20 The Second Variation and Stability

We now introduce the concept of stability of minimal surfaces which will play an im-
portant role in the proof of several theorems in the remainder of these notes.

Let © be a precompact domain in a Riemann surface M, X : Q — R? a minimal
surface. From the calculus of variations definition of a minimal surface, we know that
X is a minimal surface if and only if the area A of X is a stationary point of the area
functional A(t) for any variation X (¢). Note that being stationary does not mean that
X has minimum area among all surfaces with the same boundary.

To study when X has locally minimum area, naturally we study the second variation,
namely the second derivative A”(0) of the area functional for any variation family X (¢).
From calculus we know that if A”(0) > 0 then A(0) is a local minimum. Note that
the word local is significant, there are minimal surfaces such that A”(0) > 0 for any
variation family, yet those surfaces do not have minimum area. Hence we define that
X is stable if A”(0) > 0 for all possible variation families X (¢), otherwise X is unstable.
Sometimes one says X is almost stable if A”(0) > 0.

It is important to express the formula for the second variation of X via the geometric
quantities of X. Let (u',u?) be the local coordinates of Q2. We use the fact that X is
conformal harmonic, and write A2 = | X |?> = | X;|%?, A = Dy; + Da.

From (3.4),

U o [ B0 i,

where E(t) = 0X(t)/0t, H(t) is the mean curvature of X (t), and N(¢) is the Gauss
map of X(t). Let £ = aX; + X5 +yN. Since H(0) = 0 we have

P A( t)l dH ()

d? o @ '-O(E°N)dA°’

where we write E = E(0), etc. Now suppose that each X(¢) is a C? surface, and the
first and second fundamental forms are given on an isothermal coordinate chart U by

gii(t) = Xs(t) e X;(t),  (97(1) = (95(1)) ™", hu(t) = Xis()e N (2).

Then
1 ..
= — T (t)h
5 %g (t)
hence
dH(t)l t) hoi + lzgij dhij(t)‘
dt ) - di  le=0’

where we write ¢¥/(0) = ¢g¥, etc. From

Zgj(t gin(t) =6k, g7 = A28,
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we see that

dg™ (t) _p-1395(0)

dt ‘t:O dt ‘t:O = —A_4(E1'0Xj + Ej.Xi).

Using hiy; = —hgy and X0 X = %A%, X 0Xs = —%A%, etc., we have

1 dg¥(t
9 Z gdt( : L -0 hij =A™ Z hi; lanhir + (a2 + Bi)hiz + Bohas)-
/L,J

One calculates that

1 dhy®)) 1 ;dXy(t) 1 v dN()
i;jgj G e = Eizjg] dt 't=o°N+5%:g]X“' B e
_ LIy 1 g2y o V()
- §;A Eii.N+52ijA Xio— s

= %A‘Q A EeN,
since AX = 0. Using AX; =0 and N;eN = 0, we have
AFEeN = A’Y +vANeN + 2[a1h11 -+ (Ozz -+ ,Bl)hlz + ﬁzhgg].

Hence QH (1)

—d-t—1 = A~ 4Zh2 + A (Ay+ v A NeN).
Since hy; = —haz, 2 h?j = -2 det(hij) = —2A*K, where K is the Gauss curvature.
By (8.36), AN = 2KA%N, thus

dH(), 1

1
-9 2 _1 B
= | = SATHOY — 2KAN) = S(Bx 7 —2K).

Since the above formula does not depend on the local coordinates, we have the second
variation formula for any variation vector field £ = aX; + X5 + vV, that is

A"(0) = — /Q Y(Dxy — 2K)d Ao (20.83)

We see from (20.83), as in the first variation, that the second variation does not
depend on the tangential part of the variation field E.

Let §2 be a plane domain, consider the Dirichlet eigenvalue problem for the second
order elliptic operator L = A — 2K A2,

Lu+X =0, in Q
(20.84)
u =0, on 9N
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The classical theory of eigenvalues (see Appendix) says that there is a sequence
AL <A S A< <A S

An — 00 as n — 00, such that (20.84) has solution if and only if A = A, for some n > 1.
Moreover, we can select smooth ¢, as the solution of (20.84) when A = A, (¢, is called
the eigenfunction corresponding to \,), such that {¢,} is orthonormal in L?(Q2) and
spans W, %(Q). Thus if v € Wy *(Q) € L*(R) it can be decomposed as

oo
Y= Z U .-
n=1

and if v is also smooth, then
Ly = {2 an L, = — i G AP
n=1 n=1
We have that
A"(0) = — /Q YLy du' A du® = /Q (2 an¢n> <§::1 a,m)\m¢m> du' A du? = Z:lafb)\n.

Hence if A\, > 0, we will have for any variation vector field £ = aX; + X5 + N with
smooth v € Wi%(Q), that A”(0) > 0, and hence locally X has minimum surface area.
Of course, if L has a negative eigenvalue, say A; < 0, taking v = ¢;, we have

A”(O) - /\1 < 0,

and so X cannot have minimum area.

Note that Ax = A™2A is intrinsically defined on the surface X. Based on the
discussion above, we have definition equivalent to that given in the beginning of this
section:

Definition 20.1 A minimal surface X : Q — R3 is stable on a precompact domain
U C Q if the first eigenvalue of Ly = Ax — 2K in U is positive. That is, if

Lxu+M =0, in U
u =0, on oU

has a non-trivial solution, then A > 0.
In general, if Q is not compact, we say that X is stable on {2 if it is stable on any
precompact subdomain of €.
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For a minimal surface X : Q < R3, the Gauss map N — S? is anti-conformal.
We can consider N as a surface though it may have finite branch points. The first
fundamental form induced by N is

[Ny A Np|6y; = —K A%

ij-
Hence the S? Laplacian Ag induced by N on  is
Ng=-KT'A2A=-K1Ax.

The sphere metric induced by N then is dS = —KdAq on 2. Suppose K < 0 on ,
then since N is anti-holomorphic, by the area formula,

A"(0) = —/Qv(Axw — 2K7)dA,. = - /N(Q) #(N 7 (2)1(Dsy +279)(2)dS ().
Thus the corresponding operator Lg on N () is
Ls=—-K'Lx=Ag+2.

If N:U C Q — S?%is one to one, then clearly A”(0) > 0 if and only if all eigenvalues
of Ag on N(Q) are larger than 2. And the eigenvalue problem becomes

Asu+(2+Nu=0, in N(U)
u =0, on ON(U)

It is well known that if the area of N(U) is less than 2, then the first eigenvalue of
Ag is larger than 2, thus have proved:

Theorem 20.2 Let X : Q — R? be a minimal surface and U C Q be such that
N : U — 52 is one to one and the area of N(U) is less than 2. Then X : U — R3 is
stable.

Since N is locally one to one except at points p such that K(p) = 0, we see that
at any point p € Q such that K(p) # 0, there is a neighbourhood U 3 p, such that
X : U — R? is stable.

Note that if N is one to one, then

Area(N(U)) = — /U KdA,

so if IV is one to one on U and the area of N(U) is less than 27, then — [, KdA < 2.
Barbosa and do Carmo [2] proved:

Theorem 20.3 If — [, KdA < 2, then X is stable on U.

In fact, Barbosa and do Carmo proved a stronger version of Theorem 20.3 in [2]:
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Theorem 20.4 If Area(N(U)) < 2m, then X is stable on U.

Theorem 20.3 is stronger than Theorem 20.2 since IV is not assumed to be one to
one on U. Note that the converse of Theorem 20.3 is not true, there are stable minimal
surfaces whose total curvature is less then —2m. See, for example, [61], page 99.

Let X : M — R3 be a minimal surface. A Jacobi field is a function v defineded on
M such that

LXu = 0.

Note that each component of N is a Jacobi field. Whenever we have a Jacobi field u
on M, we are interested in the nodal set Z := u=(0) C M of u. The reason is that
each component of M — Z is a domain (nodal domain) @ C M such that on Q the
u does not change sign and it vanishes on 9Q. If u is continuous on (2, then by the
properties of eigenvalues (see Appendix) the first eigenvalue of Lx on Q is zero, and
any domain €' O Q will have negative first eigenvalue. Thus such Q and Q' D Q are
unstable. By Theorem 20.3, the total curvature of X on {2 is less than or equal to —2m.
Similarly, any domain ' C Q such that Q@ — €’ has positive area, will have positive
first eigenvalue, and therefore is stable. We will apply these comments in the proof of
Shiffman’s theorems.

In [4], do Carmo and Peng proved that the only stable complete minimal surface
in R? is plane. This is a generalized version of Bernstein’s theorem, which says that a
complete minimal graph (which is stable by Theorem 20.4) must be a plane.

Thus all complete non-planar minimal surfaces X : M < R? are unstable. A
measure of how unstable is a surface, is the index. If Q C M is precompact, then
index(2) is the number of negative eigenvalues of Lx on {2, counting the multiplicity.
Hence the index is the dimension of the subspace of L*(2) spanned by the eigenfunctions
corresponding to negative eigenvalues. The index of M then is defined as

index(M) = lubgcpindex(£2), (20.85)

where lub means the least upper bound and Q is taken over all precompact domains in
M.

A theorem of Fischer-Colbrie [19] says that a complete minimal surface X : M < R3
has finite index if and only if it has finite total curvature.

Let g and n be the Weierstrass data of a complete minimal surface of finite total
curvature X : M < R? and k = degg. A theorem of Tysk [79] says that

index of M < C -k.

for some constant C. Tysk [79] proved that C can be taken as C' = 7.68183. The
number 7.68183 is certainly not optimal, since for a catenoid £ = 1 and the index is
also 1, see Theorem 27.8. A good problem then is what is the optimal value of C7 A
guess is that C = 1.
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