23 Annular Ends Lying above Catenoid Ends

The Cone Lemma (Theorem 21.1) gives a criterion for a minimal surface to have finite total curvature by looking at the picture of its image. In this section we will give another such criterion due to Fang and Meeks [18].

Consider the family of catenoids

$$
C_{t}=\left\{(x, y, z) \in \mathbf{R}^{3} \mid t^{2} x^{2}+t^{2} y^{2}=\cosh ^{2}(t z)\right\}
$$

for $t>0$. We will show that a properly immersed, complete minimal annulus with one compact boundary that lies above some C_{t} must have finite total curvature. More precisely:

Theorem 23.1 Let

$$
W_{t}=\left\{(x, y, z) \in \mathbf{R}^{3} \mid t^{2} x^{2}+t^{2} y^{2} \leq \cosh ^{2}(t z), z \geq 0\right\}
$$

Suppose $X: M \rightarrow \mathbf{R}^{3}$ is a complete, proper minimal immersion of an annulus with smooth compact boundary such that the image is contained in W_{t} for some $t>0$. Then M has finite total curvature.

We will break the proof of Theorem 23.1 into several lemmas. First let us fix the notation.

Let C be a catenoid in \mathbb{R}^{3} with the z-axis as symmetry axis. Let W be the closure of the component of $\mathbf{R}^{3}-C$ that contains the z-axis. Let $\mathbf{H}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z>0\right\}$ and $\overline{\mathrm{H}}$ be its closure.

Conformally we can write $M=\left\{\zeta \in \mathbf{C}\left|0<r_{1} \leq|\zeta|<r_{2}\right\}\right.$. The smooth compact boundary of X corresponding to $|\zeta|=r_{1}$. Complete means that $X \circ \gamma$ has infinite arc length as γ diverges to $|\zeta|=r_{2}$. Let $A=X(M)$.

After homothetically shrinking or expanding C and A, we can assume that C is the standard catenoid, i.e., C has the conformal structure of $\mathbf{C}-\{0\}$ and is embedded in \mathbb{R}^{3} as follows:

$$
\begin{gathered}
F: \mathbf{C}-\{0\} \hookrightarrow \mathbf{R}^{3} \\
F(\zeta)=\Re\left(\int_{1}^{\zeta} \omega_{1}, \int_{1}^{\zeta} \omega_{2}, \int_{1}^{\zeta} \omega_{3}\right)+(-1,0,0)
\end{gathered}
$$

where

$$
\omega_{1}=\frac{1}{2} \frac{\left(1-\zeta^{2}\right)}{\zeta^{2}} d \zeta, \omega_{2}=\frac{i}{2} \frac{\left(1+\zeta^{2}\right)}{\zeta^{2}} d \zeta, \omega_{3}=\frac{d \zeta}{\zeta}
$$

The Gauss map of C is

$$
N^{C}(\zeta)=\frac{1}{1+|\zeta|^{2}}\left(2 \Re \zeta, 2 \Im \zeta,|\zeta|^{2}-1\right)
$$

All lemmas in the following having the same assumptions as for Theorem 23.1.
The first lemma is the key point of the proof of Theorem 23.1.

Lemma 23.2 Let $p \in \operatorname{Int}(M)$ and P be the tangent plane of A through $X(p)$ and suppose $P \cap \partial A=\emptyset$. Then the component of $P \cap A$ that contains $X(p)$ is noncompact.

Proof. Since A is noncompact, we may assume that A is not part of a plane. If \vec{n} is the normal vector of P, then $h=(X-X(p)) \bullet \vec{n}$ is a harmonic function on M and $X^{-1}(A \cap P)=h^{-1}(0)$. Since h is harmonic and $h^{-1}(0) \subset \operatorname{Int}(M)$, the maximum principle implies that every component of $h^{-1}(0)$ is a one-dimension analytic subvariety of M. Suppose that the component of $P \cap A$ containing $X(p)$ is compact. Let Δ denote the preimage of this component on M. Note that Δ is compact since X is proper. Furthermore, by Corollary $4.6, p$ is a critical point of the harmonic function h, thus Δ is a singular compact analytic one-dimensional variety in M. But the complement of any such singular variety in the annulus M disconnects M into at least three components. One of the components of $M-\Delta$ has $\left\{|\zeta|=r_{2}\right\}$ as a component of its boundary, another contains $\left\{|\zeta|=r_{1}\right\}$ and at least one, say Σ, has compact closure $\bar{\Sigma}$ and $h \mid \partial \bar{\Sigma}=0$. By the maximum principle, $X(\Sigma) \subset P$, which forces A to be contained in the plane P. This contradiction proves the lemma.
The second lemma clarifies the conformal type of M and gives a specific representation of the third coordinate function X_{3}.

Lemma 23.3 If $A \subset W \cap \overline{\mathbf{H}}$ then A contains a proper subannulus A^{\prime} that is conformally parametrized by $E=\{\zeta \in \mathbb{C}| | \zeta \mid \geq 1\}$. Moreover, in this parametrization $G: E \hookrightarrow \mathbb{R}^{3}$ of A^{\prime}, the third component of G is

$$
G_{3}(\zeta)=a \log |\zeta|+b
$$

for some $a, b \in \mathbb{R}, a>0, b \geq 0$.
Proof. Since $X=\left(X_{1}, X_{2}, X_{3}\right): M \hookrightarrow \mathbb{R}^{3}$ is a proper minimal immersion and $A=$ $X(M) \subset W \cap \overline{\mathbf{H}}, X_{3}: M \rightarrow \mathbb{R}$ is a proper harmonic function.

We claim that X_{3} is unbounded. In fact, if X_{3} is bounded, then $A=X(M)$ is contained in a compact set, contradicting the fact that X is proper.

Then by properness and $A \subset W \cap H, X_{3}(\zeta) \rightarrow \infty$ as $|\zeta| \rightarrow r_{2}$. If $r_{2}<\infty$, letting $g_{i j}=e^{X_{3}} \delta_{i j}$, we get a complete flat metric on M. By Proposition 10.6 this is impossible. Thus $r_{2}=\infty$.

We claim that if $X_{3}(\zeta)>c:=\max _{\zeta \in \partial M}\left\{X_{3}(\zeta)\right\}$, then $D X_{3}(\zeta) \neq(0,0)$. In fact, if $D X_{3}(\zeta)=(0,0)$, then the tangent plane P of A at $X(\zeta)$ is horizontal, hence by Lemma 23.2 $A \cap P$ should have an uncompact component, which contradicts that $A \subset W$ and X is proper.

Now let $t>c_{1}>c$. Then $\gamma=X_{3}^{-1}\left(c_{1}\right)$ and $\gamma_{t}=X_{3}^{-1}(t)$ are compact one-dimensional submanifolds of M and thus are Jordan curves. The annulus A_{t} bounded by γ and γ_{t} is conformally $M_{R(t)}:=\{1 \leq|\zeta| \leq R(t)\}$ for some $R(t)>1$. Let $f_{t}: A_{t} \rightarrow M_{R(t)}$ be the conformal diffeomorphism.

Solving a Dirichlet problem on $M_{R(t)}$ we have

$$
X_{3} \circ f_{t}^{-1}(\zeta)=c_{1}+\frac{t-c_{1}}{\log R(t)} \log |\zeta|
$$

This shows that for any $t>s>c_{1}, f_{t}\left(\gamma_{s}\right)$ is the circle

$$
|\zeta|=R(t)^{\left(s-c_{1}\right) /\left(t-c_{1}\right)}
$$

hence f_{t} sends A_{s} to $M_{R(s)}$, where

$$
R(s)=R(t)^{\left(s-c_{1}\right) /\left(t-c_{1}\right)}
$$

In particular,

$$
\frac{t-c_{1}}{\log R(t)}=\frac{s-c_{1}}{\log R(s)}
$$

Since the modulus of A_{s} must be $R(s)$, we know that $\left.f_{t}\right|_{A_{s}}=f_{s}$. Thus we can define a conformal diffeomorphism

$$
f: \bigcup_{t \geq c_{1}} A_{t} \rightarrow E:=\{\zeta \in \mathbf{C}| | \zeta \mid \geq 1\}
$$

such that

$$
X_{3} \circ f^{-1}(\zeta)=c_{1}+a \log |\zeta|, \quad a=\frac{t-c_{1}}{\log R(t)}, \quad \text { for } \quad \text { any } t>c_{1}
$$

Taking $b=c_{1}$ and $G=X \circ f^{-1}$, we have proved the lemma.
Suppose A^{\prime} is the subannulus of A described in Lemma 23.3. Since A and A^{\prime} both have finite total curvature or both have infinite total curvature, we will assume, without loss of generality, that $A=A^{\prime}$.

Suppose now that A has infinite total curvature. We will exhibit a family of tangent planes P_{n} of A at $G\left(p_{n}\right)$ such that the component of $P_{n} \cap A$ containing $G\left(p_{n}\right)$ is compact. Furthermore, for n large enough, $P_{n} \cap \partial A=\emptyset$. The existence of such tangent planes contradicts Lemma 23.2.

For the part of C in $\overline{\mathbf{H}}$ we have the following non-parametric expression: $x^{2}+y^{2}=$ $\cosh ^{2} z, z \geq 0$. Hence, at any point $p=(x, y, z) \in C \cap \overline{\mathbf{H}}$, the normal vector is

$$
N^{C}(p)=\frac{1}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\left(-z_{x},-z_{y}, 1\right)
$$

where $z_{x}=2 x / \sinh 2 z, z_{y}=2 y / \sinh 2 z$, and

$$
\begin{gathered}
1+z_{x}^{2}+z_{y}^{2}=\left(\sinh ^{2} 2 z+4 \cosh ^{2} z\right) / \sinh ^{2} 2 z=\left[4 \cosh ^{2} z\left(\sinh ^{2} z+1\right)\right] / \sinh ^{2} 2 z \\
=4 \cosh ^{4} z /\left(4 \cosh ^{2} z \sinh ^{2} z\right)=\cosh ^{2} z / \sinh ^{2} z
\end{gathered}
$$

Suppose $p=(x, y, z) \in C \cap \overline{\mathbf{H}}$. Let $\theta(p)$ be the angle such that

$$
\cos \theta(p)=N^{C}(p) \bullet(0,0,1)=\frac{1}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}=\frac{\sinh z}{\cosh z} .
$$

Then

$$
\sin \theta(p)=\sqrt{1-\cos ^{2} \theta(p)}=\frac{1}{\cosh z} .
$$

Thus $\sin \theta(p)$ is independent of x and y. We denote it by $\sin \theta(z)$. For $p_{0}=\left(x_{0}, y_{0}, z_{0}\right) \in$ $A \cap W \cap \overline{\mathbf{H}}, z_{0} \geq 1$, consider the solid cylinders

$$
\begin{gathered}
L^{z_{0}}=\left\{(x, y, z) \in \mathbf{R}^{3} \mid x^{2}+y^{2} \leq \cosh ^{2}\left(z_{0}+1\right)\right\}, \\
L_{1}^{z_{0}}=\left\{(x, y, z) \in L^{z_{0}} \mid z_{0}-1 \leq z \leq z_{0}+1\right\} .
\end{gathered}
$$

If P is a plane passing through $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and ν_{P} is the normal vector of P, define $-\pi / 2 \leq \Psi_{P} \leq \pi / 2$ by the formula $\cos \Psi_{P}=\left|\nu_{P} \bullet(0,0,1)\right|$.

Lemma 23.4 If z_{0} is large and

$$
\left|\Psi_{P}\right|<\frac{1}{16 \cosh z_{0}}=\frac{\sin \theta\left(z_{0}\right)}{16}
$$

then the component of $P \cap A$ that contains p_{0} is compact and $P \cap \partial A=\emptyset$.
Proof. Since $p_{0}=\left(x_{0}, y_{0}, z_{0}\right) \in L_{1}^{z_{0}}$, for any $(x, y, z) \in P \cap \partial L^{z_{0}}$ we have

$$
\left|z-z_{0}\right| \leq 2 \cosh \left(z_{0}+1\right) \tan \left|\Psi_{P}\right|=2 \cosh \left(z_{0}+1\right) \frac{\sin \left|\Psi_{P}\right|}{\cos \left|\Psi_{P}\right|}
$$

Since $\cos \left|\Psi_{P}\right|>\frac{1}{2}$ and $\left|\Psi_{P}\right|<\frac{1}{16 \cosh z_{0}}$,

$$
\left|z-z_{0}\right|<4 \frac{\cosh \left(z_{0}+1\right)}{16 \cosh z_{0}}
$$

Note that $\cosh \left(z_{0}+1\right)=\cosh z_{0} \cosh 1+\sinh z_{0} \sinh 1, \sinh 1<\cosh 1<2$, and $\sinh z_{0}<$ $\cosh z_{0}$. Hence, $\cosh \left(z_{0}+1\right)<4 \cosh z_{0}$, and so $\left|z-z_{0}\right|<1$. Hence, $P \cap \partial L^{z_{0}}=P \cap \partial L_{1}^{z_{0}}$ and $P \cap L^{z_{0}}=P \cap L_{1}^{z_{0}}$. This implies that the component γ of $A \cap P$ that contains p_{0} must be compact (since $\gamma \subset P \cap L_{1}^{z_{0}}$ and $L_{1}^{z_{0}}$ is compact).

Let $z_{0}-1>\max _{x \in \partial A}\{|x|\}$, then clearly $P \cap \partial A=\emptyset$.
Now we prove Theorem 23.1.
Proof of Theorem 23.1. Assume A has infinite total curvature. Let $g: E \rightarrow \mathrm{C} \cup\{\infty\}$ be the Gauss map of A composed with stereographic projection. Similarly define \tilde{g} : $\mathbf{C}-\{0\} \rightarrow \mathbf{C} \cup\{\infty\}$ to be the Gauss map of C composed with stereographic projection. Recall, in fact, that in our original parametrization F of $C, \tilde{g}(\zeta)=\zeta$ for $\zeta \in \mathbf{C}-\{0\}$.

Since A has infinite total curvature, g has an essential singularity at ∞. Recall that the Gauss map of C is

$$
N^{C}(\zeta)=\frac{1}{1+|\zeta|^{2}}\left(2 \Re \zeta, 2 \Im \zeta,|\zeta|^{2}-1\right)
$$

for $\zeta \in E$, and the Gauss map of A is

$$
N^{A}(\zeta)=\frac{1}{1+|g(\zeta)|^{2}}\left(2 \Re g(\zeta), 2 \Im g(\zeta),|g(\zeta)|^{2}-1\right) .
$$

Also, recall that $\sin \theta(x, y, z)=\frac{1}{\cosh z}$. For any $(x, y, z)=F(\zeta), \cos \theta(z)=N^{C} \cdot(0,0,1)=$ $\frac{|\zeta|^{2}-1}{1+|\zeta|^{2}}$, so

$$
\begin{equation*}
\sin \theta(z)=\sqrt{1-\cos ^{2} \theta(z)}=\frac{2|\zeta|}{1+|\zeta|^{2}} \tag{23.86}
\end{equation*}
$$

Similarly define the angle $-\pi / 2 \leq \phi(\zeta) \leq \pi / 2$ such that $\cos \phi(\zeta)=N^{A} \cdot(0,0,1)=$ $\frac{|g(\zeta)|^{2}-1}{1+|g(\zeta)|^{2}}$. Then

$$
\begin{equation*}
\sin \phi(\zeta)=\sqrt{1-\cos ^{2} \phi(\zeta)}=\frac{2|g(\zeta)|}{1+|g(\zeta)|^{2}} \tag{23.87}
\end{equation*}
$$

Since $z=G_{3}(\zeta)=a \log |\zeta|+b=F_{3}\left(\zeta^{a} \cdot \exp b\right)$, for some $a>0, b \geq 0$,

$$
\begin{equation*}
\frac{\sin \phi(\zeta)}{\sin \theta(z)}=\frac{\left|\zeta^{a} \cdot \exp b\right|}{|g(\zeta)|}\left(\frac{1+1 /\left|\zeta^{a} \cdot \exp b\right|^{2}}{1+1 /|g(\zeta)|^{2}}\right) \tag{23.88}
\end{equation*}
$$

Choose a positive integer $m>a$. Since $\left(\zeta^{m} \cdot \exp b\right) / g(\zeta)$ has an essential singularity at ∞, there is a divergent sequence $\left\{\zeta_{n}\right\}$ such that $\left|\zeta_{n}^{m} \cdot \exp b\right| /\left|g\left(\zeta_{n}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Delete a ray l in \mathbf{C} such that l does not contain any ζ_{n}. Then on $\mathbf{C}-l, \zeta^{a}$ is well-defined and

$$
\begin{equation*}
\frac{\left|\zeta_{n}^{a} \cdot \exp b\right|}{\left|g\left(\zeta_{n}\right)\right|}<\frac{\left|\zeta_{n}^{m} \cdot \exp b\right|}{\left|g\left(\zeta_{n}\right)\right|} \rightarrow 0 \tag{23.89}
\end{equation*}
$$

as $n \rightarrow \infty$. In particular, $g\left(\zeta_{n}\right) \rightarrow \infty$ as $n \rightarrow 0$. So $\theta\left(F_{3}\left(\zeta_{n}^{a} \cdot \exp b\right)\right) \rightarrow 0, \phi\left(\zeta_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. We see by (23.88) and (23.89) that

$$
\begin{equation*}
\frac{\phi\left(\zeta_{n}\right)}{\sin \theta\left(F\left(\zeta_{n}^{a} \cdot \exp b\right)\right)}=\frac{\phi\left(\zeta_{n}\right)}{\sin \phi\left(\zeta_{n}\right)} \cdot\left(\frac{\sin \phi\left(\zeta_{n}\right)}{\sin \theta\left(F\left(\zeta_{n}^{a} \cdot \exp b\right)\right)}\right) \rightarrow 0 \tag{23.90}
\end{equation*}
$$

as $n \rightarrow \infty$. Here $\sin \theta\left(F_{3}\left(\zeta_{n}^{a} \exp b\right)\right)=\sin \theta\left(z_{n}\right)=1 / \cosh z_{n}$, and $z_{n}=F_{3}\left(\zeta_{n}^{a} \exp b\right)=$ $G_{3}\left(\zeta_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$.

By Lemma 23.4, we can choose n so large that the tangent plane of A at $G\left(\zeta_{n}\right)$ does not intersect ∂A. By (23.90), we can also choose n so that

$$
\frac{\phi\left(\xi_{n}\right)}{\sin \theta\left(F\left(\zeta n^{a} \cdot \exp b\right)\right)}<1 / 16
$$

It follows from Lemma 23.4 that the tangent plane of A at $G\left(\zeta_{n}\right)$ will have a compact component that contains $G\left(\zeta_{n}\right)$. The existence of such a tangent plane contradicts Lemma 23.2. This contradiction proves the theorem.

Remark 23.5 Rosenberg and Toubiana [73] have shown that there exist minimally immersed annuli in $\overline{\mathbf{H}}$ with proper third coordinate function which have infinite total curvature. Theorem 23.1 shows that such annuli do not lie above any catenoid.

