29 Shiffman's Theorems

Recall that we defined a CBA as a minimal annulus $A \in S(-1,1)$ such that $A(1)=$ $A \cap P_{1}$ and $A(-1)=A \cap P_{-1}$ are continuous convex Jordan curves. In the article [76] published in 1956, Max Shiffman proved three elegant theorems about a CBA. They are as follows:

Theorem 29.1 If A is a $C B A$, then $A \cap P_{t}$ is a strictly convex Jordan curve for every $-1<t<1$. In particular, $X: A_{R} \hookrightarrow S(-1,1)$ is an embedding.

Theorem 29.2 If A is a $C B A$ and $\Gamma=\partial A$ is a union of circles, then $A \cap P_{t}$ is a circle for every $-1 \leq t \leq 1$.

Theorem 29.3 If A is a $C B A$ and $\Gamma=\partial A$ is symmetric with respect to a plane perpendicular to $x y$-plane, then A is symmetric with respect to the same plane.

We are going to prove the three Shiffman's theorems by means of the EnneperWeierstrass representation. We have already proved a weaker version of Theorem 29.1, namely Theorem 27.2

Let us first prove Theorem 29.1. We follow the proof of Shiffman. We will write the immersion as $X=(x, y, z)$. For any $\zeta=r e^{i \theta} \in A_{R}$, since X is conformal, by (27.124) we have

$$
x_{\theta}^{2}+y_{\theta}^{2}=r^{2}\left(x_{r}^{2}+y_{r}^{2}\right)+\frac{1}{(\log R)^{2}} .
$$

The immersion $X: A_{R} \hookrightarrow S(-1,1)$ satisfies

$$
\begin{equation*}
x_{\theta}^{2}+y_{\theta}^{2} \geq \frac{1}{(\log R)^{2}} . \tag{29.150}
\end{equation*}
$$

Since X is continuous on $A_{R}, A(1)$ and $A(-1)$ are convex and hence rectifiable. Moreover, $x(R, \theta)$ and $y(R, \theta)$ are functions of bounded variation. Thus $x_{\theta}(R, \theta)$ and $y_{\theta}(R, \theta)$ exist almost everywhere. Let I denote the set on which $x_{\theta}(R, \theta)$ and $y_{\theta}(R, \theta)$ both exist. We will first prove that:

Lemma 29.4 For any $\theta \in I$,

$$
\begin{equation*}
\lim _{r \rightarrow R} x_{\theta}(r, \theta)=x_{\theta}(R, \theta), \quad \lim _{r \rightarrow R} y_{\theta}(r, \theta)=y_{\theta}(R, \theta), \tag{29.151}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{\theta}^{2}(R, \theta)+y_{\theta}^{2}(R, \theta) \geq \frac{1}{(\log R)^{2}} . \tag{29.152}
\end{equation*}
$$

Proof. Let \bar{x} and \bar{y} be harmonic functions defined over the disk $D_{R}:=r \leq R$ with boundary values given by $x(R, \theta)$ and $y(R, \theta)$ respectively. The functions $x(r, \theta)-\bar{x}(r, \theta)$ and $y(r, \theta)-\bar{y}(r, \theta)$, being harmonic in A_{R} and having the boundary value 0 on $r=R$, can be extended across $r=R$ by reflection. Thus

$$
x_{\theta}(r, \theta)-\bar{x}_{\theta}(r, \theta) \rightarrow 0, \quad y_{\theta}(r, \theta)-\bar{y}_{\theta}(r, \theta) \rightarrow 0
$$

as $r \rightarrow R$.
Let P be the Poisson kernel of D_{R},

$$
P\left(R e^{i \phi}, r e^{i \theta}\right)=\frac{1}{2 \pi} \frac{R^{2}-r^{2}}{R^{2}+r^{2}-2 R r \cos (\phi-\theta)}
$$

Then the harmonic function \bar{x} can be expressed as

$$
\bar{x}(r, \theta)=\int_{0}^{2 \pi} x(R, \phi) P\left(R e^{i \phi}, r e^{i \theta}\right) d \phi
$$

Differentiating, we have

$$
\bar{x}_{\theta}(r, \theta)=\int_{0}^{2 \pi} x(R, \phi) \frac{\partial P}{\partial \theta} d \phi=-\int_{0}^{2 \pi} x(R, \phi) \frac{\partial P}{\partial \phi} d \phi=\int_{0}^{2 \pi} P d x(R, \phi)
$$

It follows, as in the proof of theorem of Fatou (see [59] pages 198-200) that

$$
\lim _{r \rightarrow R} \bar{x}_{\theta}(r, \theta)=x_{\theta}(R, \theta)
$$

on I. Similarly for y_{θ}. From (29.150) it is obvious that (29.152) is true.
Consider the harmonic function $\psi(r, \theta)$, the angle of the tangent vector of $A \cap P_{t}$ with the positive x-axis. We denote the angle defined by the tangent direction at $A(1)$ by $\psi(R, \theta)$ on I. Because of the convexity of $A(1), \psi(R, \theta)$ is a monotonic function of θ on I of period $\pm 2 \pi$. We can assume that the period is 2π, and we shall call the orientation described on $A(1)$ as θ varies from 0 to 2π the positive orientation of $A(1)$. The following lemma will be proved.

Lemma 29.5 The period of $\psi(r, \theta)$ is exactly 2π, and

$$
\lim _{r \rightarrow R} \psi(r, \theta)=\psi(R, \theta) \quad \text { for } \theta \in I
$$

The single valued function $\psi(r, \theta)-\theta$ is a bounded harmonic function in A_{R}.
Proof. Consider the convex curve $A(1)$. Select a point Q_{1} on $A(1)$ at which there is a unique supporting line L of $A(1)$, and let Q_{3} be a point on $A(1)$ where a line parallel to L, but not coinciding with L, is a supporting line of $A(1)$. Select a direction not included among the directions of all the supporting lines of $A(1)$ at the point Q_{3} and let Q_{2} and Q_{4} be two points of $A(1)$ at which there are supporting lines, distinct from
each other, in this direction. The numbering is such that $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ occur in the positive orientation around $A(1)$. Consider these four supporting lines as taken in the positive direction in describing $A(1)$, and let angles made by them with the positive x-axis be $\alpha_{1}, \alpha_{2}, \alpha_{1}+\pi, \alpha_{2}+\pi$, respectively, where

$$
\alpha_{1}<\alpha_{2}<\alpha_{1}+\pi<\alpha_{2}+\pi .
$$

Let the points on the circle $r=R$ which are mapped onto $Q_{1}, Q_{2}, Q_{3}, Q_{4}$, be denoted by $q_{1}, q_{2}, q_{3}, q_{4}$, respectively. On the circle $r=R$ denote the open arc from q_{1} to q_{3} (taken in the positive orientation and therefore including q_{2}) by B_{1}, the open arc from q_{2} to q_{4} by B_{2}, from q_{3} to q_{1} by B_{3}, and from q_{4} to q_{2} by B_{4}. Finally, let C_{i} be a closed arc on $r=R$ contained in $B_{i}, i=1,2,3,4$, such that the C_{i} together cover $r=R$.

Note that

$$
\begin{aligned}
\left(x_{\theta}, y_{\theta}\right) & =\left(x_{\theta}^{2}+y_{\theta}^{2}\right)^{1 / 2}(\cos \psi, \sin \psi) \\
\left(y_{\theta},-x_{\theta}\right) & =\left(x_{\theta}^{2}+y_{\theta}^{2}\right)^{1 / 2}(\sin \psi,-\cos \psi)
\end{aligned}
$$

Consider first the function

$$
\begin{equation*}
Y_{1}(r, \theta)=y(r, \theta) \cos \alpha_{1}-x(r, \theta) \sin \alpha_{1} \tag{29.153}
\end{equation*}
$$

which is a harmonic function of (r, θ) in A_{R}. Then

$$
\begin{align*}
\frac{\partial Y_{1}(r, \theta)}{\partial \theta} & =y_{\theta}(r, \theta) \cos \alpha_{1}-x_{\theta}(r, \theta) \sin \alpha_{1} \\
& =\left(y_{\theta},-x_{\theta}\right)(r, \theta) \cdot\left(\cos \alpha_{1}, \sin \alpha_{1}\right) \\
& =\left(x_{\theta}^{2}+y_{\theta}^{2}\right)^{1 / 2}(\sin \psi,-\cos \psi) \cdot\left(\cos \alpha_{1}, \sin \alpha_{1}\right) \\
& =\left(x_{\theta}^{2}+y_{\theta}^{2}\right)^{1 / 2} \sin \left(\psi-\alpha_{1}\right) \tag{29.154}
\end{align*}
$$

On the arc B_{1} of $r=R$, the function $Y_{1}(R, \theta)$ is a monotonically increasing function of θ, since the arc B_{1} corresponds to the portion of $A(1)$ from Q_{1} to Q_{3}; thus $\alpha_{1} \leq \psi \leq$ $\alpha_{1}+\pi$. In analogy to the proof of Lemma 29.4 , the formula for $\frac{\partial \bar{Y}_{1}(r, \theta)}{\partial \theta}$ is

$$
\begin{equation*}
\frac{\partial \bar{Y}_{1}(r, \theta)}{\partial \theta}=\left(\int_{B_{1}}+\int_{C B_{1}}\right) P d Y_{1}(R, \phi) \tag{29.155}
\end{equation*}
$$

where $C B_{1}$ is the complement of B_{1}. The first integral in (29.155) is ≥ 0 for all (r, θ), since $Y_{1}(R, \phi)$ is an increasing function of ϕ in B_{1}; the second integral in (29.155) approaches 0 as (r, θ) approaches an interior point of B_{1}. Thus

$$
\lim \inf _{(r, \theta) \rightarrow C_{1}} \frac{\partial \bar{Y}_{1}(r, \theta)}{\partial \theta} \geq 0
$$

It follows that likewise

$$
\begin{equation*}
\lim \inf _{(r, \theta) \rightarrow C_{1}} \frac{\partial Y_{1}(r, \theta)}{\partial \theta} \geq 0 \tag{29.156}
\end{equation*}
$$

Take a positive ϵ and $\epsilon_{1}=(\log R)^{-1} \epsilon$ such that

$$
\delta=\arcsin \epsilon<\min \left(\frac{\alpha_{2}-\alpha_{1}}{2}, \frac{\alpha_{1}+\pi-\alpha_{2}}{2}\right) .
$$

By (29.156) there is a region R_{1} in A_{R}, enclosing C_{1}, for which

$$
\frac{\partial Y_{1}(r, \theta)}{\partial \theta}>-\epsilon_{1}, \quad(r, \theta) \in R_{1} .
$$

From (29.150) and (29.154) we therefore see that

$$
\begin{equation*}
\sin \left(\psi-\alpha_{1}\right)>-\epsilon \quad \text { in } R_{1} . \tag{29.157}
\end{equation*}
$$

Selecting a determination of ψ at a particular point of R_{1}, we have

$$
\begin{equation*}
-\delta<\psi-\alpha_{1}<\pi+\delta \text { in } R_{1} . \tag{29.158}
\end{equation*}
$$

A similar argument applies to each of the other arcs B_{2}, B_{3}, B_{4} of the circle $r=R$, with $\alpha_{2}, \alpha_{1}+\pi, \alpha_{2}+\pi$, respectively, replacing α_{1} in (29.153)-(29.158). On B_{2} the function $Y_{2}=y \cos \alpha_{2}-x \sin \alpha_{2}$ is an increasing function of θ, leading to the result

$$
\lim \inf _{(r, \theta) \rightarrow C_{2}} \frac{\partial Y_{2}(r, \theta)}{\partial \theta} \geq 0
$$

There is, therefore, a region R_{2} of A_{R}, enclosing C_{2}, for which

$$
\frac{\partial Y_{2}(r, \theta)}{\partial \theta}>-\epsilon_{1}, \quad(r, \theta) \in R_{2} .
$$

And we have, analogously to (29.157),

$$
\sin \left(\psi-\alpha_{2}\right)>-\epsilon \text { in } R_{2} .
$$

But this means, from (29.158), begin with an already determined ψ in the region common to R_{1}, R_{2}, that

$$
-\delta<\psi-\alpha_{2}<\pi+\delta \text { in } R_{2} .
$$

Similar arguments apply successively to the determination of the regions R_{3}, R_{4} and of the corresponding inequalities for ψ :

$$
\begin{equation*}
-\delta<\psi-\left(\alpha_{1}+\pi\right)<\pi+\delta \text { in } R_{3}, \quad-\delta<\psi-\left(\alpha_{2}+\pi\right)<\pi+\delta \text { in } R_{4} . \tag{29.159}
\end{equation*}
$$

Therefore, in the portion common to R_{4} and R_{1}, the value of ψ returns to its initial value plus exactly 2π, or the period of ψ is exactly 2π.

The regions $R_{1}, R_{2}, R_{3}, R_{4}$, together form a neighbourhood of the circle $r=R$ in A_{R}.

A similar argument as the above applies to the inner circle $r=1 / R$ and $A(-1)$. By continuity, ψ has period 2π for every $1 / R \leq r \leq R$.

Let θ be a value in the set I and take the limit of $\psi(r, \theta)$ as $r \rightarrow R$. By (29.151), (29.152) the limit of $\psi(r, \theta)$ is $\psi(R, \theta)$ modulo 2π. But the inequalities (29.157), (29.158), (29.159) show that the limit must be exactly $\psi(R, \theta)$. The lemma is proved.

We can now establish the inequality

$$
\begin{equation*}
\psi_{\theta}(r, \theta)>0 \tag{29.160}
\end{equation*}
$$

everywhere in the interior of A_{R}. Let $G=G(R, \phi, r, \theta)$ be the Green's function for the annular ring A_{R}, with singularity at (r, θ). In its dependence on ϕ and θ, G is a function of $\phi-\theta$. We have

$$
\begin{align*}
\psi(r, \theta)-\theta & =\int_{\partial A_{R}}[\psi(r, \phi)-\phi] \frac{\partial G}{\partial \nu} d s \tag{29.161}\\
& =\int_{r=R}[\psi(R, \phi)-\phi] R \frac{\partial G}{\partial \nu} d \phi+\int_{r=R^{-1}}\left[\psi\left(R^{-1}, \phi\right)-\phi\right] R^{-1} \frac{\partial G}{\partial \nu} d \phi
\end{align*}
$$

where ν is the inward normal. This follows by considering the analogous formula for an interior annular ring, and performing the passage to the limit. Differentiating (29.162) with respect to θ, using $\partial(\partial G / \partial \nu) / \partial \theta=-\partial(\partial G / \partial \nu) / \partial \phi$, and intergrating by parts, we find

$$
\psi_{\theta}-1=\int_{r=R} R \frac{\partial G}{\partial \nu} d[\psi(R, \phi)-\phi]+\int_{r=R^{-1}} R^{-1} \frac{\partial G}{\partial \nu} d\left[\psi\left(R^{-1}, \phi\right)-\phi\right]
$$

or

$$
\psi_{\theta}=\int_{r=R} \frac{\partial G}{\partial \nu} R d \psi(R, \phi)+\int_{r=R^{-1}} \frac{\partial G}{\partial \nu} R^{-1} d \psi\left(R^{-1}, \phi\right)
$$

since

$$
\int_{r=R} \frac{\partial G}{\partial \nu} R d \phi+\int_{r=R^{-1}} \frac{\partial G}{\partial \nu} R^{-1} d \phi=\int_{\partial A_{R}} \frac{\partial G}{\partial \nu} d s=1
$$

Since $\partial G / \partial \nu>0$ and $\psi(R, \phi), \psi\left(R^{-1}, \phi\right)$ are monotonic increasing functions of ϕ of period 2π, inequality (29.160) is obtained. Thus each $A(t)$ is a closed strictly convex curve and has total curvature 2π, so it must be a Jordan curve. Therefore, X must be an embedding. Theorem 29.1 is proved.

Theorem 29.2 is a special case of Theorem 30.1 in the next section, so we will postpone the proof until then. Instead we will prove Theorem 29.3 next.
Proof of Theorem 29.3: We can assume that ∂A is symmetric with respect to the $x z$-plane. By Theorem 29.1, each $A(z)$ is a strictly convex Jordan curve for $-1<z<1$; hence there are exactly two points on $A \cap P_{z}$ at which the supporting lines of $A(z)$ are perpendicular to the $x z$-plane. Varying z we get two curves on A, say α_{1} and α_{2}. Let P be the orthogonal projection on the $x z$-plane. The A consists of two pieces of graphs on the domain $\Omega=P(A) \subset x z$-plane, thus we have $\left(x, y_{i}(x, z), z\right), i=1,2$. Moreover, $\partial \Omega=\Gamma_{1} \cup \Gamma_{2}$, where Γ_{1} is the projection of $A(1) \cup A(-1)$ and $\Gamma_{2}=P\left(\alpha_{1} \cup \alpha_{2}\right)$. It is clear that on Γ_{2} the graphs $\left(x, y_{i}(x, z), z\right)$ are perpendicular to the $x z$-plane.

Now assume that $A(1)$ and $A(-1)$ are strictly convex. Reflecting the graph generated by y_{2} about the $x z$-plane we get a minimal graph generated by $\tilde{y}_{2}=-y_{2}: \Omega \rightarrow \mathbf{R}$. On Γ_{1}, we have $\tilde{y}_{2}=y_{1}$ by the boundary symmetry. A theorem of Giusti ([22] Lemma 2.2) says that if $\left(x, y_{1}(x, z), z\right)$ and $\left(x, \tilde{y}_{2}(x, z), z\right)$ are perpendicular to the $x z$-plane on Γ_{2} and $y_{1} \geq \tilde{y}_{2}$ on Γ_{1}, then $y_{1} \geq \tilde{y}_{2}$ on Ω. Since $y_{1}=\tilde{y}_{2}$ on Γ_{1}, we have $y_{1}=\tilde{y}_{2}$ in Ω.

If $A(1)$ or $A(-1)$ is not strictly convex, then by continuity of the surface, we know that for any $\epsilon>0$ there is a $\delta>0$ so small that $y_{1}(x, 1-t) \geq \tilde{y}_{2}(x, 1-t)-\epsilon$ and $y_{1}(x,-1+t) \geq \tilde{y}_{2}(x,-1+t)-\epsilon$ for $0<t<\delta$. Thus on $\Omega \cap\{(x, z) \mid-1+\delta<z<1-\delta\}$, $y_{1} \geq \tilde{y}_{2}$. Letting $\epsilon \rightarrow 0$, we have $y_{1} \geq \tilde{y}_{2}$ in Ω. Changing the role of y_{1} and \tilde{y}_{2}, we have $y_{1}=\tilde{y}_{2}$ in Ω.

But $y_{1}=\tilde{y}_{2}$ means that A is symmetric about the $x z$-plane, the proof is complete.

