3 The First Variation

Let $X: M \hookrightarrow \mathbf{R}^{3}$ be a regular surface and $(U,(x, y))$ be a coordinate neighbourhood. Let $X_{1}=X_{x}, X_{2}=X_{y}, g_{i j}=X_{i} \bullet X_{j}$, and $g=\operatorname{det}\left(g_{i j}\right)$. Then

$$
d A:=\sqrt{g} d x \wedge d y
$$

is a well defined two form on M and $d A \neq 0$ everywhere.
Let $f: M \rightarrow \mathbf{R}$ be a continuous function of compact support, or suppose f does not change sign on M, then the integral of f on M is defined by

$$
\int_{M} f:=\int_{M} f d A .
$$

When M is precompact and $f \equiv 1, \int_{M} d A$ is the area of the surface $X: M \hookrightarrow \mathbf{R}^{3}$.
The adjective "minimal" of minimal surfaces comes from the fact that at any point of the surface there exists a neighbourhood such that the surface in that neighbourhood has the least area among all surfaces with the same boundary.

To be precise, let $\Omega \subset M$ be a precompact domain and $X: \Omega \rightarrow \mathbf{R}^{3}$ be a surface. Let $X(t): \Omega \rightarrow \mathbf{R}^{3},-1<t<1$ and $X(0)=X$, such that $\left.X(t)\right|_{\partial \Omega}=\left.X\right|_{\partial \Omega}$, and $X(t, p)=X(t)(p)$ is C^{2} on $\Omega \times(-1,1)$. Such a family of surfaces is called a variation of X.

Consider the area functional

$$
A(t)=\int_{\Omega} d A_{t},
$$

where $d A_{t}$ is the area form induced by $X(t)$. The definition of minimal surface from the point view of the calculus of variations is that for any variation family $X(t)$,

$$
\begin{equation*}
\left.\frac{d A(t)}{d t}\right|_{t=0}=0 \tag{3.2}
\end{equation*}
$$

We will prove that this is another equivalent definition of minimal surface.
Without loss of generality, we may assume that X is conformal. Let $p \in \Omega$ and $p \in U \subset \Omega$ be an isothermal coordinate neighbourhood of p for X. On $U, d A_{t}$ is expressed as

$$
d A_{t}=\sqrt{\operatorname{det}\left[g_{i j}(t)\right]} d x \wedge d y
$$

where $z=x+i y$ is the isothermal coordinate and $g_{i j}(t)=X_{i}(t) \bullet X_{j}(t)$ (note that z may not be an isothermal coordinate for $X(t))$. Hence

$$
\begin{gathered}
\left.\frac{d}{d t}\right|_{t=0} \int_{U} d A_{t}=\left.\int_{U} \frac{d}{d t}\right|_{t=0} d A_{t}=\left.\int_{U} \frac{d \sqrt{\operatorname{det}\left[g_{i j}(t)\right]}}{d t}\right|_{t=0} d x \wedge d y \\
=\left.\frac{1}{2} \int_{U} \frac{d \operatorname{det}\left[g_{i j}(t)\right]}{d t}\right|_{t=0}\left\{\operatorname{det}\left[g_{i j}(0)\right]\right\}^{-1 / 2} d x \wedge d y
\end{gathered}
$$

We need the formula

$$
\begin{equation*}
\frac{d \operatorname{det}\left(g_{i j}(t)\right)}{d t}=\operatorname{det}\left(g_{i j}(t)\right) \operatorname{Trace}\left(\left(\frac{d g_{i j}(t)}{d t}\right)\left(g^{i j}(t)\right)\right) \tag{3.3}
\end{equation*}
$$

where $\left(g^{i j}(t)\right)=\left(g_{i j}(t)\right)^{-1}$. To see this, let $\left(e_{1}, \ldots, e_{n}\right)$ be the standard orthonormal basis of \mathbf{R}^{n}. For any $n \times n$ matrix $A(t)$, we can write

$$
A(t)=\left(A_{1}(t), \cdots, A_{n}(t)\right)=\left(A(t) e_{1}, \cdots, A(t) e_{n}\right),
$$

where $A_{i}(t)$ is the i-th column of $A(t)$. If $\operatorname{det} A(t) \neq 0$, then

$$
\begin{aligned}
& \frac{d \operatorname{det} A(t)}{d t}=\frac{d}{d t} \operatorname{det}\left(A(t) e_{1}, \cdots, A(t) e_{n}\right) \\
& =\sum_{i=1}^{n} \operatorname{det}\left(A(t) e_{1}, \cdots, \frac{d A(t)}{d t} e_{i}, \cdots, A(t) e_{n}\right) \\
& =\operatorname{det} A(t) \sum_{i=1}^{n} \operatorname{det} A^{-1}(t) \operatorname{det}\left(A(t) e_{1}, \cdots, \frac{d A(t)}{d t} e_{i}, \cdots, A(t) e_{n}\right) \\
& =\operatorname{det} A(t) \sum_{i=1}^{n} \operatorname{det}\left[A^{-1}(t)\left(A(t) e_{1}, \cdots, \frac{d A(t)}{d t} e_{i}, \cdots, A(t) e_{n}\right)\right] \\
& =\operatorname{det} A(t) \sum_{i=1}^{n} \operatorname{det}\left(e_{1}, \cdots, A^{-1}(t) \frac{d A(t)}{d t} e_{i}, \cdots, e_{n}\right) \\
& =\operatorname{det} A(t) \sum_{i=1}^{n} \operatorname{det}\left(e_{1}, \cdots, \sum_{j=1}^{n}\left(A^{-1}(t) \frac{d A(t)}{d t}\right)_{j i} e_{j}, \cdots, e_{n}\right) \\
& =\operatorname{det} A(t) \sum_{i=1}^{n} \operatorname{det}\left(e_{1}, \cdots,\left(A^{-1}(t) \frac{d A(t)}{d t}\right)_{i i} e_{i}, \cdots, e_{n}\right) \\
& =\operatorname{det} A(t) \sum_{i=1}^{n}\left(A^{-1}(t) \frac{d A(t)}{d t}\right)_{i i}=\operatorname{det} A(t) \operatorname{Trace}\left(A^{-1}(t) \frac{d A(t)}{d t}\right) \\
& =\operatorname{det} A(t) \operatorname{Trace}\left(\frac{d A(t)}{d t} A^{-1}(t)\right) .
\end{aligned}
$$

This establishes (3.3).
Thus we have

$$
\begin{aligned}
& \left.\frac{d}{d t}\right|_{t=0} \int_{U} d A_{t}=\left.\frac{1}{2} \int_{U} \frac{d \operatorname{det}\left(g_{i j}(t)\right)}{d t}\right|_{t=0}\left[\operatorname{det}\left(g_{i j}(0)\right)\right]^{-1 / 2} d x \wedge d y \\
& =\left.\frac{1}{2} \int_{U} \operatorname{Trace}\left[\left(\frac{d g_{i j}(t)}{d t}\right)\left(g^{i j}(t)\right)\right]\right|_{t=0} \sqrt{\operatorname{det}\left(g_{i j}(0)\right)} d x \wedge d y
\end{aligned}
$$

Since X is conformal, we have $g^{i j}(0)=\Lambda^{-2} \delta_{i j}$. Thus

$$
\left.\operatorname{Trace}\left(\left(\frac{d g_{i j}(t)}{d t}\right)\left(g^{i j}(t)\right)\right)\right|_{t=0}=\left.\sum_{i j} \frac{d g_{i j}(t)}{d t} g^{i j}(t)\right|_{t=0}=\left.\Lambda^{-2} \sum_{i=1}^{2} \frac{d g_{i i}(t)}{d t}\right|_{t=0}
$$

Define the variation field E as

$$
E(p):=\left.\frac{d X(t)(p)}{d t}\right|_{t=0}, \quad p \in \dot{\Omega} .
$$

Then

$$
\left.\frac{d g_{i i}(t)}{d t}\right|_{t=0}=\left.\frac{d\left(X_{i} \bullet X_{i}\right)}{d t}\right|_{t=0}=2 E_{i} \bullet X_{i} .
$$

Since (X_{1}, X_{2}, N) is a basis of \mathbf{R}^{3}, where N is the unit normal, we can write $E=$ $\alpha X_{1}+\beta X_{2}+\gamma N$, where α, β, and γ are C^{1} functions defined in Ω. Using $N \bullet X_{i}=0$, $\gamma=E \bullet N$, and

$$
\gamma \Lambda^{-2} \sum_{i=1}^{2} X_{i i} \bullet N=(E \bullet N)\left(\triangle_{X} X \bullet N\right)=2(E \bullet N)(H N \bullet N)=2 H(E \bullet N),
$$

we have

$$
\begin{aligned}
& \text { Trace }\left.\left(\left(\frac{d g_{i j}(t)}{d t}\right)\left(g^{i j}(t)\right)\right)\right|_{t=0}=2 \Lambda^{-2} \sum_{i=1}^{2} E_{i} \bullet X_{i} \\
& \quad=2\left(\alpha_{1}+\beta_{2}\right)+2 \Lambda^{-2}\left(\alpha \Lambda_{1}^{2}+\beta \Lambda_{2}^{2}\right)-2 \gamma \Lambda^{-2} \sum_{i=1}^{2} X_{i i} \bullet N \\
& =2\left(\alpha_{1}+\beta_{2}\right)+2 \Lambda^{-2}\left(\alpha \Lambda_{1}^{2}+\beta \Lambda_{2}^{2}\right)-4 H(E \bullet N)
\end{aligned}
$$

Again since X is conformal, $\sqrt{\operatorname{det}\left(g_{i j}(0)\right)}=\left|X_{1}\right|^{2}=\left|X_{2}\right|^{2}=\Lambda^{2}$, we have

$$
\begin{gathered}
\left.\frac{d}{d t}\right|_{t=0} \int_{U} d A_{t}=\left.\frac{1}{2} \int_{U} \operatorname{Trace}\left(\left(\frac{d g_{i j}(t)}{d t}\right)\left(g^{i j}\right)(t)\right)\right|_{t=0} \Lambda^{2} d x \wedge d y \\
=\int_{U} \operatorname{Div}\left(\Lambda^{2}(\alpha, \beta)\right) d x \wedge d y-2 \int_{U} H(E \bullet N) d A_{0}=\int_{\partial U} \Lambda^{2}(\alpha, \beta) \bullet n d s-2 \int_{U} H(E \bullet N) d A_{0},
\end{gathered}
$$

where n and $d s$ are the outward unit normal vector field and the line element of ∂U in the Euclidean metric respectively. Dividing Ω into a finite number of disjoint isothermal coordinate neighbourhoods U_{i},

$$
\sum_{i} \int_{\partial U_{i} \cap \Omega} \Lambda^{2}(\alpha, \beta) \bullet n_{i} d s_{i}=0
$$

since each arc in $\partial U_{i} \cap \Omega$ appears twice in the summation and with opposite unit normal. Moreover, because $\alpha=\beta=0$ on $\partial \Omega$, we have

$$
\sum_{i} \int_{\partial U_{i}} \Lambda^{2}(\alpha, \beta) \bullet n_{i} d s_{i}=\sum_{i} \int_{\partial U_{i} \cap \Omega} \Lambda^{2}(\alpha, \beta) \bullet n_{i} d s_{i}+\int_{\partial \Omega} \Lambda^{2}(\alpha, \beta) \bullet n d s=0,
$$

where in the last integral n and $d s$ are the outward unit normal vector field and the line element of $\partial \Omega$ in the Euclidean metric. Thus we finally have the first variational formula for the surface area functional:

$$
\begin{equation*}
\left.\frac{d A}{d t}\right|_{t=0}=-2 \int_{\Omega} H(E \bullet N) d A_{0} \tag{3.4}
\end{equation*}
$$

If X is minimal, then $H=0$, so $\left.\frac{d A}{d t}\right|_{t=0}=0$. On the other hand, if X is a stationary point for the area functional $A(t)$ (for example, if X has minimal area among all surfaces with the same boundary), then $\left.\frac{d A}{d t}\right|_{t=0}=0$ for any variation of X. Since E can be any vector field, $\left.\frac{d A}{d t}\right|_{t=0}=0$ forces that $H \equiv 0$, that is, X is a minimal surface.

Finally we will give an area formula for surfaces in \mathbf{R}^{3}. Suppose $X: \Omega \hookrightarrow \mathbf{R}^{3}$ is an immersion; without loss of generality, we may assume that X is conformal. Let \vec{n} be the unit conormal on $X(\partial \Omega)$, i.e., \vec{n} is tangent to $X(\Omega)$ and is perpendicular to $X(\partial \Omega)$. Let $d s$ be the line element of $X(\partial \Omega),\left(e_{1}, e_{2}\right)$ be the standard orthonormal basis on U_{i} in the Euclidean metric. Let $n_{i}=a e_{1}+b e_{2}$. The integral

$$
\int_{\partial U_{i} \cap \partial \Omega} \Lambda^{2}(\alpha, \beta) \bullet n_{i} d s_{i}
$$

can be rewritten as

$$
\begin{aligned}
& \int_{\partial U_{i} \cap \partial \Omega} \Lambda^{2}\left(\alpha e_{1}+\beta e_{2}\right) \bullet\left(a e_{1}+b e_{2}\right) d s_{i} \\
& \quad=\int_{\partial U_{i} \cap \partial \Omega} \Lambda^{2}(a \alpha+b \beta) d s_{i}=\int_{\partial U_{i} \cap \partial \Omega} \Lambda^{-1}\left[E \bullet d X\left(n_{i}\right)\right] X^{*}(d s) \\
& \quad=\int_{X\left(\partial U_{i} \cap \partial \Omega\right)} \Lambda^{-1}\left[E \bullet d X\left(n_{i}\right)\right] d s=\int_{X\left(\partial U_{i} \cap \partial \Omega\right)}(E \bullet \vec{n}) d s
\end{aligned}
$$

since $E=\alpha X_{1}+\beta X_{2}+\gamma N, d X\left(n_{i}\right)=a X_{1}+b X_{2}, X^{*}(d s)=\Lambda d s_{i}$, and $\vec{n}=\Lambda^{-1} d X\left(n_{i}\right)$. Thus if we do not assume that α and β vanish on $\partial \Omega$, we have the first variation formula

$$
\begin{equation*}
\left.\frac{d A}{d t}\right|_{t=0}=-2 \int H(E \bullet N) d A_{0}+\int_{X(\partial \Omega)}(E \bullet \vec{n}) d s \tag{3.5}
\end{equation*}
$$

Now let $a \in \mathbf{R}^{3}$ be any fixed vector; then $X(t)(p)=t(X(p)-a)$ is a variation of X, not fixed on boundary. Clearly $E(t)(p)=X(p)-a$ is the variation vector field independent of t. An easy calculation shows that

$$
g_{i j}(t)=t^{2} g_{i j}, \quad g^{i j}(t)=t^{-2} g^{i j}, \quad h_{i j}(t)=t h_{i j}
$$

Hence

$$
d A_{t}=t^{2} d A_{1}=t^{2} d A, \quad H(t)=t^{-1} H
$$

where $H=H(1)$, etc. Note that

$$
A:=\text { Area of } X(\Omega)=\int_{\Omega} d A
$$

and

$$
A(t):=\text { Area of } X(t)(\Omega)=\int_{\Omega} d A_{t}=t^{2} A
$$

Since $E(t)=X-a$, by (3.5)

$$
\begin{equation*}
2 A=-2 \int H[(X-a) \bullet N] d A+\int_{X(\partial \Omega)}[(X-a) \cdot \vec{n}] d s \tag{3.6}
\end{equation*}
$$

This formula is useful when we derive the isoperimetric inequalities for minimal surfaces.

