5 Isothermal Coordinates for Minimal Surfaces

There is a direct construction of isothermal coordinates for minimal surfaces. Let X : $M \hookrightarrow \mathbf{R}^{3}$ be a minimal surface and $p \in M$. Without of loss generality we can assume that $X(p)=(0,0,0)$ and $N(p)=(0,0,1)$, and there is a simply connected domain $(0,0) \in \Omega \subset \mathbf{R}^{2}$ such that near $(0,0,0), X(M)$ can be written as a graph $(x, y, u(x, y))$, with $u: \Omega \rightarrow \mathbf{R}$ a solution to the minimal surface equation. Writing $p=u_{x}, q=u_{y}$ and $W=\left(1+p^{2}+q^{2}\right)^{1 / 2}$, we see that $p d x+q d y$ is a closed form, i.e., $d(p d x+q d y)=0$ on Ω. Furthermore, it is also easy to check that the two 1 -forms

$$
\eta_{1}:=\frac{1}{W}\left(\left(1+p^{2}\right) d x+p q d y\right), \quad \eta_{2}:=\frac{1}{W}\left(p q d x+\left(1+q^{2}\right) d y\right),
$$

are closed. Since Ω is simply connected,

$$
\xi(x, y):=x+\int_{(0,0)}^{(x, y)} \eta_{1}=x+F(x, y), \quad \eta(x, y):=y+\int_{(0,0)}^{(x, y)} \eta_{2}=y+G(x, y),
$$

are well defined. Thus

$$
\begin{aligned}
& \frac{\partial \xi}{\partial x}=1+\frac{1+p^{2}}{W}, \quad \frac{\partial \xi}{\partial y}=\frac{p q}{W}, \\
& \frac{\partial \eta}{\partial x}=\frac{p q}{W}, \quad \frac{\partial \eta}{\partial y}=1+\frac{1+q^{2}}{W},
\end{aligned}
$$

and

$$
J=\frac{\partial(\xi, \eta)}{\partial(x, y)}=2+\frac{2+p^{2}+q^{2}}{W}=\frac{(W+1)^{2}}{W}>0 .
$$

Thus the transformation $(x, y) \rightarrow(\xi, \eta)$ has a local inverse $(\xi, \eta) \rightarrow(x, y)$ and setting $x=x(\xi, \eta), y=y(\xi, \eta), z(\xi, \eta)=u(x(\xi, \eta), y(\xi, \eta))$, we find

$$
\begin{array}{ll}
\frac{\partial x}{\partial \xi}=\frac{W+1+q^{2}}{(W+1)^{2}}, & \frac{\partial x}{\partial \eta}=-\frac{p q}{(W+1)^{2}}, \\
\frac{\partial y}{\partial \xi}=-\frac{p q}{(W+1)^{2}}, & \frac{\partial x}{\partial \eta}=\frac{W+1+p^{2}}{(W+1)^{2}}, \\
\frac{\partial z}{\partial \xi}=p \frac{\partial x}{\partial \xi}+q \frac{\partial y}{\partial \xi}, & \frac{\partial z}{\partial \eta}=p \frac{\partial x}{\partial \eta}+q \frac{\partial y}{\partial \eta}
\end{array}
$$

Calculation shows that

$$
\left|X_{\xi}\right|^{2}=\left|X_{\eta}\right|^{2}=\frac{W}{J}=\frac{W^{2}}{(W+1)^{2}}, \quad X_{\xi} \bullet X_{\eta}=0 .
$$

Thus (ξ, η) is an isothermal coordinate. Furthermore, (ξ, η) has the property that

$$
\begin{equation*}
|(\xi, \eta)|^{2}>|(x, y)|^{2} . \tag{5.13}
\end{equation*}
$$

To see this, note that

$$
\frac{\partial F}{\partial y}=\frac{\partial G}{\partial x}
$$

thus there is a function E such that

$$
\frac{\partial E}{\partial x}=F, \quad \frac{\partial E}{\partial y}=G
$$

and

$$
\left(\frac{\partial^{2} E}{\partial x \partial y}\right)=\left(\begin{array}{cc}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\
\frac{\partial G}{\partial x} & \frac{\partial G}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1+p^{2}}{W} & \frac{p q}{W} \\
\frac{p q}{W} & \frac{1+q^{2}}{W}
\end{array}\right)
$$

is positive.
Lemma 5.1 Let $E \in C^{2}$ such that the Hessian of E is positive. Then the mapping $x=\left(x_{1}, x_{2}\right) \rightarrow\left(u_{1}, u_{2}\right)=\left(E_{x_{1}}, E_{x_{2}}\right)=u(x)$ satisfies

$$
\begin{equation*}
(v-u) \cdot(y-x)>0, \tag{5.14}
\end{equation*}
$$

for $y \neq x$ in Ω and $v=u(y), u=u(x)$.
Proof. Let $G(t)=E(t y+(1-t) x), 0 \leq t \leq 1$. Then

$$
\begin{gathered}
G^{\prime}(t)=\sum_{i=1}^{2}\left[\frac{\partial E}{\partial x_{i}}(t y+(1-t) x)\right]\left(y_{i}-x_{i}\right) \\
G^{\prime \prime}(t)=\sum_{i, j=1}^{2}\left[\frac{\partial^{2} E}{\partial x_{i} \partial x_{j}}(t y+(1-t) x)\right]\left(y_{i}-x_{i}\right)\left(y_{j}-x_{j}\right)>0
\end{gathered}
$$

for $0 \leq t \leq 1$. Hence $G^{\prime}(1)>G^{\prime}(0)$, or

$$
\sum v_{i}\left(y_{i}-x_{i}\right)>\sum u_{i}\left(y_{i}-x_{i}\right)
$$

which is (5.14).
Lemma 5.2 Under the hypotheses of Lemma 5.1, define a map

$$
\left(x_{1}, x_{2}\right) \rightarrow\left(\tau_{1}, \tau_{2}\right)=\tau
$$

where $\tau_{i}=x_{i}+u_{i}\left(x_{1}, x_{2}\right)$. Then for $x \neq y$,

$$
(\tau(y)-\tau(x)) \cdot(y-x)>|y-x|^{2}
$$

Proof. Since $\tau(y)-\tau(x)=(y-x)+(v-u)$, this comes from (5.14).
Now by the Cauchy-Schwarz inequality,

$$
|\tau(y)-\tau(x)|>|y-x|
$$

Note that our transformation $(x, y) \rightarrow(\xi, \eta)$ is the form defined in Lemma 5.2. Taking $x=(0,0)$ we have $|\tau(y)|>|y|$ since $\tau(0)=0$. If $\Omega=\mathbf{R}^{2}$, then the map $(x, y) \rightarrow(\xi, \eta)$ is a diffeomorphism from \mathbf{R}^{2} to \mathbf{R}^{2}.

