7 The Geometry of the Enneper-Weierstrass Representation

Let $X: M \hookrightarrow \mathbf{R}^{3}$ be a minimal surface. We will give the geometric data, such as the Gauss map, the first and second fundamental forms, the principal and Gauss curvatures, etc., of a minimal surface via its Enneper-Weierstrass representation.

One important fact is that the meromorphic function g in the Enneper-Weierstrass representation corresponds to the Gauss map N. For this we first recall that the Gauss $\operatorname{map} N: M \rightarrow \Sigma=S^{2}$ of an immersion $X: M \hookrightarrow \mathbf{R}^{3}$ is defined as

$$
N=\left|X_{u} \wedge X_{v}\right|^{-1}\left(X_{u} \wedge X_{v}\right): M \rightarrow \Sigma
$$

Let $\tau: S^{2}-\{\mathcal{N}\} \rightarrow \mathbf{C}$ be stereographic projection, where \mathcal{N} is the north pole. Then

$$
\tau(x, y, z)=\frac{x+i y}{1-z}, \quad \tau^{-1}(w)=\frac{1}{1+|w|^{2}}\left(2 \Re w, 2 \Im w,|w|^{2}-1\right)
$$

where \Re and \Im are the real and imaginary parts. We claim that

$$
g=\tau \circ N: M \rightarrow \mathbf{C}
$$

In fact,

$$
\tau^{-1} \circ g=\frac{1}{1+|g|^{2}}\left(2 \Re g, \quad 2 \Im g, \quad|g|^{2}-1\right)
$$

By (6.15), (6.18), and (6.26)

$$
\begin{aligned}
& X_{u}=\Re\left(\frac{1}{2} f\left(1-g^{2}\right), \quad \frac{i}{2} f\left(1+g^{2}\right), \quad f g\right) \\
& X_{v}=-\Im\left(\frac{1}{2} f\left(1-g^{2}\right), \frac{i}{2} f\left(1+g^{2}\right), \quad f g\right)
\end{aligned}
$$

thus

$$
\begin{aligned}
& X_{u} \wedge X_{v}=\left(\begin{array}{c}
-\Re \frac{i}{2} f\left(1+g^{2}\right) \Im f g+\Re f g \Im \frac{i}{2} f\left(1+g^{2}\right) \\
\Re \frac{1}{2} f\left(1-g^{2}\right) \Im f g-\Re f g \Im \frac{1}{2} f\left(1-g^{2}\right) \\
-\Re f\left(1-g^{2}\right) \Im \frac{i}{4} f\left(1+g^{2}\right)+\Re \frac{i}{4} f\left(1+g^{2}\right) \Im f\left(1-g^{2}\right)
\end{array}\right) \\
& =\left(\begin{array}{c}
\Im\left[\frac{i}{2} f\left(1+g^{2}\right) \overline{f g}\right] \\
\Im\left[\frac{1}{2} \overline{f\left(1-g^{2}\right)} f g\right] \\
\Im\left[\frac{-i}{4} \overline{f\left(1+g^{2}\right)} f\left(1-g^{2}\right)\right]
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2}|f|^{2} \Re\left(\bar{g}+|g|^{2} g\right) \\
\frac{1}{2}|f|^{2} \Im\left(g-|g|^{2} \bar{g}\right) \\
\frac{1}{4}|f|^{2} \Re\left(|g|^{4}-1-\bar{g}^{2}+g^{2}\right)
\end{array}\right)
\end{aligned}
$$

$$
=\frac{|f|^{2}\left(1+|g|^{2}\right)^{2}}{4\left(1+|g|^{2}\right)}\left(\begin{array}{c}
2 \Re g \\
2 \Im g \\
|g|^{2}-1
\end{array}\right)=\frac{1}{4}|f|^{2}\left(1+|g|^{2}\right)^{2} \tau^{-1} \circ g
$$

Since $\tau^{-1} \circ g \in S^{2},\left|\tau^{-1} \circ g\right|=1$. Since X is conformal, the first fundamental form is given by $g_{12}=0$ and

$$
\begin{equation*}
g_{11}=g_{22}=\Lambda^{2}=\left|X_{u}\right|\left|X_{v}\right|=\left|X_{u} \wedge X_{v}\right|=\frac{1}{4}|f|^{2}\left(1+|g|^{2}\right)^{2} \tag{7.28}
\end{equation*}
$$

Thus

$$
\begin{equation*}
N=\left|X_{u} \wedge X_{v}\right|^{-1}\left(X_{u} \wedge X_{v}\right)=\frac{1}{1+|g|^{2}}\left(2 \Re g, 2 \Im g,|g|^{2}-1\right)=\tau^{-1} \circ g \tag{7.29}
\end{equation*}
$$

as we claimed.
Later we will also call the function $g=\tau \circ N$ the Gauss map of the immersion $X: M \hookrightarrow \mathbb{R}^{3}$. We have seen that if X is a minimal surface then g is a meromorphic function. The converse is also true, i.e., X is minimal if and only if $g=\tau \circ N$ is meromorphic. We give a sketch of the proof of the converse direction; the reader can fill in the details or see [34], pages 7 to 14 .

Let $T_{X(p)} M \subset \mathbb{R}^{3}$ be the tangent space at $X(p), p \in M . T_{X(p)} M$ is oriented by the basis $\left(X_{1}, X_{2}\right)$. The orientation determined by $\left(X_{1}, X_{2}\right)$ will be called the positive orientation. Thus we can regard $T_{X(p)}$ as a point in $G_{3,2}^{+}$, the Grasmann manifold of oriented two dimensional subspaces in \mathbb{R}^{3}. We want to embed $G_{3,2}^{+}$in $\mathbf{C P}^{2}$, the two (complex) dimensional complex projective space.

One way to express $P \in G_{3,2}^{+}$is to select a positive orthogonal basis $\left(e_{1}, e_{2}\right)$. But if $\left(e_{1}, e_{2}\right)$ is a positive orthogonal basis of P and A is a rotation in P, then $A\left(e_{1}, e_{2}\right)$ is also a positive orthogonal basis of P. If we consider $e_{1}+i e_{2}$ as a vector in \mathbf{C}^{3}, then A corresponds to a unit complex number $e^{i \theta}$, and $\left(e_{1}, e_{2}\right) A$ corresponds to $e^{i \theta}\left(e_{1}+i e_{2}\right) \in$ \mathbf{C}^{3}. Moreover, $e^{i \theta}\left(e_{1}+i e_{2}\right) /\left|e_{1}+i e_{2}\right|$ corresponds to a positive orthonormal basis of P. Thus we find that given a positive orthogonal basis (e_{1}, e_{2}), all positive orthonormal bases can be written as $\Theta\left(e_{1}+i e_{2}\right) \in \mathrm{C}^{3}$, where Θ is an nonzero complex number. Fixing a positive orthogonal basis $\left(e_{1}, e_{2}\right)$ of P and identifying $\Theta\left(e_{1}+i e_{2}\right) \in \mathbf{C}^{3}$ for all $\Theta \in \mathbf{C}-\{0\}$ gives us a point $\left[e_{1}+i e_{2}\right] \in \mathbf{C P}^{2}$. Thus P corresponds to a unique point in $\mathbf{C P}^{2}$. This is our embedding $E: G_{3,2}^{+} \rightarrow \mathbf{C P}^{2}$. By local coordinates it is easy to verify that E is C^{∞}.

Now remember that for any conformal immersion $X: M \hookrightarrow \mathbf{R}^{3}$, the 1-forms $\bar{\phi}=$ $X_{1}+i X_{2}$ are well defined in a coordinate neighbourhood U. Since $\left(X_{1}, X_{2}\right)$ is a positive orthogonal basis of $T_{X(p)} M \subset \mathbb{R}^{3}$, we can define $\bar{\phi}: U \rightarrow \mathbf{C P}^{2}$ by $\bar{\phi}(p)=E\left(T_{X(p)}\right)=$ $\left[\left(X_{1}+i X_{2}\right)(p)\right] . \quad X$ is conformal implies that (6.19) is true, thus the image of $\bar{\phi}$ is contained in the submanifold $Q_{1}:=\left\{\left[z_{1}, z_{2}, z_{3}\right] \in \mathbf{C P}^{2} \mid z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0\right\}$. We claim that Q_{1} is conformally homeomorphic to S^{2}. In fact, let $\left(z_{1}, z_{2}, z_{3}\right)$ be a representative of $\left[z_{1}, z_{2}, z_{3}\right] \in Q_{1}$ and write $\left(z_{1}, z_{2}, z_{3}\right)=e_{1}+i e_{2}$, where the e_{i} 's are real vectors. Then $\left[z_{1}, z_{2}, z_{3}\right] \in Q_{1}$ implies that $\left(e_{1}, e_{2}\right)$ is orthogonal, therefore there is a unique
$e_{3} \in S^{2}$ such that $\left(e_{1}, e_{2}, e_{3}\right)$ is a orthogonal basis of \mathbf{R}^{3} with positive orientation. Define $\sigma\left(\left[z_{1}, z_{2}, z_{3}\right]\right)=e_{3}$; clearly σ is a homeomorphism from Q_{1} to S^{2}. A little calculation shows that σ is conformal. Clearly, $\sigma \circ \bar{\phi}(p)=N(p)$, where N is the Gauss map. Now $g(p)=\tau \circ \sigma \circ \bar{\phi}(p)$, or $\bar{\phi}=\sigma^{-1} \circ \tau^{-1} \circ g$. Since τ reverses orientation, it is anti-conformal. If g is holomorphic, then $\underline{\underline{g}}$ is conformal and thus $\bar{\phi}$ is anti-conformal or anti-holomorphic. This implies that $\phi=\overline{\bar{\phi}}$ is holomorphic. Thus

$$
\frac{1}{2}\left(\frac{\partial^{2} X}{\partial x^{2}}+\frac{\partial^{2} X}{\partial y^{2}}\right)=\frac{1}{2}\left[\frac{\partial^{2} X}{\partial x^{2}}+i \frac{\partial^{2} X}{\partial x \partial y}-i\left(\frac{\partial^{2} X}{\partial x \partial y}+i \frac{\partial^{2} X}{\partial y^{2}}\right)\right]=\frac{\partial \phi}{\partial \bar{z}}=0
$$

Hence X is harmonic and therefore minimal. This ends the sketch of the proof.
Remark 7.1 Note that if $p \in M$ is a branch point of a branched minimal surface and (U, z) is an isothermal neighbourhood of p such that $z(p)=0$, then we can write $\phi=z^{m} \psi$, where ψ is a holomorphic vector function and $\psi(0) \neq 0$. Since ϕ satisfies (6.19), ψ also satisfies (6.19). We can use $[\psi] \in \mathbf{C P}^{2}$ to define the tangent space $T_{X(p)} M$. Thus for a branched minimal surface, the tangent space is well defined even at branch points.

We next give a Gauss curvature formula of the minimal surface $X: M \hookrightarrow \mathbb{R}^{3}$ via the Enneper-Weierstrass representation, namely

$$
\begin{equation*}
K=-\left[\frac{4\left|g^{\prime}\right|}{|f|\left(1+|g|^{2}\right)^{2}}\right]^{2} \tag{7.30}
\end{equation*}
$$

To prove this, remember that for a surface with conformal metric $d s^{2}=\Lambda^{2}|d z|^{2}$, where $d z=d x+i d y$ and $|d z|^{2}=(d x)^{2}+(d y)^{2}$, the Gauss curvature is given by

$$
K=-\frac{1}{2 \Lambda^{2}} \triangle \log \Lambda^{2}=-\frac{2}{\Lambda^{2}} \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z} \log \Lambda^{2}
$$

By (7.28), since $\log |f|$ is harmonic, we have

$$
\begin{aligned}
\frac{2}{\Lambda^{2}} \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z} \log \Lambda^{2} & =\frac{4}{\Lambda^{2}} \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z} \log |f|+\frac{4}{\Lambda^{2}} \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z} \log \left(1+|g|^{2}\right) \\
& =\frac{4}{\Lambda^{2}} \frac{\partial}{\partial \bar{z}} \frac{g^{\prime} \bar{g}}{1+|g|^{2}}=\frac{4}{\Lambda^{2}} \frac{g^{\prime} \overline{g^{\prime}}\left(1+|g|^{2}\right)-g^{\prime} \bar{g} g g^{\prime}}{\left(1+|g|^{2}\right)^{2}} \\
& =\frac{4}{\Lambda^{2}} \frac{\left|g^{\prime}\right|^{2}}{\left(1+|g|^{2}\right)^{2}}=\frac{16\left|g^{\prime}\right|^{2}}{|f|^{2}\left(1+|g|^{2}\right)^{4}}
\end{aligned}
$$

We can also calculate the second fundamental form of X via the Enneper-Weierstrass representation. Recall that

$$
X_{1}-i X_{2}=X_{x}-i X_{y}=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)
$$

are holomorphic functions of $z=x+i y$. Hence

$$
X_{11}-i X_{12}=X_{x x}-i X_{x y}=\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}, \phi_{3}^{\prime}\right)
$$

Because X is harmonic, the data of the second fundamental form then must be

$$
\begin{gathered}
h_{11}=X_{11} \bullet N=\Re\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}, \phi_{3}^{\prime}\right) \bullet N, \quad h_{22}=-h_{11}, \\
h_{12}=X_{12} \bullet N=-\Im\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}, \phi_{3}^{\prime}\right) \bullet N .
\end{gathered}
$$

By (6.15), (6.18), and (6.26),

$$
\begin{aligned}
X_{11} \bullet N= & \Re\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}, \phi_{3}^{\prime}\right) \bullet N \\
= & \Re\left[\left(\frac{1}{2} f^{\prime}\left(1-g^{2}\right), \frac{i}{2} f^{\prime}\left(1+g^{2}\right), f^{\prime} g\right)+\left(-f g g^{\prime}, i f g g^{\prime}, f g^{\prime}\right)\right] \bullet N \\
= & \frac{1}{1+|g|^{2}}\left(\Re f^{\prime}\left(1-g^{2}\right) \Re g-\Im f^{\prime}\left(1+g^{2}\right) \Im g+\Re f^{\prime} g\left(|g|^{2}-1\right)\right. \\
& \left.-2 \Re f g g^{\prime} \Re g-2 \Im f g g^{\prime} \Im g+\Re f g^{\prime}\left(|g|^{2}-1\right)\right) \\
= & \frac{1}{1+|g|^{2}}\left(\Re f^{\prime} \Re g-\Re f^{\prime} g^{2} \Re g-\Im f^{\prime} \Im g-\Im f^{\prime} g^{2} \Im g\right. \\
& \left.+\Re f^{\prime} g\left(|g|^{2}-1\right)-2 \Re f g g^{\prime} \bar{g}+\Re f g^{\prime}\left(|g|^{2}-1\right)\right) \\
= & \frac{1}{1+|g|^{2}}\left(\Re f^{\prime} g-\Re f^{\prime} g^{2} \bar{g}+\Re f^{\prime} g\left(|g|^{2}-1\right)-2|g|^{2} \Re f g^{\prime}+\Re f g^{\prime}\left(|g|^{2}-1\right)\right) \\
= & \frac{1}{1+|g|^{2}}\left(-\Re f g^{\prime}\left(|g|^{2}+1\right)\right)=-\Re f g^{\prime} .
\end{aligned}
$$

Similarly, we have $h_{12}=\Im f g^{\prime}$. From these we see that for a minimal surface,

$$
\begin{equation*}
h_{11}-i h_{12}=-f g^{\prime} \tag{7.31}
\end{equation*}
$$

is a holomorphic function.
Again let $d z=d x+i d y$ and $(d z)^{2}=(d x)^{2}-(d y)^{2}+2 i d x d y$. The second fundamental form of X can be written as

$$
\begin{gathered}
h_{11}(d x)^{2}+2 h_{12} d x d y+h_{22}(d y)^{2}=-\Re\left(f g^{\prime}\right)\left((d x)^{2}-(d y)^{2}\right)+2 \Im\left(f g^{\prime}\right) d x d y \\
=-\Re\left(f g^{\prime}\right) \Re(d z)^{2}+\Im\left(f g^{\prime}\right) \Im(d z)^{2}=-\Re\left(f g^{\prime}(d z)^{2}\right)=-\Re(f d g d z)
\end{gathered}
$$

Let $V \in T_{p} M$ be a unit tangent vector and write

$$
V=\Lambda^{-1}\left(\cos \theta \frac{\partial}{\partial x}+\sin \theta \frac{\partial}{\partial x}\right)=2 \Re \Lambda^{-1} e^{i \theta} \frac{\partial}{\partial z}=\Lambda^{-1} e^{i \theta} \frac{\partial}{\partial z} \Lambda^{-1} e^{-i \theta} \frac{\partial}{\partial \bar{z}}
$$

in complex form; then

$$
I I(V, V)=-\Lambda^{-2} \Re\left(f g^{\prime} e^{2 i \theta}\right)
$$

by the previous formulae. Thus the two principal curvatures are

$$
\begin{gather*}
\kappa_{1}=\max _{0 \leq \theta \leq 2 \pi}-\Lambda^{-2} \Re\left(f g^{\prime} e^{2 i \theta}\right)=\Lambda^{-2}\left|f g^{\prime}\right|=\frac{4\left|g^{\prime}\right|}{|f|\left(1+|g|^{2}\right)^{2}}, \tag{7.32}\\
\kappa_{2}=\min _{0 \leq \theta \leq 2 \pi}-\Lambda^{-2} \Re\left(f g^{\prime} e^{2 i \theta}\right)=-\Lambda^{-2}\left|f g^{\prime}\right|=-\frac{4\left|g^{\prime}\right|}{|f|\left(1+|g|^{2}\right)^{2}} . \tag{7.33}
\end{gather*}
$$

Then from $K=\kappa_{1} \kappa_{2}$ we recover formula (7.30).
Now let $r(t)=r_{1}(t)+i r_{2}(t)$ be a curve on M and $r^{\prime}(t)=r_{1}^{\prime}(t)+i r_{2}^{\prime}(t)$; then

$$
\begin{align*}
I I\left(r^{\prime}(t), r^{\prime}(t)\right) & =-\Re\left\{f[r(t)] g^{\prime}\left[(r(t)]\left[r^{\prime}(t)\right]^{2}\right\}(d t)^{2}\right. \\
& =-\Re\{d[g(r(t)] f[r(t)] d r(t)\} \tag{7.34}\\
& =-\Re\{d[g(r(t)] \eta[r(t)]\},
\end{align*}
$$

since $\eta=f d z$. Remember that a regular curve r is an asymptotic line on a surface M if $I I\left(r^{\prime}(t), r^{\prime}(t)\right) \equiv 0$; a curve r is a curvature line if and only if $r^{\prime}(t)$ is in a principal direction, if and only if $\left|r^{\prime}(t)\right|^{-2} I I\left(r^{\prime}(t), r^{\prime}(t)\right)$ takes either maximum or minimum value of $I I(v, v)$ for all unit tangent vectors in $T_{r(t)} M$. We have the following criteria:

1. A regular curve r is an asymptotic line if and only if $f[r(t)] g^{\prime}[r(t)]\left[r^{\prime}(t)\right]^{2} \in i \mathbb{R}$.
2. A regular curve r is a curvature line if and only if $f[r(t)] g^{\prime}[r(t)]\left[r^{\prime}(t)\right]^{2} \in \mathbb{R}$.

The last assertion comes from the fact that $-\Re\left\{f[r(t)] g^{\prime}\left([(t)]\left[r^{\prime}(t)\right]^{2}\right\}\right.$ achieves its maximum or minimum for all unit vectors $r^{\prime}(t)$ at $r(t)$ only if $f[r(t)] g^{\prime}[r(t)]\left[r^{\prime}(t)\right]^{2}$ is real.

