
20 The Second Variation and Stability 

We now introduce the concept of stability of minimal surfaces which will play an im­
portant role in the proof of several theorems in the remainder of these notes. 

Let Sl be a precompact domain in a Riemann surface X : Sl --+ R 3 a minimal 
surface. From the calculus of variations definition of a minimal surface, we know that 
X is a minimal surface if and only if the area A of X is a stationary point of the area 
functional A(t) for any variation X(t). Note that being stationary does not mean that 
X has minimum area among all surfaces with the same boundary. 

To study when X has locally minimum area, naturally we study the second variation, 
namely the second derivative A" ( 0) of the area functional for any variation family X ( t). 
From calculus we know that if A"(O) > 0 then A(O) is a local minimum. Note that 
the word local is significant, there are minimal surfaces such that A"(O) > 0 for any 
variation family, yet those surfaces do not have minimum area. Hence we define that 
X is stable if (0) > 0 for all possible variation families X(t), othervvise X is zmstable. 
Sometimes one says X is almost stable if A" (0) 2: 0. 

It is important to express the formula for the second variation of X via the geometric 
quantities of X. Let (u1 , u2 ) be the local coordinates of fl. We use the fact that X is 
conformal harmonic, and write A2 = IX1I 2 = IX2I 2 , 6. = Dn + D22· 

From (3.4), 
dA(t) 1 -- = -2 H(t)(E(t)ii!N(t)) dAt, 

dt [! 

where E(t) = oX(t)jot, H(t) is the mean curvature of X(t), and 
map of X(t). Let E = aX1 + (3_ .. '{2 + 1N. Since H(O) = 0 we have 

d2 A(t) I = -2 [ dH(t) I r E®N) dAo, 
t=O Jn di t=O \ 

is the Gauss 

where we write E = E(O), etc. Now suppose that each X(t) is a and the 
first and second fundamental forms are given on an isothermal coordinate chart U 

Then 

hence 
dH(t) I = ~ "\"' dgij(t) I h + ~"' ijdh;j(t) I 

dt t=O 2 L._. dt t=O "1 2 L._. g dt t=C' 
1-,J 'l,J 

where we write gij (0) = gij, etc. From 

Llj(t)gjk(t) = 6;k, gij = A- 26;j, 
j 
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we see that 

dgij(t) I =-A -4d%(t) I =-A -4(E('I;X + EeX). 
dt t==O dt t==O ' J J ' 

Using hn = -h22 and Xn G~X1 = ~Ai, Xn ODX2 =-~A~, etc., we have 

One calculates that 

~ L ij dhij(t) I 
2 .. g dt t==O 

'1 

since LX= 0. Using Lc.Xi = 0 and ®N = 0, we have 

Hence 
dH ( t) I = "A -4 ~ 

dt t==O - y L.~ 
'] 

Since = -2 = -2A4 K, where K is the Gauss curvature. 
By (8.36), LN = thus 

dH(t)l 1 _2 2 1 
~ t==O = 2A (L'f- 2KA 'f)= 2 (Lx 'f- 2K'f). 

Since the above formula not depend on the local coordinates, we have the second 
variation formula for any variation vector field E = + + "(N, that is 

A"(O) = -1 'f(Lx'f- 2K'f)dA0 . 
:\1 

(20.83) 

We see from (20.83), as in the first variation, that the second variation does not 
depend on the tangential part of the variation field E. 

Let S1 be a domain, consider the Dirichlet eigenvalue problem for the second 
order elliptic operator L = L - 2K A2 , 

{ 
Lu + Au = 0, in 

u = 0, on 
(20.84) 

an 
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The classical theory of eigenvalues (see Appendix) says that there is a sequence 

An ---+ co as n ---+ co, such that (20.84) has solution if and only if A = An for some n 2': 1. 
Moreover, we can select smooth ¢n as the solution of (20.84) when A= An (¢n is called 
the eigenfunction corresponding to , such that { ¢n} is orthonormal in L2 (D) and 
spans W~'2 (D). Thus if ryE W~'2 (D) c L 2 (fl) it can be decomposed as 

and if 1 is also smooth, then 

00 00 

= L anL¢n = - L 
n=l n=l 

Vle have that 

(0) =-in 00 

n=l 

Hence if > 0, we will have for any variation vector field E = o:X1 + vv-ith 
smooth 1 E W01'2 (0), that A"(O) > 0, and hence locally X has minimum 

Of course, if L has a negative eigenvalue, say < 0, taking 1 = , we have 

and so X cannot have minimum area. 
Note that U.x = A - 2 6. is intrinsically defined on the surface X. Based on the 

discussion above, we have definition to that given in the beginning of this 
section: 

Definition 20.1 A minimal surface X : n '---> R 3 is stable on a precompact domain 
U c fl if the first eigenvalue of = U.x - 2K in U is positive. That if 

{ 
LX'u +AU = 0, m 

u = 0, on 

has a non-trivial solution, then )\ > 0. 

u 

au 

In general, if fl is not compact, v.re say that X is stable on n if it is 
precompact subdomain of :0. 
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For a minimal surface X : D '---+ R 3 , the Gauss map N -+ 5 2 is anti-conformal. 
We can consider N as a surface though it may have finite branch points. The first 
fundamental form induced by N is 

Hence the 5 2 Laplacian 6 5 induced by N on D is 

The sphere metric induced by N then is dS = - K dA0 on 0. Suppose K < 0 on 
then since N is anti-holomorphic, by the area formula, 

A"(O) = -1!(Dx!- 2K!)dAo. =- f #(N-1(x))J(6sl + 2!)(x)dS(x). 
n jN(D) 

Thus the corresponding operator Ls on N(D) is 

Ls = -K-1Lx = 6s + 2. 

If N: U c D-+ 5 2 is one to one, then clearly A"(O) > 0 if and only if all eigenvalues 
of 6 5 on N(D) are larger than 2. And the eigenvalue problem becomes 

{ 
Dsu + (2 + A.)u = 0, in 

u = 0, on 

N(U) 

oN(U) 

It is well known that if the area of N(U) is less than 2n, then the first eigenvalue 
6 5 is larger than 2, thus have proved: 

Theorem 20"2 Let X : 0 '-/ R 3 be a minimal surface and U C D be such that 
N: U-+ 5 2 is one to one and the area of N(U) is less than 2n. Then X : U '---+ R 3 zs 
stable. 

Since N is locally one to one except at points p such that K (p) = 0, we see that 
at any point p E D such that #- 0, there is a neighbourhood U 3 p, such that 
X : U '---+ R 3 is stable. 

Note that if N is one to one, then 

Area(N(U)) =- fu 
so if N is one to one on U and the area of N ( U) is less than 2n, then - J u K dA < 2n. 
Barbosa and do Carmo [2] proved: 

Theorem 20.3 If- fu KdA < 2n, then X is stable on U. 

In fact, Barbosa and do Carmo proved a stronger version of Theorem 20.3 in [2]: 
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Theorem 20.4 If Area(N(U)) < 21r, then X is stable on U. 

Theorem 20.3 is stronger than Theorem 20.2 since N is not assumed to be one to 
one on U. Note that the converse of Theorem 20.3 is not true, there are stable minimal 
surfaces whose total curvature is less then -27r. See, for example, [61], page 99. 

Let X : lvf '---+ R 3 be a minimal surface. A Jacobi field is a function u defineded on 
M such that 

Lxu = 0. 

Note that each component of N is a Jacobi field. Whenever we have a Jacobi field u 
on 1\!l, we are interested in the nodal set Z := u-1(0) C M of u. The reason is that 
each component of M - Z is a domain (nodal domain) n c M such that on 0 the 
u does not change sign and it vanishes on an. If u is continuous on 0, then the 
properties of eigenvalues (see Appendix) the first eigenvalue of Lx on D is zero, and 
any domain 0' :::> D will have negative first eigenvalue. Thus such 0 and :::> 0 are 
unstable. By Theorem 20.3, the total curvature of X on n is less than or equal to -21r. 
Similarly, any domain D' c n such that 0 - has positive area, will have positive 
first eigenvalue, and therefore is stable. We will apply these comments in the proof of 
Shiffman's theorems. 

In [4], do Carma and Peng proved that the only stable complete minimal surface 
in R 3 is plane. This is a generalized version of Bernstein's theorem, which says that a 
complete minimal graph (which is stable by Theorem 20.4) must be a 

Thus all complete non-planar minimal surfaces X : M '---+ R 3 are uastable. A 
measure of how unstable is a surface, is the index. If Q C M is pn?comr)ac 
index(O) is the number of negative eigenvalues of Lx on 0, counting the 
Hence the index is the dimension ofthe subspace of L2 (0) spanned the 
enr-r"~'"~"'"'~'"'"'b to negative eigenvalues. The index of M then is defined as 

index(M) = lubocMindex(D), 

where lub means the least upper bound and Dis taken over all precompact domains in 
M. 

A theorem of Fischer-Colbrie [19] says that a complete minimal surface X · Af '--7 R 3 

has finite index if and only if it has finite total curvature. 
Let g and rJ be the Weierstrass data of a complete minimal of finite total 

curvature X : M '---+ R 3 and k = deg g. A theorem of Tysk [79] says that 

index of M :S: C · k. 

for some constant C. Tysk [79] proved that C can be taken as C = 7.68183. 'The 
number 7.68183 is certainly not optimal, since for a catenoid k = 1 and the index is 
also 1, see Theorem 27,8. A good problem then is what is the optimal value of C? A 
guess is that C = 1. 
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