26 Isoperimetric Inequalities for Minimal Surfaces

It is well known that for a plane Jordan curve with length L, the area \mathbf{A} enclosed by the curve is less than or equal to $L^{2} / 4 \pi$, with equality holding if and only if the curve is a circle. In this section we give such isoperimetric inequalities for simply or doubly connected minimal surfaces. For more general discussions and applications of the isoperimetric inequalities the reader can see [69].

The proof of the next theorem is from [68].
Theorem 26.1 Let $M \subset \mathbb{R}^{3}$ be an immersed simply connected minimal surface with $C=\partial M$ a closed curve. Let L be the arclength of C, \mathbf{A} the area of M, then

$$
\begin{equation*}
L^{2}-4 \pi \mathbb{A} \geq 0 \tag{26.118}
\end{equation*}
$$

Proof. From (3.6) we have

$$
2 \mathbf{A}=\int_{C}(X-a) \bullet \vec{n} d s
$$

for any $a \in \mathbb{R}^{3}$. Here X is the coordinate function of M, \vec{n} is the outward unit conormal to C and $d s$ is the line element of C. Select $a \in C$. We need prove that

$$
2 \pi \int_{C}(X-a) \cdot \vec{n} d s \leq L^{2}
$$

Let $x(s)$ be the parametrisation of C by arclength and $x(0)=x(L)=a$. We want to select suitable frames in each $T_{x(s)} \mathbb{R}^{3}$. For this purpose, let $B(s): T_{x(s)} M \rightarrow T_{x(s)} M$ be the linear mapping which rotates \vec{n} by $\pi / 2$ and is zero in $T_{x(s)}^{\perp}$. If we let $(\vec{n}, B \vec{n}, N)$ be the orthonormal basis of $T_{x(s)} \mathbb{R}^{3}$, then B has the matrix form

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

From this it is clear that

1. $|B v| \leq|v|$ for any $v \in \mathbb{R}^{3}$.
2. $u \cdot B v=-v \cdot B u$.

Let $\left(e_{1}, e_{2}, e_{3}\right)(s)$ be vector fields along C such that

$$
\begin{equation*}
e_{i}^{\prime}(s)=\frac{\pi}{L} B e_{i}(s), \quad i=1,2,3 \tag{26.119}
\end{equation*}
$$

and $\left(e_{1}, e_{2}, e_{3}\right)(0)$ is an orthonormal basis of \mathbf{R}^{3}. Then property 2 guarantees that $\left(e_{i} \bullet e_{j}\right)(s)$ is a constant, thus $\left(e_{1}, e_{2}, e_{3}\right)(s)$ is an orthonormal basis of \mathbf{R}^{3} for any $s \in[0, L]$. We can write

$$
x(s)-a=\sum_{i=1}^{3} c_{i}(s) e_{i}(s) .
$$

Then

$$
x^{\prime}(s)=\sum_{i=1}^{3} c_{i}^{\prime}(s) e_{i}(s)+\frac{\pi}{L} \sum_{i=1}^{3} c_{i}(s) B e_{i}(s)=\sum_{i=1}^{3} c_{i}^{\prime}(s) e_{i}(s)+\frac{\pi}{L} B[x(s)-a] .
$$

Thus

$$
\begin{aligned}
\left|x^{\prime}(s)\right|^{2}= & \frac{\pi}{L} x^{\prime}(s) \bullet B[x(s)-a]+x^{\prime}(s) \bullet \sum_{i=1}^{3} c_{i}^{\prime}(s) e_{i}(s) \\
= & \frac{\pi}{L} x^{\prime}(s) \bullet B[x(s)-a]+\left[\sum_{i=1}^{3} c_{i}^{\prime}(s) e_{i}(s)\right] \cdot\left[\sum_{i=1}^{3} c_{i}^{\prime}(s) e_{i}(s)\right] \\
& +\frac{\pi}{L} B[x(s)-a] \bullet\left[\sum_{i=1}^{3} c_{i}^{\prime}(s) e_{i}(s)\right] \\
= & \frac{\pi}{L} x^{\prime}(s) \bullet B[x(s)-a]+\sum_{i=1}^{3} c_{i}^{\prime}(s)^{2}+\frac{\pi}{L} B[x(s)-a] \bullet\left\{x^{\prime}(s)-\frac{\pi}{L} B[x(s)-a]\right\} \\
= & \frac{2 \pi}{L} x^{\prime}(s) \bullet B[x(s)-a]+\sum_{i=1}^{3} c_{i}^{\prime}(s)^{2}-\frac{\pi^{2}}{L^{2}} B[x(s)-a] \bullet B[x(s)-a] \\
= & \frac{2 \pi}{L} x^{\prime}(s) \bullet B[x(s)-a]+\sum_{i=1}^{3} c_{i}^{\prime}(s)^{2}-\frac{\pi^{2}}{L^{2}}|x(s)-a|^{2} \\
& +\frac{\pi^{2}}{L^{2}}\left(|x(s)-a|^{2}-|B[x(s)-a]|^{2}\right) \\
= & \frac{2 \pi}{L} x^{\prime}(s) \bullet B[x(s)-a]+\sum_{i=1}^{3}\left[c_{i}^{\prime}(s)^{2}-\frac{\pi^{2}}{L^{2}} c_{i}^{2}(s)\right] \\
& +\frac{\pi^{2}}{L^{2}}\left(|x(s)-a|^{2}-|B[x(s)-a]|^{2}\right) .
\end{aligned}
$$

Thus we have

$$
\frac{2 \pi}{L} x^{\prime}(s) \bullet B[x(s)-a]=\left|x^{\prime}(s)\right|^{2}-\sum_{i=1}^{3}\left[c_{i}^{\prime}(s)^{2}-\frac{\pi^{2}}{L^{2}} c_{i}^{2}(s)\right]-\frac{\pi^{2}}{L^{2}}\left(|x(s)-a|^{2}-|B(x(s)-a)|^{2}\right)
$$

Since $B x^{\prime}(s)=-\vec{n}$,

$$
[x(s)-a] \bullet \vec{n}=-[x(s)-a] \bullet B x^{\prime}(s)=x^{\prime}(s) \bullet B[x(s)-a],
$$

we find that

$$
2 \pi \int_{C}(X-a) \bullet \vec{n} d s=2 \pi \int_{0}^{L} x^{\prime}(s) \bullet B[x(s)-a] d s
$$

$$
=L^{2}-L \int_{0}^{L} \sum_{i=1}^{3}\left[c_{i}^{\prime}(s)^{2}-\frac{\pi^{2}}{L^{2}} c_{i}^{2}(s)\right] d s-\frac{\pi^{2}}{L} \int_{0}^{L}\left(|x(s)-a|^{2}-|B[x(s)-a]|^{2}\right) d s
$$

The fact $x(0)=a$ and $x^{\prime}(0)$ exists give that $c_{i}(0)=0, c_{i}^{\prime}(0) \in \mathbf{R}, i=1,2,3$, thus the functions

$$
b_{i}(s)=\frac{c_{i}(s)}{\sin \left(\frac{\pi s}{L}\right)}
$$

are well defined for $i=1,2,3$. Using the identities

$$
\begin{aligned}
c_{i}^{\prime}(s)^{2}-\frac{\pi^{2}}{L^{2}} c_{i}^{2}(s) & =b_{i}^{\prime}(s)^{2} \sin ^{2} \frac{\pi}{L}+\frac{\pi}{2 L} \frac{d}{d s}\left(b_{i}^{2}(s) \sin \frac{2 \pi s}{L}\right) \\
& =b_{i}^{\prime}(s)^{2} \sin ^{2} \frac{\pi}{L}+\frac{\pi}{L} \frac{d}{d s}\left(c_{i}^{2}(s) \cot \frac{\pi s}{L}\right)
\end{aligned}
$$

and $|B[x(s)-a]| \leq|x(s)-a|$, we obtain

$$
L^{2}-2 \pi \int_{C}[x(s)-a] \cdot \vec{n} d s \geq L \sum_{i=1}^{3} \int_{0}^{L} b_{i}^{\prime}(s)^{2} \sin ^{2} \frac{\pi s}{L} d s \geq 0
$$

Remark 26.2 This isoperimetric inequality is also true for simply connected minimal surfaces in $\mathbf{R}^{n}, n \geq 3$. The proof is the same as above. See [68].

Next we study the doubly connected case, the proof is from [70]. We will use the notation in the last section.

Theorem 26.3 Let \mathbf{A} be the area of a minimal annulus $X: A \hookrightarrow \mathbb{R}^{3}, L_{1}$ and L_{2} the length of its boundary curves C_{1} and C_{2}, and let $L=L_{1}+L_{2}$. If $\operatorname{Flux}(X)=0$ or there are no planes separating the two boundary curves, then

$$
\begin{equation*}
L_{1}^{2}+L_{2}^{2} \geq 4 \pi \mathbf{A} \tag{26.120}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
L^{2}-4 \pi \mathbf{A} \geq 2 L_{1} L_{2} \tag{26.121}
\end{equation*}
$$

For arbitrary minimal annulus, we have

$$
\begin{equation*}
L^{2}-4 \pi \mathbf{A} \geq 2 L_{1} L_{2}(1-\log 2) \tag{26.122}
\end{equation*}
$$

Proof. From the area formula (3.6) we have

$$
2 \mathbf{A}=\int_{C_{1}} X \bullet \vec{n} d s+\int_{C_{2}} X \bullet \vec{n} d s
$$

In the proof of Theorem 26.1, we have

$$
M_{1}:=L_{1}^{2}-2 \pi \int_{C_{1}}\left(X-p_{1}\right) \cdot \vec{n} d s \geq 0, \quad M_{2}:=L_{2}^{2}-2 \pi \int_{C_{2}}\left(X-p_{2}\right) \cdot \vec{n} d s \geq 0
$$

where $p_{i} \in C_{i}$. (Note that we did not use that C_{i} encloses a simply connected minimal surface in the proof of the above inequalities.) Now remember that

$$
-\int_{C_{1}} \vec{n} d s=\int_{C_{2}} \vec{n} d s=\operatorname{Flux}(X)
$$

We have

$$
L_{1}^{2}+L_{2}^{2}-4 \pi \mathbf{A}=M_{1}+M_{2}-2 \pi\left(p_{2}-p_{1}\right) \cdot \mathbf{F l u x}(X)
$$

So if $\operatorname{Flux}(X)=0$, then we have (26.120). If $\operatorname{Flux}(X) \neq 0$, then take a plane P_{d} defined by $x \in \operatorname{Flux}(X)=d$. All $d \in \mathbf{R}$ such that $P_{d} \cap C_{i} \neq \emptyset$ form two closed intervals in \boldsymbol{R}. If no planes separate C_{1} and C_{2}, then these two intervals have common points, and thus we can find $p_{i} \in C_{i}$ such that $p_{1} \bullet \operatorname{Flux}(X)=p_{2} \bullet \operatorname{Flux}(X)$; again we get (26.120).

Now we consider the case that $\operatorname{Flux}(X) \neq 0$ and there is a plane separating C_{1} and C_{2}. Note that after a homothety, both sides of (26.122) are multiplied by a positive constant, thus by Corollary 25.3 we can assume that

$$
\operatorname{Flux}(X)=(0,0,2 \pi)
$$

So we have $\bar{X}_{3}(r)=\log r$. This implies that the planes $P_{i}:=\left\{x_{3}=\log r_{i}\right\}$ intersect C_{i} respectively. Thus selecting $p_{i} \in P_{i} \cap C_{i}$, we have

$$
2 \pi\left(p_{2}-p_{1}\right) \cdot \operatorname{Flux}(X)=4 \pi^{2}\left(\log r_{2}-\log r_{1}\right)=4 \pi^{2} \log \frac{r_{2}}{r_{1}}
$$

and

$$
\begin{equation*}
L_{1}^{2}+L_{2}^{2}-4 \pi \mathbf{A}=M_{1}+M_{2}-4 \pi^{2} \log \frac{r_{2}}{r_{1}} \tag{26.123}
\end{equation*}
$$

We now apply Theorem 25.10. Recall that $r_{1} \leq 1 \leq r_{2}$ and that $L(r)$ is a minimum for $r=1$. We let

$$
K_{i}:=\pi\left(r_{i}+\frac{1}{r_{i}}\right), \quad i=1,2
$$

be the lengths of the corresponding boundary circles on the standard catenoid. Then

$$
\pi^{2} \frac{r_{2}}{r_{1}}<K_{1} K_{2}<4 \pi^{2} \frac{r_{2}}{r_{1}}
$$

By Theorem 25.10 and Lemma $25.8, K_{1} K_{2} \leq L_{1} L_{2}$. Finally, if we let $k_{i}=L_{i} / \pi$, we have

$$
\begin{aligned}
2 L_{1} L_{2}-4 \pi^{2} \log \frac{r_{2}}{r_{1}} & =2 \pi^{2}\left(k_{1} k_{2}-2 \log \frac{r_{2}}{r_{1}}\right) \\
& >2 \pi^{2}\left(k_{1} k_{2}-2 \log \frac{K_{1} K_{2}}{\pi^{2}}\right) \\
& \geq 2 \pi^{2}\left(k_{1} k_{2}-2 \log k_{1} k_{2}\right) \\
& \geq 2 \pi^{2} k_{1} k_{2}(1-\log 2)
\end{aligned}
$$

The last inequality follows from the elementary fact that

$$
2 \log x<x \log 2 \quad \text { for } \quad x>4
$$

combined with $K_{i} \geq 2 \pi, k_{1} k_{2}=L_{1} L_{2} / \pi^{2} \geq K_{1} K_{2} / \pi^{2} \geq 4$. Substituting in (26.123) gives (26.122), and the theorem is proved.

Remark 26.4 The inequalities (26.120) and (26.121) are also true for minimal annuli in $\mathbb{R}^{n}, n \geq 3$, satisfying the corresponding conditions. The proof is similar, see [70]. The inequality (26.122) is true in \mathbf{R}^{3} since we have Theorem 25.10 , thus if Theorem 25.10 is true in \mathbf{R}^{n} then (26.122) is also true in \mathbf{R}^{n}.

