12 Complete Minimal Surfaces of Finite Total Curvature

To have a better understanding of a complete immersed minimal surface of finite total curvature, we will prove a theorem due to Jorge and Meeks which says that if one looks at the surface from infinity, then the surface looks like a finite number of planes passing through the origin.

Let $X: M \cong S_{k}-\left\{p_{1}, \cdots, p_{n}\right\} \hookrightarrow \mathbf{R}^{3}$ be an immersed complete surface. Let $S^{2}(r)$ be the sphere centred at $(0,0,0)$ with radius r. Let $Y_{r}=X(M) \cap S^{2}(r)$ and

$$
W_{r}=\frac{1}{r} Y_{r} \subset S^{2}
$$

Theorem 12.1 ([38]) Suppose that the Gauss map on M extends continuously to S_{k}. Then

1. $X: M \cong S_{k}-\left\{p_{1}, \cdots, p_{n}\right\} \hookrightarrow \mathbf{R}^{3}$ is proper.
2. For large $r, W_{r}=\left\{\gamma_{1}^{r}, \cdots, \gamma_{n}^{r}\right\}$ consists of n immersed closed curves on S^{2}.
3. γ_{i}^{r} converges in the C^{1} sense to a geodesic of S^{2} with multiplicity $I_{i} \geq 1$ as r goes to infinity.
4. If X is a minimal surface then the convergence in 3 is C^{∞}.
5. X is embedded at an end corresponding to p_{i} if and only if $I_{i}=1$.

Proof. We need only consider a neighbourhood of a puncture p. Let $D^{*}=D-\{p\}$ be a punctured disk and ∂D be compact. Suppose that

$$
N=\lim _{|z| \rightarrow 0} N(z)
$$

and that

$$
\begin{equation*}
N \cdot N(z)=\cos \theta \geq \frac{\sqrt{3}}{2} \text { for } 0 \leq \theta \leq \frac{\pi}{6} \tag{12.52}
\end{equation*}
$$

for all $z \in D^{*}$. Let π be a plane containing the line generated by N and let $\Gamma=X^{-1}(\pi)$. Since $N \odot N(z) \geq \sqrt{3} / 2, X$ is transversal to π. It follows that Γ consists of points in ∂D and connected curves (in fact, the interior of $X^{-1}(\pi)$ is a one-dimensional manifold). Let γ be a connected component of Γ that is a curve.

We will consider coordinates (t, y) in π such that the y-axis is the line generated by N. It follows from (12.52) that the tangent vector of $X(\gamma)$ is never collinear with N. Thus $X(\gamma)$ is the graph of a function $y(t)$. The angle between the normal vector $\left(-y^{\prime}, 1\right)$ of $X(\gamma)$ and N is less than or equal to θ. Therefore

$$
\frac{1}{\sqrt{1+y^{\prime}(t)^{2}}} \geq \cos \theta
$$

which implies that

$$
\begin{equation*}
\left|y^{\prime}(t)\right| \leq \tan \theta, \quad \text { for all } t \tag{12.53}
\end{equation*}
$$

If γ is compact it follows that the extremal points of $X(\gamma)$ are contained in $X(\partial D)$. Let $x_{1}=X\left(\gamma\left(t_{1}\right)\right) \in X(\partial D)$ and $x_{2}=X\left(\gamma\left(t_{2}\right)\right) \in X(\partial D)$, and $x=X(\gamma(t)), t \in\left(t_{1}, t_{2}\right)$. Then

$$
|x| \leq\left|x_{1}\right|+\left|x-x_{1}\right| \leq\left|x_{1}\right|+\int_{t_{1}}^{t_{2}} \sqrt{1+y^{\prime}(s)^{2}} d s \leq\left|x_{1}\right|+\frac{2}{\sqrt{3}}\left|t_{2}-t_{1}\right| \leq\left|x_{1}\right|+2\left|x_{2}-x_{1}\right|
$$

Thus

$$
\begin{equation*}
\sup _{x \in X(\gamma)}|x| \leq d_{0}+2 d_{1} \tag{12.54}
\end{equation*}
$$

where

$$
d_{0}=\sup _{x \in X(\partial D)}|x|, \quad d_{1}=\text { diameter of } X(\partial D)
$$

If γ is non-compact in D^{*}, then it must be a divergent curve; hence $X(\gamma)$ has infinite arc length (X is complete). It follows from (12.53) that $y(t)$ is defined in the interval $(-\infty, a],[a, \infty)$ or $(-\infty, \infty)$.

Let C_{r} be the solid cylinder of radius r whose axis is the line generated by N. Let \tilde{A} be the annulus D^{*} with the metric induced by X so that $X: \tilde{A} \rightarrow \mathbb{R}^{3}$ is an isometric immersion. Note that $\partial \tilde{A}=\partial D$.

Claim : $X^{-1}\left(C_{r}\right)$ is a compact set of \tilde{A}. In particular, the immersion $X: D^{*} \hookrightarrow \mathbb{R}^{3}$ is proper.

Proof of the Claim: We will denote by $\tilde{\rho}$ the distance on \tilde{A}. Choose $r>0$ such that $X(\partial D)$ is contanined in C_{r}. Let $\tilde{x} \in \tilde{A}$ be such that $X(\tilde{x})=x$. Let π^{\prime} be the plane passing through x and the line generated by N. Consider a connected curve γ in $X^{-1}\left(\pi^{\prime}\right)$ containing \tilde{x}. We know that $X(\gamma)$ is the graph of a function $y(t)$ in π^{\prime} with $x=\left(t_{0}, y\left(t_{0}\right)\right)$. Observe that $\left|t_{0}\right| \leq r$. If the domain of $y(t)$ is the interval $(-\infty, a]$ or $[a, \infty)$, then $(a, y(a)) \in X(\partial D)$ and

$$
\begin{equation*}
\tilde{\rho}(\tilde{x}, \partial \tilde{A}) \leq\left|\int_{a}^{t_{0}} \sqrt{1+y^{\prime}(t)^{2}} d t\right| \leq 2 r \sec \theta \leq 4 r \tag{12.55}
\end{equation*}
$$

Assume now that t varies from $-\infty$ to ∞. Let π_{t} be the plane passing through the point $(t, y(t))$ of $X(\gamma)$, orthogonal to π^{\prime} and parallel to the line generated by N. Let $\gamma_{t_{0}}$ be the connected curve in $X^{-1}\left(\pi_{t_{0}}\right)$ that contains the point \tilde{x}. If $\gamma_{t_{0}}$ intersects $\partial \tilde{A}$, then (12.55) holds. We assert that there exists $t \in(-r, r)$ such that $X^{-1}\left(\pi_{t}\right)$ contains some curve γ_{t} intersecting both γ and $\partial \tilde{A}$. If not, then $X\left(\gamma_{t_{0}}\right)$ is a graph in $\pi_{t_{0}}$ over the t-axis of $\pi_{t_{0}}$. As t_{0} varies along the t-axis of $\pi^{\prime}, X\left(\gamma_{t_{0}}\right)$ describes some surface M_{0} that is a graph over the plane orthogonal to the vector N. Then $X^{-1}\left(M_{0}\right)$ contains some connected component of \tilde{A} without boundary which contradicts the fact that \tilde{A} is connected and has boundary. Thus for some t, γ_{t} intersects $\partial \tilde{A}$; if $|t| \geq r$ then $\pi_{t} \cap X(\partial \tilde{A})=\emptyset$, hence $|t|<r$. This proves the assertion.

If γ_{t} is given by the assertion above, then in the same way as in (12.55), letting $x^{\prime} \in \gamma_{t}$ be such that $X\left(x^{\prime}\right)=(t, y(t))$, we have

$$
\tilde{\rho}\left(x^{\prime}, \partial \tilde{A}\right) \leq 4 r
$$

Let t_{1} be a point on the t-axis of π^{\prime} such that $X\left(\gamma_{t}\right) \cap \pi^{\prime}=(t, y(t))$. It follows easily from the triangle inequality that

$$
\tilde{\rho}(\tilde{x}, \partial \tilde{A}) \leq 4 r+\left|\int_{t_{0}}^{t_{1}} \sqrt{1+y^{\prime}(t)^{2}} d t\right| \leq 8 r
$$

which proves the claim.
Now let $r_{0}=d_{0}+2 d_{1}$ where d_{0} and d_{1} are defined after (12.54). Then $X(\partial \tilde{A})$ is contained inside the solid cylinder $C_{r_{0}}$. By the above claim, the set $X^{-1}\left(C_{r_{0}}\right)$ is compact. Set

$$
r_{1}=\sup _{z \in X^{-1}\left(C_{r_{0}}\right)}\{|X(z)|\}
$$

and $r_{2}>\max \left\{r_{0}, r_{1}\right\}$ such that

$$
\frac{r_{0}+r_{1}}{r_{2}}+\tan \frac{\pi}{6}<\frac{\sqrt{3}}{2}
$$

Then $X(\partial D)$ is contained inside the sphere $S^{2}\left(r_{2}\right)$ of radius r_{2} and centred at the origin. By the claim and by the fact that $\lim _{|z| \rightarrow 0} N(z)=N$, there exists a subannulus $A^{\prime} \subset D^{*}$ such that

1. (12.52) holds for $z \in A^{\prime}$,
2. $X(z)$ is outside $C_{r_{2}}$ for $z \in A^{\prime}$.

Let π be the plane containing $X(z)$ and the axis of $C_{r_{0}}$ for $z \in A^{\prime}$. Let γ be a connected component of $X^{-1}(\pi)$ containing z. The $X(\gamma)$ is a graph generated by $y(t)$ in π. By the transversality of π and $X\left(D^{*}\right)$ and the fact $X(\partial D) \subset C_{r_{0}}, X(\gamma)$ intersets $C_{r_{0}}$. Then y is defined at r_{0} or $-r_{0}$. We may assume that y is defined at r_{0}. Then

$$
\left|y\left(r_{0}\right)\right| \leq \mid\left(r_{0}, y\left(r_{0}\right) \mid \leq r_{1}\right.
$$

Let $z \in A^{\prime}$ and $X(z)=(r, y(r)), r>r_{0}$. By (12.53) it follows that

$$
|y(r)| \leq\left|y\left(r_{0}\right)\right|+\left|\int_{r_{0}}^{r} y^{\prime}(t) d t\right| \leq r_{0}+r_{1}+r \tan \theta
$$

Then, if $X(z)=(r, y(r))$, we have

$$
\begin{equation*}
\left|\frac{X(z)}{|X(z)|} \cdot N\right|=\frac{|y(r)|}{\sqrt{r^{2}+y^{2}(r)}} \leq \frac{r_{0}+r_{1}}{r}+\tan \theta<\frac{\sqrt{3}}{2}, \quad z \in A^{\prime} \tag{12.56}
\end{equation*}
$$

Set $r_{3}>\sup _{z \in\left(D^{*}-A^{\prime}\right)}\{|X(z)|\}$.
We now prove that X and $S^{2}(r)$ are transverse for $r \geq r_{3}$. If X and $S^{2}(r)$ are not transverse, then there exists $z \in X^{-1}\left(S^{2}(r)\right)$ such that

$$
N(z)=\frac{X(z)}{|X(z)|} .
$$

Since $X\left(D^{*}-A^{\prime}\right)$ lies inside $S^{2}(r)$, we have that $z \in A^{\prime}$ and (12.52) and (12.56) give a contradiction. Thus X is transverse to $S^{2}(r)$ for all $r \geq r_{3}$. We restrict X to A^{\prime}.

Then by the claim, the function $h: A^{\prime} \rightarrow \mathbf{R}$ defined by

$$
h(z)=|X(z)|^{2}
$$

is proper. If $z \in A^{\prime}$ is a critical point of h, then $D h(z)=(0,0)$, which means that $X_{x}(z)$ and $X_{y}(z)$ are perpendicular to $X(z)$, and so $N(z)=X(z) /|X(z)|$, contradicting to X and $S^{2}(r)$ are transverse. This contradiction proves that h does not have critical points. If $r>r_{3}$, then $h^{-1}\left(r^{2}\right)$ is a compact curve that does not intersect ∂A^{\prime}. Hence $h^{-1}\left(r^{2}\right)$ is a finite collection of Jordan curves. If $h^{-1}\left(r^{2}\right)$ has more than one Jordan curve, then there is a compact domain $\Omega \subset A^{\prime}$ such that $\partial \Omega$ is the union of Jordan curves of $h^{-1}\left(r^{2}\right)$. Then h has a maximum or minimum, hence a critical point, in the interior of Ω, which has already been proved impossible. This shows that $h^{-1}\left(r^{2}\right)$ is a single Jordan curve. Hence

$$
\Gamma^{r}:=X\left(D^{*}\right) \cap S^{2}(r)
$$

is an immersion of S^{1} and this proves item 2 in this theorem.
We observe that θ of (12.56) goes to zero as r goes to infinity. In fact θ depends on r_{0}, but we can let $r_{0} \rightarrow \infty$ and set $r>r_{0}^{2}$. By (12.56) the curve $\gamma^{r}=1 / r \Gamma^{r}$ is contained in a strip of S^{2} that converges to a great circle S as r goes to infinity. Also, by (12.52), the angle between the tangent vector of Γ^{r} and N goes to $\pi / 2$ as r goes to infinity. Hence, Γ^{r} makes at least one loop around the direction N and γ^{r} converges C^{0} to S as r goes to infinity.

Let $\alpha(\phi), \phi \in \mathbf{R}$, be a parametrisation by arc length of the great circle S. Let β_{r} be a parametrisation of γ^{r} such that $\beta_{r}(\phi)$ lies in the great circle of S^{2} that contains N and $\alpha(\phi)$. We have that

$$
\left(\frac{\beta_{r}^{\prime}}{\left|\beta_{r}^{\prime}\right|} \bullet \alpha^{\prime}\right)^{2}=1-\left(\frac{\beta_{r}^{\prime}}{\left|\beta_{r}^{\prime}\right|} \bullet \alpha\right)^{2}-\left(\frac{\beta_{r}^{\prime}}{\left|\beta_{r}^{\prime}\right|} \bullet N\right)^{2} .
$$

As β_{r}^{\prime} is orthogonal to $N\left(\beta_{r}\right)$, we have that $\beta_{r}^{\prime} /\left|\beta_{r}^{\prime}\right| \bullet N$ goes to zero as r goes to infinity. Since γ^{r} converges in the C^{0} sense to α, it follows that

$$
\lim _{r \rightarrow \infty} \beta_{r}^{\prime} /\left|\beta_{r}^{\prime}\right| \odot \alpha=\lim _{r \rightarrow \infty} \beta_{r}^{\prime} /\left|\beta_{r}^{\prime}\right| \bullet \lim _{r \rightarrow \infty} \beta_{r} /\left|\beta_{r}\right|=0 .
$$

Therefore γ^{r} converges in the C^{1} sense to the great circle S, with multiplicity, and item 3 is proved.

We now prove that if X is minimal, then γ^{r} converges in the C^{∞} sense to S. Let π be the plane orthogonal to N and containing the origin. Let Ω be the annulus $\{p \in \pi|1 / 2 \leq|p| \leq 2\}$. Set

$$
M_{r}:=\left(1 / r X\left(D^{*}\right)\right) \cap(\Omega \times \mathbf{R})
$$

The orthogonal projection of M_{r} onto Ω is a covering of Ω and locally we may write M_{r} as a graph of a function f_{r} defined over an angular sector of Ω. It follows from the C^{0} convergence of M_{r} and convergence properties for minimal surfaces (see, e.g. Corollary (16.7) in [21]) that all derivatives of f_{r} of order less then $j+1, j$ an integer, are uniformly bounded by a constant K_{j+1}. Since f_{r} converges in the C^{0} sense to $f=0$ and the inclusion map of the space of C^{j+1} functions into the space of C^{j} functions is absolutely continuous, it follows that f_{r} converges in the C^{j} sense to $f=0$. In particular, the intersection of M_{r} with S^{2} converges in the C^{j} sense to S with multiplicity for all j. This completes the proof of the theorem.

Now let $X: M=S_{k}-\left\{p_{1}, \cdots, p_{n}\right\} \hookrightarrow \mathbf{R}^{3}$ be a complete minimal surface of finite total curvature. Let $E_{i}=X: D_{i}-\left\{p_{i}\right\}$ be the end corresponding to p_{i}. Let $W_{i}^{r}=$ $1 / r X\left(D_{i}-\left\{p_{i}\right\}\right) \cap S^{2}(r)$ and $\Gamma_{i}^{r}=X^{-1}\left(r W_{i}^{r}\right)$. Jorge and Meeks' theorem says that Γ_{i}^{r} is a Jordan curve in $D_{i}-\left\{p_{i}\right\}$ for r large enough and W_{i}^{r} converges to a great circle of S^{2} with multiplicity I_{i}. We will define the multiplicity of E_{i} to be I_{i}. Clearly $I_{i}=1$ if and only if E_{i} is embedded. An application of Jorge-Meeks' theorem is that we can get a total curvature formula via the genus k, the number of punctures n, and the multiplicities I_{i}.

