [KPS], Theorem II4J, any rearrangement 

invariant Banach function space E on the half-line [0, oo) is intermediate for the Banach 

couple (L1 (R+),L00 (R+)). It follows immediately that if in addition E is symmetric, then 

the space E(M) is intermediate for the Banach couple (£1(A1.), M). 
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