
28 The Existence of Minimal Annuli in a Slab 

Given two Jordan curves f 1 , f 2 in R 3 , does r := f 1 Uf2 bound a minimal annulus? 
This is called the Douglas-Plateau problem which is a generalisation of the original 
Plateau problem. If the answer to the Douglas-Plateau problem for a given r is yes, 
then we can ask that how many such minimal annuli are there? 

These are very hard and interesting problems. Generally, they are attacked with 
concepts and techniques, such as those from the geometric measure theory which are 
quite different from the classical setting as in our notes, 

One classical result due to Douglas says that if .!h and A2 are the areas least area 
minimal disks bounded by r 1 and r 2 respectively, and 

inf{Area(S)} < A1 + 

then there is a minimal annulus bounded by r. Here the infimum is taken over all 
surfaces of annular type bounded by r. See [13], or [9]. 

In many cases the answers to the Douglas-Plateau problem are no. One example is 
that of two coaxial unit circles and C2 . If the distance d between their centres is 
large then C1 U cannot bound a catenoid, and therefore as Shiffman's second theorem 
(Theorem 29.2) C1 u C2 cannot bound a minimal annulus. 

vVhen f 1 and r 2 are smooth convex planar Jordan curves lying in 
different) planes, the Douglas-Plateau problem has a very ansv1er. The 
combined result of Hoffman and Meeks [28], and Meeks and 

Let r = r 1 U r 2 . Then there are exactly three cases: 

1. There are exactly two minimal anmtli bounded by r, one is stable and one ;;s 
unstable. 

2. There is a unique minimal annulus A bounded by r; it is almost stable in the sense 
that the first eigenvalue of LA is zero. This case is not generic. 

3. There are no minimal annuli bounded by r. 

4. Moreover, if A is a minimal annulus bounded by r, then the 
A is the same as the symmetry group of r. 

group of 

We are not going to discuss the Douglas-Plateau problem in these notes. Rather, we 
would like to point out some necessary conditions on r if it bounds a minimal annulus. 

The next theorem is due to Osserman and Schiffer [70], we follow their proof. 

Theorem 28.1 Let o1 , o2 , c, d be posit,ive ntlmbers satisfying 

(28.130) 
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Let r 1 and r 2 be closed curves in R 3 . Let 

D2 := {x E R 3 1 (x1- c)2 +x~ < o~,x3 = d}. 

Then if r 1 c D 1 and f 2 c D2, there does not exist any minimal annulus spanning f 1 
and f 2 . More generally, the same conclusion holds if we replace Di by DL i = 1, 2, 
where 

D~ := {X E R 3
1 ( X1 - ~X3 r +X~ :S oi, X3 :S 0} , 

D; := {X E R3
1 (x1- ~X3 r +X~ :S 0~, X3 ~ d}. 

Remark 28.2 Note that r 1 or f 2 need not be Jordan curves. Moreover, the theorem 
is true for minimal annuli in Rn where n ~ 3, with the same proof, see [70]. 

Suppose f 1 c Po and f 2 c Pd. Let C1 and C2 in P0 and Pd be the smallest circles 
which enclose r 1 and r 2 respectively. Let their radii be 61 and 62 . The vertical distance 
between the centres of C1 and C2 is of course d. Let c be the horizontal distance between 
the centres of C1 and C2 . Since we can alway adopt coordinates such that C1 and C2 

are the boundaries of D 1 and D 2 in Theorem 28.1, we conclude that if f 1 and f 2 span 
a minimal annulus then 

(; + d2 r/2 
:S 61 + 62. (28.131) 

In case f 1 and f 2 are Jordan curves, this is a result of Nitsche, see [63]. 

To prove Theorem 28.1 we need a lemma. 

Lemma 28.3 Let u be harmonic in an annulus A:= {r1 :S lzl :S r 2 }. Suppose b ~a, 
and 

ln211" 8u iO b - a 
r-8 (re )dB ~ 21r 1 ( I )' 

o r og r2 T1 

Proof. Given E > 0, let 

b-a-E r 
v:=u-a- log-. 

log(r2/rl) r1 
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Then v is harmonic in A, and 

(28.132) 

Choose E1, 0 < E1 < E, such that Dv # 0 on the level curve C := {z E A I v(z) = E1}. 

Then C must consist of one or more analytic Jordan curves. But if any subset C' of C 
bounds a domain Sl c A, the function v would be constant on Sl, hence in the whole A, 
which contradicts (28.132). Thus C consists of a single curve not homologous to zero. 
Choose o such that 

r1 < o <min lzl. 
zEC 

Then Cis homologous to the circle lzl = o, and hence 

J av ds = 1 av ds. 
can lzi=J an 

But v :2: E1 outside c and v = E1 on C. Therefore avjon :2: 0 on c, where ojon is the 
exterior normal derivative. Thus 

Using the explicit expression for v, we obtain 

121f OU iO b - a - E 
--;::;-(oe )ode221r1 ( 1 )" 

o ur og r2 r1 

Since u is harmonic, the expression on the left side is independent of o, hence this 
inequality holds on every circle lzl = r. Since E was arbitrary, the lemma is proved. D 

Proof of Theorem 28.1. Suppose X : A = {r1 :::; lzl :::; T2 } '---+ R 3 is a minimal 
annulus such that XI is a parametrisation of ri, i = 1, 2. We shall show that 

lzl=ri 
(28.130) cannot hold. 

We define a function u(z) in A by 

Using the fact that Xi's are harmonic, one can calculate that 

by (6.19). 
We assert next that if b is an arbitrary real number then 

b2 
min{lw- W + lw2 + 11} = 2 + 1, 
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where the minimum is taken over all complex numbers w. Namely, setting w = b + reiiJ 
' gives 

lw- W + lw2 + 11 r2 + lb2 + 2brei1J + r2e2iiJ + 11 
> r2 + b2 + 1 + 2br cos e + r2 cos 2e 

b2 + 1 + 2br cos e + 2r2 cos2 e (28.135) 

b2 + 1 + 2r2 (cose + !!_) 2
- b2 > b2 + 1. 

2r 2 - 2 

This gives a lower bound which is actually attained when w = b/2. This proves (28.134). 
Returning to 6.u, we therefore have 

Using the notation 

t = logr, 1 1211" U(t) = - u(reie)de, 
21f 0 

we find, as in the proof of Lemma 25.1, that 

(28.136) 

But 

(28.137) 

by virtue of (25.114). Now the assumption that f 1 c D~, f 2 c D~ implies that 
X3 (r1eiiJ) ~ 0 and X3 (r2ei1J) 2: d. By Lemma 28.3, we have 

(28.138) 

where 
(28.139) 

Combining (28.136), (28.137), (28.138) gives 

(28.140) 

140 



By the definition of D~, the statement ri c D~ implies u(rei0 ) ::; 67, and hence 

We may assume that t 1 = log r 1 = 0 and t 2 = log r 2 = T. Set 

so that (28.140) becomes 
d2U 2B 
->- O<t<T. 
dt2 - T 2 ' 

Define V(t) to be the parabola 

satisfying 
d2V 2B 
dt2 T 2 , V(O) = 6i, V(T) = 6~. 

It follows from (28.141), (28.143), (28.144) that 

U(t) ::; V(t), 0 < t < T. 

The conditions (28.144) determine the coefficients a, b of V: 

B 
a= T2' b = ~ ( 6~ - 5i - B) T . 

Since a> 0, V(t) has a minimum at t = t0 , where 

It follows that 

Thus 

to=_!!_ = T (~- 6~- 6?) . 
2a 2 2B 

t 0 > 0 <=? 5~ - 6f < B, 

t 0 < T <* 6~ - 6i > -B. 

0 <to < T <* 15~- 6il <B. 

(28.141) 

(28.142) 

(28.143) 

(28.144) 

(28.145) 

(28.146) 

(28.147) 

(28.148) 

We consider two cases, according to whether (28.148) does or does not hold. If it 
does not hold, then 

(28.149) 

On the other hand, if (28.148) does hold, then, by virtue of (28.145) and the fact that 
U(t) > 0 for all t, 

li(to) ~ U(to) > 0. 
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But by (28.146) and (28.147), 

V(to) 
b2 

--+82 >0 
4a 1 

9 b2 < 4a8i 9 (8~- 8i) - 2B(8~ + 8i) + B2 < 0 

::::? B < (8~ + 8i) + V(8~ + 8i)2 - (8~- 8i)2 = (82 + 81)2. 

Comparing with (28.149), we see in both cases we must have B < (81 + 82 ) 2 . But 
going back to the definition (28.142) of B, we see that under the assumption that a 
spanning surface exists, inequality (28.130) must be violated. This proves the theorem.· 
D 
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