11 Ends of Complete Minimal Surfaces

By Osserman's theorem, any complete minimal surface of finite total curvature is an immersion $X: M=S_{k}-\left\{p_{1}, \cdots, p_{r}\right\} \hookrightarrow \mathbf{R}^{3}$, where S_{k} is a closed Riemann surface of genus k. Consider conformal closed disks $D_{i} \subset S_{k}$ such that $p_{i} \in D_{i}$ and $p_{j} \notin D_{i}$ for $j \neq i$. Denote $D_{i}^{*}:=D_{i}-\left\{p_{i}\right\}$. For any such D_{i}, the restriction $X: D_{i}^{*} \hookrightarrow \mathbf{R}^{3}$ is called a representative of an end of X at p_{i} or simply an end. When we say that some property holds at an end of X at p_{i}, for example embeddedness, we mean that there is a disk like domain D_{i} such that for any disk like domain $p_{i} \in U_{i} \subset D_{i}, X: U_{i}-\left\{p_{i}\right\}$ satisfies the property. Such a representative $X: U_{i}-\left\{p_{i}\right\} \rightarrow \mathbf{R}^{3}$ is called a subend of the end $X: D_{i}^{*} \hookrightarrow \mathbf{R}^{3}$.

Osserman's theorem says that the Gauss map g extends to p_{i} and the extended g is a meromorphic function. Since $N=\tau^{-1} \circ g$ we have a well defined normal vector $N\left(p_{i}\right)$ at p_{i}, which we call the limit normal at p_{i}. This also defines a limit tangent plane at the end E_{i} corresponding to p_{i}.

Intuitively, and we will prove it later (see Proposition 11.5), $E_{i}=X\left(D_{i}^{*}\right) \subset \mathbb{R}^{3}$ is an unbounded set. Moreover, since $M-\bigcup_{i=1}^{r} D_{i}^{*}$ is precompact, $X(M)-\bigcup_{i=1}^{r} E_{i}$ is bounded. Thus if X is an embedding, an end E_{i} is just a connected component of $X(M)-B$, where B is any sufficiently large ball in \mathbf{R}^{3} centred at 0 .

In this section, all ends considered are ends of some complete minimal surface of finite total curvature.

Now consider the Enneper-Weierstrass representation of the complete minimal surface $X: M \hookrightarrow \mathbf{R}^{3}$. By (6.20)

$$
\Lambda^{2}=\frac{1}{2}\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}\right) .
$$

Now let $r:[0,1) \rightarrow D_{i}^{*}$ be a regular curve such that $\left|r^{\prime}(t)\right|=1$ and $\lim _{t \rightarrow 1} r(t)=p_{i}$. By completeness,

$$
\int_{0}^{1} \Lambda(r(t))\left|r^{\prime}(t)\right| d t=\infty
$$

This implies that $\Lambda(q) \rightarrow \infty$ as $q \rightarrow p$. Since ϕ_{i} 's are meromorphic, one of them must have a pole at p. Hence let z be the local coordinate of D_{i} such that $z\left(p_{i}\right)=0$, we must have

$$
\begin{equation*}
\Lambda^{2}=\frac{1}{2}\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}\right) \sim \frac{c}{|z|^{2 m}}, \tag{11.46}
\end{equation*}
$$

where $c>0$ and $m \geq 1$ is an integer.
Definition 11.1 If $\Lambda^{2} \sim c /|z|^{2 m}$ at an end, we say that Λ has order m at that end.
Remark 11.2 Since Λ^{2} is the pull back metric of $X: M \rightarrow \mathbf{R}^{3}$, we see that the order of Λ is invariant under an isometry in \mathbf{R}^{3}. Precisely, if A is an isometry of \mathbf{R}^{3} then $A X$ and X has the same pull back metric Λ^{2}. Thus the order of Λ at an end is invariant.
X being complete requires that the order of Λ at an end is at least one. In fact, we can prove that the order of Λ at an end is at least 2 .

Lemma 11.3 Let $X: M=S_{k}-\left\{p_{1}, \cdots, p_{r}\right\} \hookrightarrow \mathbf{R}^{3}$ be a complete minimal immersion with finite total curvature, and $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ its Enneper-Weierstrass representation. Then at each p_{j}, at least one of $\omega_{1}, \omega_{2}, \omega_{3}$ has a pole of order at least 2.

Proof. Let $\left(D_{j}, z\right)$ be a coordinate neighbourhood such that $z\left(p_{j}\right)=0$ and on D_{j}^{*}, $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)=\left(\phi_{1}, \phi_{2}, \phi_{3}\right) d z$.

We have shown that at least one of $\phi_{1}, \phi_{2}, \phi_{3}$ has a pole at p_{j}. So $m \geq 1$. If $m=1$, there are complex constants c_{1}, c_{2} and c_{3}, not all zero, such that $f_{i}:=\phi_{i}-c_{i} / z$ is holomorphic in D_{j}. Now

$$
\Re\left(c_{i} \log z\right)=\Re \int\left(\phi_{i}-f_{i}\right) d z=X_{i}-\Re \int f_{i} d z, \quad i=1,2,3
$$

are well defined harmonic functions on D_{i}^{*}. Since

$$
\Re\left(c_{i} \log z\right)=\left(\Re c_{i}\right) \log |z|-\left(\Im c_{i}\right) \arg z
$$

c_{i} must be real. But

$$
0=\phi_{1}^{2}+\phi_{2}^{2}+\phi_{3}^{2}=f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+\left(c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right) / z^{2}+2\left(c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}\right) / z
$$

Comparing the terms of the same order, it must be that $c_{i}=0$ for $i=1,2,3$. But then $\phi_{i}=f_{i}$ is holomorphic and bounded in D_{j}, contradicting the fact that X is complete.

Now recall that by definition $X: S_{k}-\left\{p_{1}, \cdots, p_{r}\right\} \hookrightarrow \mathbf{R}^{3}$ is complete if and only if for any divergent curve γ the arc length of $X \circ \gamma$ is infinity. Thus either $X \circ \gamma$ goes to infinity in \mathbf{R}^{3} or X o γ stays in a compact set of \mathbf{R}^{3} but has infinite arc length. To study these two cases, we introduce the concept of properness.

Definition 11.4 A mapping $X: M \rightarrow N$ between two topological spaces is proper if for any compact set $C \subset N, X^{-1}(C)$ is also compact.

Proposition 11.5 (Osserman) If $X: M \rightarrow \mathbf{R}^{3}$ is a complete minimal surface of finite total curvature then X is proper.

Proof. We know that $M=S_{k}-\left\{p_{1}, \cdots, p_{r}\right\}$ where S_{k} is a closed Riemann surface of genus k. Let $p \in\left\{p_{1}, \cdots, p_{r}\right\}$. Since the order of Λ is invariant under isometries of \mathbf{R}^{3}, after a rotation, we may assume that $g(p)=0$. There is a coordinate disk $U \subset S_{k}$ at p such that $z(p)=0$ and $|z|<1$ on U. So we can write that $g(z)=z^{n} h(z)$, where $n>0$ and $h(0) \neq 0$. On $U-\{p\}, \eta$ must have a pole of order $m \geq 2$, hence we can write $\eta=f(z) d z$ where

$$
f(z)=\sum_{i=-m}^{\infty} a_{i} z^{i}=\frac{1}{z^{m}} F(z)
$$

where F is holomorphic and $a_{-m}=F(0) \neq 0$. We can write

$$
f(z) g^{2}(z)=\sum_{2 n-m}^{\infty} b_{i} z^{i}
$$

Recall that

$$
\phi_{1}(z)=\frac{1}{2} f(z)\left(1-g^{2}(z)\right), \quad \phi_{2}(z)=\frac{i}{2} f(z)\left(1+g^{2}(z)\right) .
$$

Since on the loop $C:=\{|z|=\rho<1\}$,

$$
\begin{aligned}
0 & =\Re \int_{C} \phi_{1} d z-i \Re \int_{C} \phi_{2} d z \\
& =\frac{1}{2} \Re \int_{C}\left(a_{-1}-b_{-1}\right) z^{-1} d z+i \frac{1}{2} \Im \int_{C}\left(a_{-1}+b_{-1}\right) z^{-1} d z \\
& =\pi i\left(a_{-1}+\overline{b_{-1}}\right) \quad \text { (by the residue theorem) },
\end{aligned}
$$

we have

$$
\begin{equation*}
a_{-1}=-\overline{b_{-1}} . \tag{11.47}
\end{equation*}
$$

Let $X(z)=\left(X^{1}, X^{2}, X^{3}\right)(z)$, then

$$
\begin{align*}
\left(X^{1}-i X^{2}\right)(z) & =\Re \int_{z_{0}}^{z} \phi_{1}(\zeta) d \zeta-i \Re \int_{z_{0}}^{z} \phi_{2}(\zeta) d \zeta+\left(X^{1}-i X^{2}\right)\left(z_{0}\right) \\
& =\Re \int_{z_{0}}^{z} \frac{1}{2} f(\zeta)\left(1-g^{2}(\zeta)\right) d \zeta+i \Im \int_{z_{0}}^{z} \frac{1}{2} f(\zeta)\left(1+g^{2}(\zeta)\right) d \zeta+\left(X^{1}-i X^{2}\right)\left(z_{0}\right) \\
& =\frac{1}{2} \int_{z_{0}}^{z} f(\zeta) d \zeta-\frac{1}{2} \int_{z_{0}}^{z} f(\zeta) g^{2}(\zeta) d \zeta+\left(X_{1}-i X_{2}\right)\left(z_{0}\right) \\
& =\frac{1}{2} \sum_{\substack{i=-m \\
i \neq-1}}^{\infty} \frac{a_{i}}{1+i} z^{i+1}-\frac{1}{2} \overline{\sum_{\substack{i=2 n-m \\
i \neq-1}}^{\infty} \frac{b_{i}}{1+i} z^{i+1}}+\frac{1}{2}\left(a_{-1}-\overline{b_{-1}}\right) \log |z| \\
& =\frac{1}{2} \frac{a_{-m}}{1-m} z^{1-m}+\frac{1}{2}\left(a_{-1}-\overline{b_{-1}}\right) \log |z|+O\left(|z|^{2-m}\right) \tag{11.48}
\end{align*}
$$

Since $a_{-m} \neq 0$ and $m \geq 2$, (11.48) shows that $|X|^{2} \rightarrow \infty$ as $z \rightarrow 0$. Thus for any compact set $B \subset \mathbf{R}^{3}$, there are open disks $p_{i} \in D_{i} \subset S_{k}$ such that $X^{-1}(B) \subset S_{k}-\bigcup_{i=1}^{r} D_{i}$ is compact.

We want to know how to determine whether an end is embedded by looking at the Enneper-Weierstrass representation.

Lemma 11.6 If the order of Λ at an end is $m=2$, then there is an open conformal disk D such that $X: D-\{p\} \hookrightarrow \mathbf{R}^{3}$ is an embedding, where p is the puncture corresponding to the end.

Proof. In the proof of Proposition 11.5, since $n \geq 1$ and $m=2$ we see that $b_{-1}=0$ and hence $a_{-1}=0$ by (11.47). Now by the same calculation which led to (11.48),

$$
\begin{equation*}
\left(X^{1}-i X^{2}\right)(z)=-\frac{1}{2} \frac{a_{-2}}{z}+O(|z|) \tag{11.49}
\end{equation*}
$$

Obviously for some $0<\rho<1$ small enough, $X_{1}-i X_{2}: D-\{p\}:=\{z \in U|0<|z|<$ $\rho\} \rightarrow \mathbf{C}$ is one to one and $\lim _{|z| \rightarrow 0}\left|X_{i}-i X_{2}\right|(z)=\infty$. Hence $\left.X\right|_{D-\{p\}}$ is an embedding.

When Λ has order 2 at an end, we can get more information about the behaviour of X at that end; in fact this end can be expressed as a minimal graph with a very nice growth property. To prove this, we first show:
Lemma 11.7 Let $p \in\left\{p_{1}, \cdots, p_{r}\right\}$ and Λ have order 2 at p. Then there are $R>0$ and $\rho>0$ such that the mapping $X^{1}-i X^{2}: D-\{p\} \rightarrow \mathbf{C}$ defined in Lemma 11.6 is onto $\{\xi \in \mathbf{C}||\xi|>R\}$.

Proof. We have seen in Lemma 11.6 that for some $0<\rho<1, X^{1}-i X^{2}: D-$ $\{p\}=\{0<|z| \leq \rho\} \rightarrow \mathrm{C}$ is one to one and $\lim _{|z| \rightarrow 0}\left|X^{1}-i X^{2}\right|(z)=\infty$. Let $R=\max _{|z|=\rho}\left\{\left|X^{1}-i X^{2}\right|(z)\right\}$. Note that $\alpha:=\left(X^{1}-i X^{2}\right)(\{|z|=\rho\})$ is a Jordan curve in C. If there is a $\xi \in \mathbf{C},|\xi|>R$ and $\xi \notin\left(X^{1}-i X^{2}\right)(D-\{p\})$, then there is a $0<r<\rho$ such that $\min _{|z|=r}\left\{\left|X_{1}-i X_{2}\right|(z)\right\}>|\xi|$. Let $\beta:=\left(X^{1}-i X^{2}\right)(\{|z|=r\})$, then β is a Jordan curve in \mathbf{C} and $\alpha \cap \beta=\emptyset$. Let $\Omega:=\mathbf{C}-\{0\}-\{\xi\}$, where α and β are not free homotopic to each other in Ω. But clearly $\left(X^{1}-i X^{2}\right)(\{r<|z|<\rho\}) \subset \Omega$ and $\phi(\theta, t):=$ $\left(X^{1}-i X^{2}\right)\left[(r+t(\rho-r)) e^{i \theta}\right], 0 \leq t \leq 1,0 \leq \theta \leq 2 \pi$, is a homotopy from β to α in Ω. Thus we get a contradiction. This contradiction proves that $\xi \in\left(X^{1}-i X^{2}\right)(D-\{p\})$. The lemma is proved.

Theorem 11.8 Let the notation be as in Lemmas 11.6 and 11.7. Then there is an $R>0$ and an $\epsilon \in(0,1)$ such that outside the solid cylinder $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2} \leq\right.$ $\left.R^{2}\right\}, X(0<|z|<\epsilon)$ is a graph $\left(x_{1}, x_{2}, u\left(x_{1}, x_{2}\right)\right)$ over the $x_{1} x_{2}$-plane. Furthermore, asymptotically,

$$
\begin{equation*}
u\left(x_{1}, x_{2}\right)=\alpha \log r+\beta+r^{-2}\left(\gamma_{1} x_{1}+\gamma_{2} x_{2}\right)+O\left(r^{-2}\right) \tag{11.50}
\end{equation*}
$$

where $r=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$, and $\alpha, \beta, \gamma_{1}$ and γ_{2} are real constants.
Proof. We have proved that there is an $\epsilon \in(0,1)$ such that the mapping $X^{1}-i X^{2}$: $D^{*}:=\{z|0<|z|<\epsilon\} \rightarrow \mathrm{C}$ is one to one and onto $|\xi|>R$ for some $R>0$. Let $\Omega=\{|\xi|>R\}$. For any $\left(x_{1}, x_{2}\right) \in \Omega$ there is a unique $z \in D^{*}$ such that $x_{1}=X^{1}(z)$ and $x_{2}=X^{2}(z)$. Define $u\left(x_{1}, x_{2}\right)=X^{3}(z)$ on $\left(X^{1}-i X^{2}\right)^{-1}(\Omega)$, then u is a well defined function. Now use the data written down in the proof of Proposition 11.5, recalling that $g(z)=z^{n} h(z), f(z)=a_{-2} z^{-2}+\sum_{i=0}^{\infty} a_{i} z^{i}$, and so $\phi_{3}(z)=a_{-2} h(0) z^{n-2}+a_{-2} h^{\prime}(0) z^{n-1}+$ $\sum_{i=n}^{\infty} b_{i} z^{i}$.

We consider the two cases of $n=1$ or $n>1$. If $n=1$, let $C:=\left\{|z|=\epsilon_{1}\right\}$ for some $0<\epsilon_{1}<\epsilon$. Since

$$
0=\Re \int_{C} \phi_{3}(z) d z=\Re\left(a_{-2} h(0) 2 \pi i\right)
$$

we see that $\alpha:=-a_{-2} h(0) \neq 0$ is real. Thus

$$
\begin{aligned}
u\left(x_{1}, x_{2}\right) & =X^{3}(z)=\Re \int_{z_{0}}^{z} \phi_{3}(\zeta) d \zeta+X^{3}\left(z_{0}\right) \\
& =-\alpha \log |z|+\Re\left(a_{-2} h^{\prime}(0) z\right)+O\left(|z|^{2}\right)+X^{3}\left(z_{0}\right)
\end{aligned}
$$

By (11.49),

$$
\begin{gathered}
r^{2}=\left|x_{1}-i x_{2}\right|^{2}=\frac{\left|a_{-2}\right|^{2}}{4|z|^{2}}+O(1)=\frac{1}{|z|^{2}}\left(\frac{\left|a_{-2}\right|^{2}}{4}+O\left(|z|^{2}\right)\right) \\
2 \log r=-2 \log |z|+\log \left(\frac{\left|a_{-2}\right|^{2}}{4}+O\left(|z|^{2}\right)\right)=-2 \log |z|+2 \log \frac{\left|a_{-2}\right|}{2}+O\left(|z|^{2}\right) .
\end{gathered}
$$

Also by (11.49),

$$
z=\frac{-a_{-2}}{2\left(x_{1}-i x_{2}\right)}+O\left(r^{-2}\right)=\frac{-a_{-2}\left(x_{1}+i x_{2}\right)}{2 r^{2}}+O\left(r^{-2}\right) .
$$

Thus there are real constants γ_{1} and γ_{2} such that

$$
\Re\left(a_{-2} h^{\prime}(0) z\right)=\frac{\gamma_{1} x_{1}+\gamma_{2} x_{2}}{r^{2}} .
$$

Setting $\beta=-\alpha \log \frac{\left|\alpha_{-2}\right|}{2}+X^{3}\left(z_{0}\right)$, we have

$$
u\left(x_{1}, x_{2}\right)=\alpha \log r+\beta+r^{-2}\left(\gamma_{1} x_{1}+\gamma_{2} x_{2}\right)+O\left(r^{-2}\right) .
$$

If $n>1$ then ϕ_{3} is bounded in D^{*}, hence $\alpha=0$. In this case, the end approximates a plane.

We have shown that if Λ has order 2 at an end, then that end is embedded and is a minimal graph. Next we will show that if an end is embedded, then Λ must have order 2 at that end.

An outline of the proof is as follows: If $m>2$ and $g(0)=0$ then

$$
\left(X^{1}-i X^{2}\right)(z)=\frac{c}{z^{k}}+O\left(|z|^{1-k}\right)
$$

with $k>1$. This shows that $\left(X^{1}-i X^{2}\right)$ is not one to one, and $\lim _{|z| \rightarrow 0}\left|X_{1}-i X_{2}\right|(z)=\infty$. But it is possible that the surface $X=\left(X^{1}, X^{2}, X^{3}\right)$ is embedded. However, intuitively we know that X is a graph over $\mathbf{C}-B$, where B is a large disk in \mathbf{C}, since our surface has a limit tangent plane corresponding to the puncture. It follows that X is embedded is equivalent to $X^{1}-i X^{2}$ being one to one. The next lemma gives a rigorous proof of this fact.

Lemma 11.9 Let D and p be as in Proposition 11.5. If $X: D-\{p\}$ is an embedding then there is an $R>0$ such that X is a graph over $\mathbf{R}^{2}-B_{R}$, where $B_{R}:=\left\{x \in \mathbf{R}^{2}| | x \mid \leq R\right\}$. In particular, Λ has order 2 at p.

Proof. We assume that the limit normal to X at p is $(0,0,-1)$. Let $P\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(x_{1}, x_{2}\right)$ be the perpendicular projection. Let $C_{r}:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3} \mid x_{1}^{2}+x_{2}^{2}=r^{2}\right\}$, $\left.V_{r}:=\left\{x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3} \mid x_{1}^{2}+x_{2}^{2}>r^{2}\right\}$.

We will prove that there is an $R>0$ such that $P: X(D-\{p\}) \cap V_{R} \rightarrow \mathbf{R}^{2}-B_{R}$ is one to one and onto $\mathbf{R}^{2}-B_{R}$. Hence X is a graph over $\mathbf{R}^{2}-B_{R}$. Moreover, $\partial\left[X^{-1}\left(V_{R}\right)\right]$ is a homotopically non-trivial Jordan curve $J_{R} \subset D-\{p\}$, hence $X^{-1}\left(V_{R}\right)$ is conformally a punctured disk.

Since the limit normal of X at p is $(0,0,-1)$, there is an $0<\rho<1$ such that $N_{3}(z)<-1 / 2$ for any $0<|z| \leq \rho$. Let $D_{\rho}^{*}:=\{z|0<|z|<\rho\}$. Since X is continuous, there is an $R>0$ such that $\left|X^{1}-i X^{2}\right|^{2}(z)<R^{2}$ for $|z|=\rho$. For any $r>R$, consider the set $X^{-1}\left(C_{r}\right) \subset D_{\rho}^{*}$. Since $N_{3}(z)<-1 / 2$ for any $0<|z|<\rho, X$ is transverse to C_{r}. (i.e., $X\left(D_{\rho}^{*}\right)$ and C_{r} have different tangent planes at common points.) This implies that $X^{-1}\left(C_{r}\right)$ is a family of one-dimensional submanifolds in D_{ρ}^{*}. From the expression for $X^{1}-i X^{2}$ we know that $\left|X^{1}-i X^{2}\right|(z) \rightarrow \infty$ when $|z| \rightarrow 0$, hence any component J_{r} of $X^{-1}\left(C_{r}\right)$ is a compact one-dimensional submanifold, i.e., it is a Jordan curve in D_{ρ}^{*}. If J_{r} is homotopically trivial, then it bounds a disk like domain $\Omega \subset D_{\rho}^{*}$. We will prove that $\left|X^{1}-i X^{2}\right|^{2}(z) \equiv r^{2}$ on Ω. In fact, let $z \in \Omega$ be such that $\left|X^{1}-i X^{2}\right|^{2}(z)$ achieves a maximum or minimum other than r^{2} on $\bar{\Omega}$. Then z is an interior point of Ω and $D\left|X^{1}-i X^{2}\right|^{2}(z)=(0,0)$. This says that

$$
\begin{equation*}
\left(X^{1}, X^{2}\right)_{x} \bullet\left(X^{1}, X^{2}\right)=0, \quad\left(X^{1}, X^{2}\right)_{y} \bullet\left(X^{1}, X^{2}\right)=0 \tag{11.51}
\end{equation*}
$$

Since $\left(X^{1}, X^{2}\right)(z) \neq(0,0),(11.51)$ implies that $\left(X^{1}, X^{2}\right)_{x}$ and $\left(X^{1}, X^{2}\right)_{y}$ are linearly dependent. This then implies that $N_{3}(z)=0$, contradicting $N_{3}(z)<-1 / 2$. But if $\left|X^{1}-i X^{2}\right|^{2} \equiv r^{2}$ on $\Omega, X \operatorname{maps} \Omega$ to C_{r}, another contradiction to the fact that $N_{3}(z)<-1 / 2$ in D_{ρ}^{*}. These contradictions prove that J_{r} is homotopically non-trivial. Now if $X^{-1}\left(C_{r}\right)$ has more than one component, say J_{r}^{1} and J_{r}^{2}. The above argument shows that they are both homotopically non-trivial. Thus they are in the same \mathbb{Z}_{2} homotopy class, and bound a compact doubly-connected domain $\Omega \subset D_{\rho}^{*}$. By the same argument we can prove that $X(\Omega) \subset C_{r}$, which is impossible. Thus we have shown that $J_{r}:=\left(\left|X^{1}-i X^{2}\right|^{2}\right)^{-1}\left(r^{2}\right)=X^{-1}\left(C_{r}\right)$ is a homotopically non-trivial Jordan curve in D_{ρ}^{*}.

Now $X: D_{\rho}^{*} \rightarrow \mathbb{R}^{3}$ is an embedding, so $\alpha:=X\left(J_{r}\right)$ is a Jordan curve on C_{r}. Let $\beta: S^{1} \rightarrow D_{\rho}^{*}$ be a parametrisation of J_{r}. If $\beta\left(t_{i}\right)=z_{i} \in J_{r}$ for $i=1,2$ where $z_{1} \neq z_{2}$ and $\left(X^{1}, X^{2}\right)\left(z_{1}\right)=\left(X^{1}, X^{2}\right)\left(z_{2}\right)$, then there is a $t \in S^{1}$ such that $\alpha^{\prime}(t)=C(0,0,1)$ for some non-zero constant C. Since $\alpha^{\prime}(t)$ is a tangent vector of X, we must have $N_{3}(\beta(t))=0$, a contradiction to $N_{3}(z)<-1 / 2$. This shows that $P: X\left(J_{r}\right) \rightarrow \partial B_{r}$ is one to one and onto for any $r>R$; hence $\left(X^{1}, X^{2}\right)$ is one to one and onto $\mathbb{R}^{2}-B_{R}$.

Remark 11.10 The fact that X is an embedding is used only when claiming that $\alpha=X\left(J_{r}\right)$ is a Jordan curve. Hence it is true that $\left(\left|X^{1}-i X^{2}\right|^{2}\right)^{-1}\left(r^{2}\right)=X^{-1}\left(C_{r}\right)$ is a homotopically non-trivial Jordan curve when X is only an immersion. In general, $P: X\left(J_{r}\right) \rightarrow \partial B_{r}$ is an m to one projection except for a finite number of points in ∂B_{r}. The number m is the I_{i} in Theorem 12.1.

An immediate application of Theorem 11.8 and Lemma 11.9 is:
Corollary 11.11 If $X: S_{k}-\left\{p_{1}, \ldots, p_{n}\right\} \hookrightarrow \mathbf{R}^{3}$ is a complete minimal embedding, then the limit normal must be parallel.

Definition 11.12 An embedded end of a complete immersed minimal surface in \mathbf{R}^{3} of finite total curvature is a flat (or planar end) if $\alpha=0$ in (11.50), and is a catenoid end otherwise.

Remark 11.13 We have proved that X is embedded at an end E if and only if Λ has order 2. Let p be the puncture corresponding to E. From the proof of Theorem 11.8, we know that E is flat if and only if p is a branch point of the Gauss map g.

Finally, we give a description of the image of a flat end at the limit height.
Proposition 11.14 Let $E=X(D-\{p\})$ be an embedded flat end and g have branch order $k>0$. Let β be as in Theorem 11.8, and B be a large ball centre at $(0,0, \beta)$. Then $(E-B) \cap\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=\beta\right\}$ has $2 k$ components.

Proof. Without loss of generality we may assume that $g(p)=0$ and $g(z)=z^{k+1}$. Now $\eta=z^{-2} h(z) d z, h(0) \neq 0$, so

$$
X_{3}(z)=\beta+\Re\left(\frac{1}{k} h(0) z^{k}\right)+o\left(|z|^{k}\right) .
$$

Thus $X_{3}^{-1}(\beta) \cap(D-\{p\})$ consists of k curves intersecting at $z=0$. This is equivalent to $(E-B) \cap\{(x, y, z) \mid z=\beta\}$ consisting of $2 k$ components.

