
26 Isoperimetric Inequalities for Minimal Surfaces 

It is well known that for a plane Jordan curve with length L, the area A enclosed 
by the curve is less than or equal to L2 / 41f, with equality holding if and only if the 
curve is a circle. In this section we give such isoperimetric inequalities for simply or 
doubly connected minimal surfaces. For more general discussions and applications of 
the isoperimetric inequalities the reader can see [69]. 

The proof of the next theorem is from [68]. 

Theorem 26.1 Let M C R 3 be an immersed simply connected minimal surface with 
C = 8M a closed curve. Let L be the arclength of C, A the area of M, then 

(26.118) 

Proof. From (3.6) we have 

2A = fc(x- a)•nds 

for any a E R 3 . Here X is the coordinate function of M, n is the outward unit conormal 
to C and ds is the line element of C. Select a E C. We need prove that 

27r fc(x- a)•nds :S L2 . 

Let x(s) be the parametrisation of C by arclength and x(O) = x(L) =a. We want to 
select suitable frames in each Tx(s)R3 . For this purpose, let B(s) : Tx(s)M-+ Tx(s)M be 
the linear mapping which rotates n by 1r /2 and is zero in T1{s)· If we let (n, Bn, N) be 
the orthonormal basis of Tx(s)R3 , then B has the matrix form 

0 -1 0 

1 0 0 

0 0 0 

From this it is clear that 

1. \Bv\ :S \v\ for any v E R3 . 

Let ( e1 , e2 , e3) ( s) be vector fields along C such that 

e~(s) = yBei(s), i = 1, 2, 3, (26.119) 
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and (e1 , e2 , e3)(0) is an orthonormal basis of R 3 . Then property 2 guarantees that 
(ei • ej)(s) is a constant, thus (e1 , e2, e3)(s) is an orthonormal basis of R 3 for any 
s E [0, L]. We can write · 

3 

x(s)- a= I:Ci(s)ei(s). 
i=l 

Then 

3 7r 3 3 7r 

x'(s) = I:c~(s)ei(s) + L I:ci(s)Bei(s) = L:>~(s)ei(s) + -B[x(s)- a]. 
i=l i=l i=l L 

Thus 

lx'(sW 
3 I x' ( s) e B [ x ( s) - a] + x' ( s) • L c; ( s) ei ( s) 

i=l 

[3 l [3 ] I x' ( s) • B [ x ( s) - a] + t; c; ( s) ei ( s) J • t; c; ( s) ei ( s) 

+IB[x(s)- a]• [tc;(s)ei(s)] 

3 

Ix' (s) eB[x(s) -a]+~ c:(s )2 + IB[x(s) - a]o { x'(s) - IB[x(s) -a]} 

2n 3 n2 
yx'(s) eB[x(s) -a]+ L c;(s)2 - £2 B[x(s) -a] i!B[x(s)- a] 

,=1 
2n 3 2 
yx'(s) lll>B[x(s) -a]+~ c;(s)2 - ~2 lx(s)- al 2 

2 

+ ~2 (lx(s) - al 2 - IB[x(s) - aW) 

2{ x'(s) e~B[x(s) -a]+ t [c;(s )2 - ~: c7(s)] 

7r2 

+ £2 (lx(s)- ai 2 - IB[x(s)- aW). 

Since Bx'(s) = -n, 
[x(s)- a] en= -[x(s)- a]•Bx'(s) = x1(s)tJB[x(s)- a], 

we find that 

2n [(X- a)onds = 2n fL x'(s)•B[x(s)- a] ds 
.c Jo 
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= L2- L foL ~ [c~(s) 2 - ~:c~(s)] ds- ~ foL (lx(s)- al 2 -IB[x(s)- aW) ds. 

The fact x(O) =a and x'(O) exists give that ci(O) = 0, c~(O) E R, i = 1, 2, 3, thus the 
functions 

bi(s) = ci(s) 
sin ( 7) 

are well defined for i = 1, 2, 3. Using the identities 

'( )2 . 2 1l" 1l" d ( 2( ) . 21l"S) 
bi s sm L + 2L ds bi s sm L 

I 2 • 2 1f 1f d ( 2 1l"S) 
bi ( s) sm L + L ds ci ( s) cot T , 

and IB[x(s)- a] I ::; lx(s)- al, we obtain 

D 

Remark 26.2 This isoperimetric inequality is also true for simply connected minimal 
surfaces in Rn, n ~ 3. The proof is the same as above. See [68]. 

Next we study the doubly connected case, the proof is from [70]. We will use the 
notation in the last section. 

Theorem 26.3 Let A be the area of a minimal annulus X :A<-+ R 3 , £ 1 and L2 the 
length of its boundary curves C1 and C2; and let L = £ 1 + L2 • If Flux( X) = 0 or there 
are no planes separating the two boundary curves, then 

(26.120) 

or, equivalently, 
L2 - 4nA ~ 2£1£2. (26.121) 

For arbitrary minimal annulus, we have 

(26.122) 

Proof. From the area formula (3.6) we have 

2A= { X•nds+ { X•nds. 
lc1 lc2 
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In the proof of Theorem 26.1, we have 

M1 := Li- 27r [ (X- Pl)•rids;::: 0, 
Jc1 

where Pi E Ci. (Note that we did not use that Ci encloses a simply connected minimal 
surface in the proof of the above inequalities.) Now remember that 

- f rids= 1 rids= Flux(X). 
lc1 c2 

We have 
Li + L~- 41fA = M1 + M2- 21r(p2- PI)eFlux(X). 

So if Flux(X) = 0, then we have (26.120). If Flux(X) =/=- 0, then take a plane Pd 
defined by xeFlux(X) =d. All dE R such that Pd n Ci =/=- (/J form two closed intervals 
in R. If no planes separate C1 and C2 , then these two intervals have common points, 
and thus we can find Pi E Ci such that p1@ Flux( X) = p2 e Flux( X); again we get 
(26.120). 

Now we consider the case that Flux(X) =/=- 0 and there is a plane separating C1 and 
C2 . Note that after a homothety, both sides of (26.122) are multiplied by a positive 
constant, thus by Corollary 25.3 we can assume that 

Flux(X) = (0, 0, 21f). 

So we have X 3 (r) = logr. This implies that the planes Pi:= {x3 = logri} intersect Ci 
respectively. Thus selecting Pi E Pin Ci, we have 

and 

27r(P2- pi)iiiFlux(X) = 47r2 (logr2 -logri) = 47r2 log r2 , 
rl 

Li + L~- 47f A= M1 + M2 - 47f2 log r 2 . (26.123) 
r1 

We now apply Theorem 25.10. Recall that r 1 ::::; 1::::; r 2 and that L(r) is a minimum for 
r = 1. We let 

Ki := 1f (ri + :J , i = 1, 2, 

be the lengths of the corresponding boundary circles on the standard catenoid. Then 

2 r2 2 r2 
1r - < K1K2 < 47f -. 

rl rl 

By Theorem 25.10 and Lemma 25.8, K1K 2 ::::; L 1L2 . Finally, if we let ki = we 
have 
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The last inequality follows from the elementary fact that 

2log x < x log 2 for x > 4, 

combined with Ki 2: 21r, k1 k2 = L1L2 /1r2 2: K 1K 2 /1r2 2: 4. Substituting in (26.123) 
gives (26.122), and the theorem is proved. 0 

Remark 26.4 The inequalities (26.120) and (26.121) are also true for minimal annuli 
in Rn, n 2: 3, satisfying the corresponding conditions. The proof is similar, see [70]. 
The inequality (26.122) is true in R 3 since we have Theorem 25.10, thus if Theorem 
25.10 is true in Rn then (26.122) is also true in Rn. 
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