
7 The Geometry of the Enneper-Weierstrass Rep
resentation 

Let X: M '---+ R 3 be a minimal surface. We will give the geometric data, such as the 
Gauss map, the first and second fundamental forms, the principal and Gauss curvatures, 
etc., of a minimal surface via its Enneper-Weierstrass representation. 

One important fact is that the merom orphic function g in the Enneper-Weierstrass 
representation corresponds to the Gauss map N. For this we first recall that the Gauss 
map N: M---+ E = 8 2 of an immersion X: M '---+ R 3 is defined as 

LetT : 8 2 - {N} ---+ C be stereographic projection, where N is the north pole. Then 

X+ iy 
T(x, y, z) = --, 

1-z 

where ~ and 8' are the real and imaginary parts. We claim that 

g =ToN: M---+ C. 

In fact, 
-1 1 

T og = I 12 (2~g, 28'g, lgl2- 1). 
1 + g 

By (6.15), (6.18), and (6.26) 

thus 

Xu ~ (lJ(1- g2), ~j(l + g2 ), Jg), 

Xv -8' (lJ(1- g2), ~j(l + g2), jg), 

-~~!(1 + g2 )8'fg + ~fgC.S~f(1 + g2 ) 

~~f(l- g2 )8fg- ~fg':S~f(1- g2 ) 

-~f(l- g2)c.sU(l + g2) + ~lf(l + g2)C.Sf(l- g2) 

C.S[if(l + g2)JgJ ~1!12~(9 + lgl2g) 

8'[~!(1- g2)Jg] 

8 [ -;,i f(l + g2)f(l- g2)] 
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~lfi 2C.S(g- 191 2:9) 

~IJI2~(Igl4- 1- :g2 + g2) 



= 1!12(1 + lgl2)2 ( ~:~ ) = ~1!12(1 + lgl2)2r-1og. 
4(1 + lgl ) lgl2 - 1 4 . 

Since r- 1 o g E S2 , lr-1 o gl = 1. Since X is conformal, the first fundamental form is 
given by g12 = 0 and 

(7.28) 

Thus 

(7.29) 

as,we claimed. 
Later we will also call the function g = roN the Gauss map of the immersion 

X: M '--+ R3 . We have seen that if X is a minimal surface then g is a meromorphic 
function. The converse is also true, i.e., X is minimal if and only if g = roN is 
meromorphic. We give a sketch of the proof of the converse direction; the reader can 
fill in the details or see [34], pages 7 to 14. 

Let Tx(p)M C R 3 be the tangent space at X(p), p E M. Tx(v)M is oriented by 
the basis (X1, X2). The orientation determined by (X1, X2) will be called the positive 
orientation. Thus we can regard Tx(v) as a point in Gt,2 , the Grasmann manifold of 
oriented two dimensional subspaces in R 3 . We want to embed Gt2 in CP2 , the two 
(complex) dimensional complex projective space. ' 

One way to express P E Gt,2 is to select a positive orthogonal basis ( e1 , e2). But if 
(e1, e2) is a positive orthogonal basis of P and A is a rotation in P, then A(e1 , e2) is 
also a positive orthogonal basis of P. If we consider e1 + ie2 as a vector in C3, then A 
corresponds to a unit complex number ei0 , and (e1, e2 )A corresponds to ei0 (e 1 + ie2) E 
C 3. Moreover, ei0 (e 1 +ie2)/le1 +ie21 corresponds to a positive orthonormal basis of P. 
Thus we find that given a positive orthogonal basis (e1, e2), all positive orthonormal 
bases can be written as 8(e1 + ie2) E C3, where 8 is an nonzero complex number. 
Fixing a positive orthogonal basis (e1, e2) of P and identifying 8(e1 + ie2) E C 3 for all 
8 E C- {0} gives us a point [e1 + ie2] E CP2 . Thus P corresponds to a unique point 
in CP2. This is our embedding E : Gt,2 -+ CP2. By local coordinates it is easy to 
verify that E is c=. 

Now remember that for any conformal immersion X : M '--+ R3 , the 1-forms ¢ = 
X1 + iX2 are well defined in a coordinate neighbourhood U. Since (X1, X2) is a positive 
orthogonal basis of Tx(p)M c R 3 , we can define¢: U-+ CP2 by (i}(p) = E(Tx(v)) = 
[(X1 + iX2)(p)]. X is conformal implies that (6.19) is true, thus the image of¢ is 
contained in the submanifold Q1 := {[z1, z2, z3] E CP2 1 zi + zi + z~ = 0}. We claim 
that Q1 is conformally homeomorphic to S2. In fact, let (z1 , z2 , z3) be a representative 
of [z1, z2, z3] E Q1 and write (z1, z2, z3) = e1 + ie2, where the ei's are real vectors. 
Then [z1, z2, z3] E Q1 implies that (e1, e2) is orthogonal, therefore there is a unique 
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e3 E 8 2 such that ( e1 , e2, e3 ) is a orthogonal basis of R3 with positive orientation. Define 
·· a([z1 , z2 , z3]) = e3 ; clearly a is a homeomorphism from Q1 to S 2 • A little calculation 

shows that a is conformal. Clearly, ao{fi(p) = N(p), where N is the Gauss map. Now 
g(p) = Toao{fi(p), or (fi = a-1oT-1og. Since T reverses orientation, it is anti-conformal. If 
g is holomorphic, then Jl is conformal and thus (fi is anti-conformal or anti-holomorphic. 
This implies that ¢ = (fi is holomorphic. Thus 

Hence X is harmonic and therefore minimal. This ends the sketch of the proof. 

Remark 7.1 Note that if p E M is a branch point of a branched minimal surface 
and (U, z) is an isothermal neighbourhood of p such that z(p) = 0, then we can write 
¢ = zm'l/J, where 'l/J is a holomorphic vector function and 'l/;(0) i= 0. Since ¢ satisfies 
(6.19), 'l/J also satisfies (6.19). We can use ['l/;] E CP2 to define the tangent space Tx(p)M. 
Thus for a branched minimal surface, the tangent space is well defined even at branch 
points. 

We next give a Gauss curvature formula of the minimal surface X: M <---+ R 3 via the 
Enneper-Weierstrass representation, namely 

[ 4lg'l ] 2 

K =- 1!1(1 + lgl 2)2 
(7.30) 

To prove this, remember that for a surface with conformal metric ds2 = A2ldzl2, where 
dz = dx + i dy and ldzl2 = (dx) 2 + (dy)2, the Gauss curvature is given by 

1 2 2 a a 2 
K=-2A2l:::.logA =-A2azazlogA. 

By (7.28), since log IJI is harmonic, we have 

2 a a 2 
A2 az az log A 

4aa 4aa 2 

A2 az az log If I + A2 az az log(1 + lgl ) 

4 a g'g 4 g'¢(1 + lgl 2) - g'gg¢ 
A2 az 1 + lgl2 A2 (1 + lgl2)2 

4 lg'l 2 16lg'l2 

A2 (1 + lgl2)2 IJI2(1 + lgl2)4 0 

We can also calculate the second fundamental form of X via the Enneper-Weierstrass 
representation. Recall that 
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are holomorphic functions of z = x + iy. Hence 

· Xn- iX12 = Xxx- iXxy = (¢~, ¢~, ¢~). 

Because X is harmonic, the data of the second fundamental form then must be 

h12 = X12®N = -8'(¢~, ¢~, ¢~)eN. 

By (6.15), (6.18), and (6.26), 

?R(¢~, ¢~, ¢~)~N 

?R [ (~J'(1 -l), 1J'(1 + g2 ), J'g) + (- fgg', ifgg', fg')] eN 

1 +1lgl2 (~!'(1- g2)~g- 8'j'(1 + l)S'g + ~J'g(lgl2- 1) 

-2~jgg'SRg- 28'jgg'8'g + ?Rjg'(lgl2 - 1)) 

1 . (?Rf'?Rg- ?RJ'l?Rg- S'j'S'g- 8'j'g28'g 
1 + lgl2 

+?Rf'g(lgl 2 - 1)- 2?Rfgg'g + ?Rfg'(lgl 2 - 1)) 

1 +
1igl2 (?RJ'g- ?Rf'lg + SRj'g(lgl2 - 1)- 2lgi 22Rfg' + ?Rjg'(igl 2 -1)) 

1 +1igl2 ( -?Rjg'(lgl2 + 1)) = -SRjg'. 

Similarly, we have h12 = Sfg'. From these we see that for a minimal surface, 

hn- ih12 =- fg' (7.31) 

is a holomorphic function. 
Again let dz = dx+i dy and (dz) 2 = (dx) 2 - (dy) 2+2i dx dy. The second fundamental 

form of X can be written as 

hn ( dx )2 + 2h12 dx dy + h22 ( dy )2 = -?R(f g') ( ( dx )2 - ( dy )2 ) + 28'(! g') dx dy 

= -?R(fg')?R(dz) 2 + 8'(fg')8'(dz) 2 = -~(fg'(dz) 2 ) = -SR(f dgdz). 

Let V E TPM be a unit tangent vector and write 

in complex form; then 

27 



by the previous formulae. Thus the two principal curvatures are 

A-21D(f I 2i0) A-21! 'I 4lg'l 
~>:1= max- ut ge = g = IJI( 112)2' D:<:;ll91r 1 + g 

(7.32) 

· A-2m(J 1 2ill) A-21J 'I 4lg'l 
~>:2 = mln - JC ge =- g = -1!1( I 12)2" o::;e::;21r 1 + g 

(7.33) 

Then from K = ~>: 1 ~>:2 we recover formula (7.30). 
Now let r(t) = r 1 (t) + ir2 (t) be a curve on M and r'(t) = r~ (t) + ir~(t); then 

I I(r 1(t), r'(t)) -31{f[r(t)] g'[(r(t)] [r'(t)F}(dt) 2 

-31{ d[g(r( t) ]f[r( t) ]dr( t)} (7.34) 

-31{ d[g(r( t) ]77[r( t)]}, 

since 77 = fdz. Remember that a regular curve r is an asymptotic line on a surface M 
if II(r'(t), r'(t)) = 0; a curve r is a curvature line if and only if r'(t) is in a principal 
direction, if and oniy if lr'(t) l-2 II(r'(t), r 1(t)) takes either maximum or minimum value 
of II(v, v) for all unit tangent vectors in Tr(t)M. We have the following criteria: 

1. A regular curve r is an asymptotic line if and only if f[r(t)] g1[r(t)] [r1(t)J2 E iR. 

2. A regular curve r is a curvature line if and only if f[r(t)] g'[r(t)] [r'(t)F E R. 

The last assertion comes from the fact that -~{f[r(t)]g1 ([(t)][r'(t)F} achieves its max-
imum or minimum for all unit vectors r1(t) at only if f[r(t)]g'[r(t)][r 1(t)J2 is reaL 
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