29 Shiffman's Theorems

Recall that we defined a CBA as a minimal annulus $A \in S(-1, 1)$ such that $A(1) = A \cap P_1$ and $A(-1) = A \cap P_{-1}$ are continuous convex Jordan curves. In the article [76] published in 1956, Max Shiffman proved three elegant theorems about a CBA. They are as follows:

Theorem 29.1 If A is a CBA, then $A \cap P_t$ is a strictly convex Jordan curve for every -1 < t < 1. In particular, $X : A_R \hookrightarrow S(-1, 1)$ is an embedding.

Theorem 29.2 If A is a CBA and $\Gamma = \partial A$ is a union of circles, then $A \cap P_t$ is a circle for every $-1 \leq t \leq 1$.

Theorem 29.3 If A is a CBA and $\Gamma = \partial A$ is symmetric with respect to a plane perpendicular to xy-plane, then A is symmetric with respect to the same plane.

We are going to prove the three Shiffman's theorems by means of the Enneper-Weierstrass representation. We have already proved a weaker version of Theorem 29.1, namely Theorem 27.2

Let us first prove Theorem 29.1. We follow the proof of Shiffman. We will write the immersion as X = (x, y, z). For any $\zeta = re^{i\theta} \in A_R$, since X is conformal, by (27.124) we have

$$x_{\theta}^{2} + y_{\theta}^{2} = r^{2}(x_{r}^{2} + y_{r}^{2}) + \frac{1}{(\log R)^{2}}$$

The immersion $X: A_R \hookrightarrow S(-1, 1)$ satisfies

$$x_{\theta}^2 + y_{\theta}^2 \ge \frac{1}{(\log R)^2}.$$
(29.150)

Since X is continuous on A_R , A(1) and A(-1) are convex and hence rectifiable. Moreover, $x(R, \theta)$ and $y(R, \theta)$ are functions of bounded variation. Thus $x_{\theta}(R, \theta)$ and $y_{\theta}(R, \theta)$ exist almost everywhere. Let I denote the set on which $x_{\theta}(R, \theta)$ and $y_{\theta}(R, \theta)$ both exist. We will first prove that:

Lemma 29.4 For any $\theta \in I$,

$$\lim_{r \to R} x_{\theta}(r, \theta) = x_{\theta}(R, \theta), \quad \lim_{r \to R} y_{\theta}(r, \theta) = y_{\theta}(R, \theta), \tag{29.151}$$

and

$$x_{\theta}^{2}(R,\theta) + y_{\theta}^{2}(R,\theta) \ge \frac{1}{(\log R)^{2}}.$$
 (29.152)

Proof. Let \overline{x} and \overline{y} be harmonic functions defined over the disk $D_R := r \leq R$ with boundary values given by $x(R,\theta)$ and $y(R,\theta)$ respectively. The functions $x(r,\theta) - \overline{x}(r,\theta)$ and $y(r,\theta) - \overline{y}(r,\theta)$, being harmonic in A_R and having the boundary value 0 on r = R, can be extended across r = R by reflection. Thus

$$x_{\theta}(r,\theta) - \overline{x}_{\theta}(r,\theta) \to 0, \quad y_{\theta}(r,\theta) - \overline{y}_{\theta}(r,\theta) \to 0,$$

as $r \to R$.

Let P be the Poisson kernel of D_R ,

$$P(Re^{i\phi}, re^{i\theta}) = \frac{1}{2\pi} \frac{R^2 - r^2}{R^2 + r^2 - 2Rr\cos(\phi - \theta)}$$

Then the harmonic function \overline{x} can be expressed as

$$\overline{x}(r,\theta) = \int_0^{2\pi} x(R,\phi) P(Re^{i\phi}, re^{i\theta}) d\phi.$$

Differentiating, we have

$$\overline{x}_{\theta}(r,\theta) = \int_{0}^{2\pi} x(R,\phi) \frac{\partial P}{\partial \theta} d\phi = -\int_{0}^{2\pi} x(R,\phi) \frac{\partial P}{\partial \phi} d\phi = \int_{0}^{2\pi} P dx(R,\phi).$$

It follows, as in the proof of theorem of Fatou (see [59] pages 198 -200) that

$$\lim_{r \to R} \overline{x}_{\theta}(r,\theta) = x_{\theta}(R,\theta)$$

on I. Similarly for y_{θ} . From (29.150) it is obvious that (29.152) is true.

Consider the harmonic function $\psi(r,\theta)$, the angle of the tangent vector of $A \cap P_t$ with the positive x-axis. We denote the angle defined by the tangent direction at A(1)by $\psi(R,\theta)$ on I. Because of the convexity of A(1), $\psi(R,\theta)$ is a monotonic function of θ on I of period $\pm 2\pi$. We can assume that the period is 2π , and we shall call the orientation described on A(1) as θ varies from 0 to 2π the positive orientation of A(1). The following lemma will be proved.

Lemma 29.5 The period of $\psi(r, \theta)$ is exactly 2π , and

$$\lim_{r \to R} \psi(r, \theta) = \psi(R, \theta) \quad \text{for } \theta \in I.$$

The single valued function $\psi(r, \theta) - \theta$ is a bounded harmonic function in A_R .

Proof. Consider the convex curve A(1). Select a point Q_1 on A(1) at which there is a unique supporting line L of A(1), and let Q_3 be a point on A(1) where a line parallel to L, but not coinciding with L, is a supporting line of A(1). Select a direction not included among the directions of all the supporting lines of A(1) at the point Q_3 and let Q_2 and Q_4 be two points of A(1) at which there are supporting lines, distinct from

each other, in this direction. The numbering is such that Q_1, Q_2, Q_3, Q_4 occur in the positive orientation around A(1). Consider these four supporting lines as taken in the positive direction in describing A(1), and let angles made by them with the positive x-axis be $\alpha_1, \alpha_2, \alpha_1 + \pi, \alpha_2 + \pi$, respectively, where

$$\alpha_1 < \alpha_2 < \alpha_1 + \pi < \alpha_2 + \pi.$$

Let the points on the circle r = R which are mapped onto Q_1, Q_2, Q_3, Q_4 , be denoted by q_1, q_2, q_3, q_4 , respectively. On the circle r = R denote the open arc from q_1 to q_3 (taken in the positive orientation and therefore including q_2) by B_1 , the open arc from q_2 to q_4 by B_2 , from q_3 to q_1 by B_3 , and from q_4 to q_2 by B_4 . Finally, let C_i be a closed arc on r = R contained in B_i , i = 1, 2, 3, 4, such that the C_i together cover r = R. Note that

$$(x_{\theta}, y_{\theta}) = (x_{\theta}^2 + y_{\theta}^2)^{1/2} (\cos \psi, \sin \psi),$$

$$(y_{\theta}, -x_{\theta}) = (x_{\theta}^2 + y_{\theta}^2)^{1/2} (\sin \psi, -\cos \psi).$$

Consider first the function

$$Y_1(r,\theta) = y(r,\theta)\cos\alpha_1 - x(r,\theta)\sin\alpha_1, \qquad (29.153)$$

which is a harmonic function of (r, θ) in A_R . Then

$$\frac{\partial Y_1(r,\theta)}{\partial \theta} = y_\theta(r,\theta) \cos \alpha_1 - x_\theta(r,\theta) \sin \alpha_1$$

= $(y_\theta, -x_\theta)(r,\theta) \bullet (\cos \alpha_1, \sin \alpha_1)$
= $(x_\theta^2 + y_\theta^2)^{1/2} (\sin \psi, -\cos \psi) \bullet (\cos \alpha_1, \sin \alpha_1)$
= $(x_\theta^2 + y_\theta^2)^{1/2} \sin(\psi - \alpha_1).$ (29.154)

On the arc B_1 of r = R, the function $Y_1(R, \theta)$ is a monotonically increasing function of θ , since the arc B_1 corresponds to the portion of A(1) from Q_1 to Q_3 ; thus $\alpha_1 \leq \psi \leq \varphi$ $\alpha_1 + \pi$. In analogy to the proof of Lemma 29.4, the formula for $\frac{\partial \overline{Y}_1(r,\theta)}{\partial \theta}$ is

$$\frac{\partial Y_1(r,\theta)}{\partial \theta} = \left(\int_{B_1} + \int_{CB_1}\right) P dY_1(R,\phi)$$
(29.155)

where CB_1 is the complement of B_1 . The first integral in (29.155) is ≥ 0 for all (r, θ) , since $Y_1(R, \phi)$ is an increasing function of ϕ in B_1 ; the second integral in (29.155) approaches 0 as (r, θ) approaches an interior point of B_1 . Thus

$$\lim \inf_{(r,\theta)\to C_1} \frac{\partial \overline{Y}_1(r,\theta)}{\partial \theta} \ge 0.$$

It follows that likewise

$$\lim \inf_{(r,\theta)\to C_1} \frac{\partial Y_1(r,\theta)}{\partial \theta} \ge 0.$$
(29.156)

Take a positive ϵ and $\epsilon_1 = (\log R)^{-1} \epsilon$ such that

$$\delta = \arcsin \epsilon < \min \left(\frac{\alpha_2 - \alpha_1}{2}, \frac{\alpha_1 + \pi - \alpha_2}{2} \right).$$

By (29.156) there is a region R_1 in A_R , enclosing C_1 , for which

$$\frac{\partial Y_1(r,\theta)}{\partial \theta} > -\epsilon_1, \quad (r,\theta) \in R_1.$$

From (29.150) and (29.154) we therefore see that

$$\sin(\psi - \alpha_1) > -\epsilon \quad \text{in} \quad R_1. \tag{29.157}$$

Selecting a determination of ψ at a particular point of R_1 , we have

$$-\delta < \psi - \alpha_1 < \pi + \delta \quad \text{in} \quad R_1. \tag{29.158}$$

A similar argument applies to each of the other arcs B_2 , B_3 , B_4 of the circle r = R, with α_2 , $\alpha_1 + \pi$, $\alpha_2 + \pi$, respectively, replacing α_1 in (29.153)-(29.158). On B_2 the function $Y_2 = y \cos \alpha_2 - x \sin \alpha_2$ is an increasing function of θ , leading to the result

$$\lim \inf_{(r,\theta)\to C_2} \frac{\partial Y_2(r,\theta)}{\partial \theta} \ge 0.$$

There is, therefore, a region R_2 of A_R , enclosing C_2 , for which

$$\frac{\partial Y_2(r,\theta)}{\partial \theta} > -\epsilon_1, \quad (r,\theta) \in R_2.$$

And we have, analogously to (29.157),

$$\sin(\psi - \alpha_2) > -\epsilon$$
 in R_2 .

But this means, from (29.158), begin with an already determined ψ in the region common to R_1 , R_2 , that

$$-\delta < \psi - \alpha_2 < \pi + \delta$$
 in R_2 .

Similar arguments apply successively to the determination of the regions R_3 , R_4 and of the corresponding inequalities for ψ :

$$-\delta < \psi - (\alpha_1 + \pi) < \pi + \delta \text{ in } R_3, \quad -\delta < \psi - (\alpha_2 + \pi) < \pi + \delta \text{ in } R_4.$$
 (29.159)

Therefore, in the portion common to R_4 and R_1 , the value of ψ returns to its initial value plus exactly 2π , or the period of ψ is exactly 2π .

The regions R_1 , R_2 , R_3 , R_4 , together form a neighbourhood of the circle r = R in A_R .

A similar argument as the above applies to the inner circle r = 1/R and A(-1). By continuity, ψ has period 2π for every $1/R \leq r \leq R$.

Let θ be a value in the set I and take the limit of $\psi(r, \theta)$ as $r \to R$. By (29.151), (29.152) the limit of $\psi(r, \theta)$ is $\psi(R, \theta)$ modulo 2π . But the inequalities (29.157), (29.158), (29.159) show that the limit must be exactly $\psi(R, \theta)$. The lemma is proved. \Box

We can now establish the inequality

$$\psi_{\theta}(r,\theta) > 0 \tag{29.160}$$

everywhere in the interior of A_R . Let $G = G(R, \phi, r, \theta)$ be the Green's function for the annular ring A_R , with singularity at (r, θ) . In its dependence on ϕ and θ , G is a function of $\phi - \theta$. We have

$$\psi(r,\theta) - \theta = \int_{\partial A_R} [\psi(r,\phi) - \phi] \frac{\partial G}{\partial \nu} ds$$

$$= \int_{r=R} [\psi(R,\phi) - \phi] R \frac{\partial G}{\partial \nu} d\phi + \int_{r=R^{-1}} [\psi(R^{-1},\phi) - \phi] R^{-1} \frac{\partial G}{\partial \nu} d\phi,$$
(29.161)

where ν is the inward normal. This follows by considering the analogous formula for an interior annular ring, and performing the passage to the limit. Differentiating (29.162) with respect to θ , using $\partial(\partial G/\partial \nu)/\partial \theta = -\partial(\partial G/\partial \nu)/\partial \phi$, and intergrating by parts, we find

$$\psi_{\theta} - 1 = \int_{r=R} R \frac{\partial G}{\partial \nu} d[\psi(R,\phi) - \phi] + \int_{r=R^{-1}} R^{-1} \frac{\partial G}{\partial \nu} d[\psi(R^{-1},\phi) - \phi]$$

or

$$\psi_{\theta} = \int_{r=R} \frac{\partial G}{\partial \nu} R \, d\psi(R,\phi) + \int_{r=R^{-1}} \frac{\partial G}{\partial \nu} R^{-1} d\psi(R^{-1},\phi),$$

since

$$\int_{r=R} \frac{\partial G}{\partial \nu} R d\phi + \int_{r=R^{-1}} \frac{\partial G}{\partial \nu} R^{-1} d\phi = \int_{\partial A_R} \frac{\partial G}{\partial \nu} ds = 1.$$

Since $\partial G/\partial \nu > 0$ and $\psi(R, \phi)$, $\psi(R^{-1}, \phi)$ are monotonic increasing functions of ϕ of period 2π , inequality (29.160) is obtained. Thus each A(t) is a closed strictly convex curve and has total curvature 2π , so it must be a Jordan curve. Therefore, X must be an embedding. Theorem 29.1 is proved.

Theorem 29.2 is a special case of Theorem 30.1 in the next section, so we will postpone the proof until then. Instead we will prove Theorem 29.3 next.

Proof of Theorem 29.3 : We can assume that ∂A is symmetric with respect to the xz-plane. By Theorem 29.1, each A(z) is a strictly convex Jordan curve for -1 < z < 1; hence there are exactly two points on $A \cap P_z$ at which the supporting lines of A(z) are perpendicular to the xz-plane. Varying z we get two curves on A, say α_1 and α_2 . Let P be the orthogonal projection on the xz-plane. The A consists of two pieces of graphs on the domain $\Omega = P(A) \subset xz$ -plane, thus we have $(x, y_i(x, z), z), i = 1, 2$. Moreover, $\partial \Omega = \Gamma_1 \cup \Gamma_2$, where Γ_1 is the projection of $A(1) \cup A(-1)$ and $\Gamma_2 = P(\alpha_1 \cup \alpha_2)$. It is clear that on Γ_2 the graphs $(x, y_i(x, z), z)$ are perpendicular to the xz-plane.

Now assume that A(1) and A(-1) are strictly convex. Reflecting the graph generated by y_2 about the *xz*-plane we get a minimal graph generated by $\tilde{y}_2 = -y_2 : \Omega \to \mathbf{R}$. On Γ_1 , we have $\tilde{y}_2 = y_1$ by the boundary symmetry. A theorem of Giusti ([22] Lemma 2.2) says that if $(x, y_1(x, z), z)$ and $(x, \tilde{y}_2(x, z), z)$ are perpendicular to the *xz*-plane on Γ_2 and $y_1 \geq \tilde{y}_2$ on Γ_1 , then $y_1 \geq \tilde{y}_2$ on Ω . Since $y_1 = \tilde{y}_2$ on Γ_1 , we have $y_1 = \tilde{y}_2$ in Ω .

If A(1) or A(-1) is not strictly convex, then by continuity of the surface, we know that for any $\epsilon > 0$ there is a $\delta > 0$ so small that $y_1(x, 1-t) \ge \tilde{y}_2(x, 1-t) - \epsilon$ and $y_1(x, -1+t) \ge \tilde{y}_2(x, -1+t) - \epsilon$ for $0 < t < \delta$. Thus on $\Omega \cap \{(x, z) \mid -1+\delta < z < 1-\delta\},$ $y_1 \ge \tilde{y}_2$. Letting $\epsilon \to 0$, we have $y_1 \ge \tilde{y}_2$ in Ω . Changing the role of y_1 and \tilde{y}_2 , we have $y_1 = \tilde{y}_2$ in Ω .

But $y_1 = \tilde{y}_2$ means that A is symmetric about the xz-plane, the proof is complete.