
23 Annular Ends Lying above Catenoid Ends 

The Cone Lemma (Theorem 21.1) gives a criterion for a minimal surface to have finite 
total curvature by looking at the picture of its image. In this section we will give another 
such criterion due to Fang and Meeks [18]. 

Consider the family of catenoids 

Ct = {(x, y, z) E R 3 I t 2x2 + t 2y2 = cosh2 (tz)}, 

for t > 0. We will show that a properly immersed, complete minimal annulus with 
one compact boundary that lies above some Ct must have finite total curvature. More 
precisely: 

Theorem 23.1 Let 

Suppose X: NI ---+ R 3 is a complete, proper minimal immersion of an annulus with 
smooth compact boundary such that the image is contained in Wt for some t > 0. Then 
M has finite total curvature. 

We will break the proof of Theorem 23.1 into several lemmas. First let us fix the 
notation. 

Let C be a catenoid in R 3 vvith the z-axis as symmetry axis. Let W be the closure 
of the component of R 3 - C that contains the z-axis. Let H = y, z) E R 3 I z > 0} 

·and H be its closure. 
Conformally we can write M = E C I 0 < r 1 ~ 1(1 < r 2}. The smooth compact 

boundary of X corresponding to I( I = r 1 . Complete means that X ory has infinite arc 
length as ry diverges to [(I= T 2 . Let A= X(M). 

After homothetically shrinking or expanding C and A, we can assume that C is the 
standard catenoid, i.e., C has the conformal structure of C- {0} and is embedded in 
R 3 as follows: 

where 

F : C- {0} <-+ R 3 

( ' ' ( ) F(()='2R(1 w1,h w2,1 w3 +(-1,0,0), 

- ~ (1 - (2) dr - j_ (1 + (2) dr d( 
wl - 2 (2 .., ' w2 - 2 (2 .., ' w3 = (. 

The Gauss map of C is 

All lemmas in the following having the same assumptions as for Theorem 23. 1. 
The first lemma is the key point of the proof of Theorem 23.1. 
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Lemma 23.2 Let p E Int(M) and P be the tangent plane of A through X(p) and 
suppose P n 8A = 0. Then the component of P n A that contains X (p) is noncom pact. 

Proof. Since A is noncompact, we may assume that A is not part of a plane. If n 
is the normal vector of P, then h = (X - X (p)) e n is a harmonic function on M 
and x-1 (A n P) = h-1 (0). Since his harmonic and h-1 (0) c Int(M), the maximum 
principle implies that every component of h- 1 (0) is a one-dimension analytic subvariety 
of M. Suppose that the component of PnA containing X(p) is compact. Let .6.. denote 
the preimage of this component on M. Note that .6. is compact since X is proper. 
Furthermore, by Corollary 4.6, p is a critical point of the harmonic function h, thus .6.. 
is a singular compact analytic one-dimensional variety in M. But the complement of any 
such singular variety in the annulus M disconnects jl,;f into at least three COJTID,oneniGS 
One of the components of M -.6. has {1(1 = r 2 } as a component of its boundary, another 
contains {1(1 = r 1 } and at least one, say E, has compact closure E and hi8E = 0. By 
the maximum principle, X(E) C P, which forces A to be contained in the plane P. 
This contradiction proves the lemma. D 

The second lemma clarifies the conformal type of lvf and gives a specific representation 
of the third coordinate function X 3 . 

Lemma 23.3 If A C 1/VnH then A contains a proper .subannulus 
parametrized E = E C 11(1 :2: 1}. in this 
of A', the third component of G is 

(() = alogl(l +b 

for some a, b E R, a > 0, b :2: 0. 

Proof. Since X = (X1 , X 2 , : M Y R 3 is a proper minimal immersion and A = 

X ( M) c W n H, · M -+ R is a proper harmonic function. 
We claim that is unbounded. In fact, if is bounded, then A = X(M) is 

contained in a compact set, contradicting the fact that X is proper. 
Then properness and A C W n H, X 3 (() -+ oo as 1(1 -+ r 2 . If r 2 < oo, letting 

gij = ex3 6i]l vve get a complete flat metric on M. By Proposition 10.6 this is impossible. 
Thus r2 = oo. 

We claim that if X 3 (() > c := max(EoM{X3 (()}, then DX3 (() -::/- . In fact, 
if DX3 (() = 0), then the tangent plane P of A at is horizontal, hence by 
Lemma 23.2 Ar1P should have an uncompact component, which contradicts that A C W 
and X is proper. 

Now lett> c1 >c. Then ry = X31 (c1) and 'Yt = X3 1(t) are compact one-dimensional 
submanifolds of M and thus are Jordan curves. The annulus At bounded by ry and "ft 

is conformally MR(t) := {1 .S 1(1 .S R(t)} for some R(t) > 1. Let ft :At -+ MR(t) be the 
conformal diffeomorphism. 
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Solving a Dirichlet problem on MR(t) we have 

t- c1 
X3oft-l(() = cl + logR(t) logl(l. 

This shows that for any t > s > c1, ftbs) is the circle 

hence ft sends As to MR(s), where 

R(s) = R(t)(s-cl)/(t-q). 

In particular, 
t -- c1 s- c1 

logR(t) logR(s)" 

Since the modulus of As must be R(s), we know that ftiAs = fs· Thus we can define a 
conformal diffeomorphism 

f: U At----+ E := {( E C 11(1 2: 1}, 
t::C:ct 

such that 

t- c1 
a - for any t > c1. 

- log R(t)' 

Taking b = c1 and G = X o f-1 , we have proved the lemma. D 

Suppose A' is the subannulus of A described in Lemma 23.3. Since A and A' both 
have finite total curvature or both have infinite total curvature, we will assume, without 
loss of generality, that A= A'. 

Suppose now that A has infinite total curvature. We will exhibit a family of tangent 
planes Pn of A at G(pn) such that the component of PnnA containing G(pn) is compact. 
Furthermore, for n large enough, Pn n 8A = 0. The existence of such tangent planes 
contradicts Lemma 23.2. 

For the part of C in H we have the following non-parametric expression: x2 + 
cosh2 z, z 2: 0. Hence, at any point p = (x, y, z) E C n H, the normal vector is 

where Zx = 2x I sinh 2z, Zy = 2y I sinh 2z, and 

1 + z; + z; = (sinh2 2z + 4cosh2 z)l sinh2 2z = [4cosh2 z(sinh2 z + 1)]1 sinh2 2z 

= 4 cosh4 zl ( 4 cosh2 z sinh2 z) = cosh2 zl sinh2 z. 
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Suppose p = (x, y, z) E C n H. Let B(p) be the angle such that 

c 1 sinhz 
cosB(p) = N (p)•(O, 0, 1) = J =-h-. 

1 + z2 + z2 cos z 
X y 

Then 
sinB(p) = · /1- cos2B(p) = - 1-. 

Y coshz 

Thus sin B(p) is independent of x andy. We denote it by sin B(z). For Po= (xo, y0 , z0 ) E 
An W n H, z0 2': 1, consider the solid cylinders 

U 0 = { ( x, y, z) E R 3 I x2 + y2 ::; cosh 2 ( z0 + 1)}, 

Lf0 = {(x,y,z) E U 0 lzo ·-1::; z::; zo + 1}. 

If Pis a plane passing through p0 = (x0 , y0 , z0 ) and vp is the normal vector of P, define 
-1r /2 ::; 'Ill p ::; 1r /2 by the formula cos 'Ill p = lvp• (0, 0, 1) I· 

Lemma 23.4 If z0 is large and 

1 
I'll! PI < ---:--

16coshzo 
sin e(zo) 

16 

then the component of P n A that contains p0 is compact and P n 8A = 0. 

Proof. Since Po= (x0 , y0 , zo) E Lf0 , for any (x, y, z) E P n 8P0 we have 

sin l'lllpl 
I z - z0 I ::; 2 cosh( z0 + 1) tan I 'Ill pI = 2 cosh ( zo + 1) I 'Ill 

1
. 

cos p 

Since cosl'lllpl >~and l'lllpl < 16 co1shzo' 

I I 4cosh(z0 + 1) 
z-z0 < . 

16coshzo 

Note that cosh ( z0 + 1) = cosh z0 cosh 1 +sinh z0 sinh 1, sinh 1 < cosh 1 < 2, and sinh z0 < 
coshz0 . Hence, cosh(z0 +1) < 4coshz0 , and so lz-zol < 1. Hence, Pn8P0 = Pn8Lf0 

and P n po = P n Lf0 • This implies that the component 'Y of A n P that contains p0 

must be compact (since 'Y c P n Lf0 and Lf0 is compact). 
Let Zo- 1 > maxxEaA{Ixl}, then clearly p n 8A = 0. D 

Now we prove Theorem 23.1. 

Proof of Theorem 23.1. Assume A has infinite total curvature. Let g: E-+ CU{ oo} 
be the Gauss map of A composed with stereographic projection. Similarly define g : 
C- {0} -+ Cu { oo} to be the Gauss map of C composed with stereographic projection. 
Recall, in fact, that in our original parametrization F of C, §(() = (for ( E C- {0}. 
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Since A has infinite total curvature, g has an essential singularity at ooo Recall that 
the Gauss map of C is 

for ( E E, and the Gauss map of A is 

Also, recall that sin e(x, y, z) = co:hz 0 For any (x, y, z) = F((), cos e(z) = Ncs(O, 0, 1) = 
1(12-1 
1+1(12' so 

sin e(z) = Vl- cos2 O(z) = 2 1~1 12 0 

1 + ( 
(23086) 

Similarly define the angle -1r /2 :::; ¢( () :::; 1r /2 such that cos¢(() = NA ~ (0, 0, 1) = 
lg(()l 2 -l 
Hlg(()J 2 0 Then 

sin¢(() = )1 - cos2 ¢( () = 1 !1~;~~~ l2 ° 

Since z = G3(() =a log 1(1 + b = F3 ((a · expb), for some a> 0, b ~ 0, 

sin¢(()= l(a·expbl (1+1/l(a·expbl 2 ) 

sinO(z) lg(()l 1 + 1/lg(()l2 · 

(23.87) 

Choose a positive integer m > a. Since ( (m · exp b) j g( () has an essential singularity 
at oo, there is a divergent sequence {(n} such that I(;;'· expbl/lg((n)l-+ 0 as n-+ OOo 

Delete a ray l in C such that l does not contain any (n· Then on C - l, (a is 
well-defined and 

I(~ · exp bl < I(;;' · exp bl -+ 0 
---:--1 g-:-( ( n-:-c) 1,--' I g ( ( n ) I (23.89) 

as n-+ oo. In particular, g((n)-+ oo as n-+ 0. So O(F3 ((~ · expb))-+ 0, ¢((n)-+ 0 as 
n-+ oo. We see by (23088) and (23.89) that 

¢( (n) = ¢( (n) • ( sin¢( (n) \) -+ O 
sine(F((,~·expb)) sin¢((n) sinB(F((,<;:·expb)) ' 

as n-+ oo. Here sine(.Lli.H(~expb)) = sin()(zn) = ljcoshzn, and Zn = F3 ((,~expb) = 
G3((n) -+ oo as n-+ oo. 

By Lemma 23.4, we can choose n so large that the tangent plane of A at G((n) does 
not intersect 8A. By (23.90), we can also choose n so that 

¢(~n) < 1/16 
sine(F((na · expb)) · 
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It follows from Lemma 23.4 that the tangent plane of A at G((n) will have a compact 
component that contains G((n)· The existence of such a tangent plane contradicts 
Lemma 23.2. This contradiction proves the theorem. D 

Remark 23.5 Rosenberg and Toubiana [73] have shown that there exist minimally 
immersed annuli in H with proper third coordinate function which have infinite total 
curvature. Theorem 23.1 shows that such annuli do not lie above any catenoid. 
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