




Tensors in 0s V* are identified with multilinear functionals on V. For example if 
a, (3 E V* then a® (3 is the bilinear functional defined by 

(a® (3)(y, z) = a(y) (3(z), V y, z E V. 

A section of the bundle T(0•2l M is a choice of (0, 2)-tensor or bilinear form on tangent 

vectors, at each point p E M. We have encountered two examples of such animals in 

the lecture on surfaces, namely the metric tensor, 

(61) 

which satisfies % = gji (symmetric) and% > 0 (positive definite). Here % are the 
coefficients of the metric tensor with respect to the local basis dxi ® dxi, 1 :=; i, j :=; n, 

of �T�~ �0  " �2 �)� M, and thus by duality of 8i and dxJ we have%= g(8i, 8j). 
A Riemannian manifold is an n-dimensional manifold with a metric g - a symmet­

ric positive definite bilinear form on vectors. Note that this definition of metric does 

not make any reference to any relation with the metric induced from an immersion in 

any Euclidean space; in fact, a priori it is far from clear whether or not a given metric 

can be realised by an immersion into some Rk. That this is indeed true is the content 

of a deep theorem of John Nash. 

The second example (0, 2)-tensor is the second fundamental form II. Again this is 

also symmetric, but not in general positive definite. In local coordinates ( ua) on the 

surface S we have 

where IIab = (N, Xab)· 
Defining 0° V = R, the tensor algebra space 

00 

@ V = EfJ 0rV = REB V EB (V ® V) EB • • • 
r=O 

has the structure of an associative algebra over R with identity 1 E 0° V, and product 

operation ®. Taking the quotient of 0 V by the two-sided ideal (v ® v) generated by 

elements of the form v ® v, v E V, gives the exterior algebra of V, 

f\Y=@Vj(v®v). (62) 

The tensor product ® in 0 V descends to 1\ V to give the wedge product 1\ on 1\ V; 

smce 

vl\v=O for all v E V (63) 
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in A V by the definition (62), it follows from linearity that 

v 1\ w = -w 1\ v for all v, wE V. (64) 

Consequently a basis of AkV = ®k(V) j (v ® v) is given by 

and hence 
k (n) n! 

dim A V = k = k!(n _ k)!, k S: n 

and A k V = 0 for k > n. It follows by repeated application of ( 64) that 

(65) 

We may identify A kv• as the space of alternating, or totally antisymmetric, multi­

linear forms on V in one of two ways. We shall use the dual pairing 

(a 1\ (J)(v, w) = a(v)(J(w)- a(w)(J(v) for a, (3 E A1V, v, wE V, 

and more generally, 

(66) 
aEperm(l, ... ,k) 

The other identification would insert a factor of 1/2 in the first relation, and 1/k! in 

the general relation (66). The convention adopted here has the advantage that the 

bases v1 , I= (i1, ... ,ik), 1 S: i 1 < ... < ik S: nand r"/ are dual, r/(vJ) = 8}. The 

interior or cut product ~v: Ak+1V* --t AkV* is defined using the identification with 

alternating forms by 

(67) 

where v E V is any vector. Note that ~v o ~v = 0 by the alternating property. The 

exterior or wedge product E.x : 1\kV* --t 1\k+l v· is defined similarly, 

E.xa = A 1\ a, ,\ E v·, (68) 

and we note the interesting identity 

E.>.~v + ~vE.>. = A(v) A E V*,v E V. (69) 
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As before, we may apply the exterior product construction to the tangent or cotan­

gent bundles, yielding the spaces 1\ T M, and 1\ T* M. The space Ak(M) of sections of 

the bundle 1\ kT* M is particularly important- sections of Ak(M) are called k-forms. 

Note that 1-form is thus a synonym for cotangent vector field, since 1\1 V = V. 

A map ¢ : Mm ----+ Nn of manifolds may be used to transport objects from one 

manifold to the other. For example, if"( : R -t M is a curve through p E M then 

¢ o 'Y : R -t N is a curve through ¢(p) E N. The push forward ¢.vP of the tangent 

vector Vp = 'Y'(O) to 'Y at pis then the tangent vector at ¢(p) to¢ o 'Y· Other notations 

for push forward are 

¢.v = (¢ o 'Y)'(O) = d¢(v) = T¢(v). 

Note that although individual vectors may be pushed forward, the push forward of a 

vector field is not a vector field - a point q E N may have more than one preimage 

under ¢, or none at all. One example of push forward of a vector has already been 

given- the tangent vectors X a to a surface may be viewed as the push forward of the 

coordinate tangent vectors in U c R 2 , 

If a E Tf(p)N is a covector on N, then ¢*a is the covector at p E M defined by 

(¢*a)(v) = a(¢.v), (70) 

and is called the pull back of a. Unlike the push forward of a vector field, the pull back 

of a covector field is always a covector field. Note that iff : N -t R then we may also 

define the pull back of f by ¢* f = f o ¢ : M -t R, and then we have an interesting 

relationship with the differential, 

d(¢* f)= ¢*(df). (71) 

We also note that ¢* respects the algebra structure of 1\M ie. ¢*( a/\/3) = ¢*(a )/\¢*(/3), 

which follows from the linearity of ¢*, ¢. and the definition of ¢* applied to 1\kT* N. 

In particular, ¢* : Ak(N) ----+ Ak(M). 
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4 Curvature 

Outline: 

Covariant derivative; curvature tensor; gradient and Laplace operators; 

exterior derivative; Cartan calculus; connection matrix; structure equa­

tions; Bianchi identities. 

Using the directional derivative and a metric on a manifold allows us to generalise 

several geometric constructions of surface theory, in particular, the covariant derivative 

and curvature. 

The covariant derivative on a surface is a map \7 : X(M) x X(M) -+ X(M) 
satisfying the basic derivation rules, 

DxfY + f'VxY, 

f'VxY, 

(72) 

(73) 

for any vector fields X, Y E X(M) and function f E C00 (M), and the metric compati­

bility and torsion-free conditions 

Dx(g(Y, Z)) 

[X,Y] 

The Levi-Civita identity 

g('VxY, Z) + g(Y, 'VxZ), 

'VxY- \i'yX. 

g(\7 x Y, Z) = ~ (Dx(g(Y, Z)) + Dy(g(X, Z))- Dz(g(X, Y)) 

(74) 

(75) 

-g(Y, [X, Z]) - g(X, [Y, Z]) + g(Z, [X, Y])) (76) 

defines the covariant derivative on any Riemannian manifold, and is easily seen to 

have the required properties (72), (73), (74), (75). It also follows that \7 is uniquely 

determined by these properties. 

There are two interesting special cases of (76). If we restrict attention to coordinate 

tangent vector fields 8i, then [8i, 8i] = 0 and (76) gives the Christoffel symbol formula 

riik g(\7 ai8i, 8k) 

~(8i9ik + 8i9ik- 8k9ij). (77) 

If on the other hand we restrict attention to vector fields e1, ... , en forming an or­

thonormal frame 

150 



(or more generally, g(ei, e1) =canst), then the first three terms in (76) drop out and 

we obtain 

In particular, the connection I-forms Wij defined by 

Wij(X) = g(ei, V xej), (79) 

are antisymmetric Wji = -Wij and may be computed explicitly by 

(80) 

The covariant derivative may be extended to act on tensors more general than just 

vector fields, by requiring the obvious linearity and derivation rules ( cf. (72)), together 

with a Leibnitz or product rule property. Thus, for example, V acting on (2, D)-tensors 

satisfies 

v(Y ® Z) = (\7Y) ® Z + Y ® ('i7Z), 

and \7 acting on a cotangent field a satisfies 

Dy(a(Z)) = ('i7ya)(Z) + a(\7yZ). 

Obvious extensions of these properties define \7 on all (r, s)-tensors. Note that if 

we regard the direction of the covariant derivative as unspecified, then the covariant 

derivative of an (r, s)-tensor is an (r, s +I)-tensor. 

An index notation is widely used for the covariant derivative. For example, if 

Y = Yiai is a vector field, then the covariant derivative is the (I, I)-tensor 

\7Y ~jai ® dx1 

( 81 (Yi) + ykr;k) ai ® dx1, (8I) 

and the covariant derivative of a covector field is 

ai;j dxi ® dxj 

( aj(ai)- akrJi) dxi ® dx1. (82) 

The formula ( 46) for the covariant derivative of the (0, 2)-tensor ll is a direct general­

isation of (82). More directly exploiting the Leibnitz rule, we have a coordinate-free 

description of the covariant derivative of ll: 

(\7 xll)(Y, Z) = Dx(IT(Y, Z))- Il(\7 xY, Z)- IT(Y, 'i7xZ). (83) 
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Comparing (74) with (83), we see that the metric compatibility condition is equivalent 

to \1 g = 0. 

The Riemann curvature tensor is defined as before on vector fields X, Y, Z, W E 

X(M) by 

R(X, Y, Z, W) = g((\1 x\ly- \ly\1 x- V[x,Yj)Z, W). (84) 

That this is in fact a tensor, ie. a multilinear function in each of the four slots, follows 

from the definition, the derivation property (72) and the definition of the Lie bracket. 

First, it is immediately clear that R(X, Y, Z, JW) = f R(X, Y, Z, W) for any function 

j E C00 (M). Since 

[f X, Y] = f[X, Y] - Dy j X (85) 

we have 

R(JX, Y, Z, W) = jR(X, Y, Z, W)+g(-Dyf\lxZ-\1(-DyfX)z, W) = jR(X, Y, Z, W). 

This shows also that R(X, jY, Z, W) = f R(X, Y, Z, W), by the antisymmetry of R in 

the first two slots. The final most remarkable cancellation is verified as follows: 

R(X,Y,jZ,W) = g(\lx(f\lyZ+DyjZ)-\ly(J\lxZ+DxfZ), W) 

- g(J\l[x,Y]Z, W) - g(D[x,YJ] Z, W) 

g(Dxf \lyZ + DxDy f Z + Dy f \1 xZ, W) 

- g(Dyf\lxZ +DyDxf Z +Dxf\lyZ, W) 

- g(D[x,YJf Z, W) + j R(X, Y, Z, W) 

j R(X, Y, Z, W). 

Thus the Riemann curvature depends only on the values of the vectors and not on the 

first or second derivatives; in other words, Riem = R(·, ·, ·,·)is a (0, 4)-tensor. By the 

linearity property and expanding all vectors in a basis frame of coordinate vectors, we 

may write R(X, Y, Z, W) in index form 

R(X,Y,Z, W) 
. . k R 

X'Y1 Z W R;jkt, 

R(8;, 8i> 8k, 8t) 

g( (\1 &, \1 &j - \1 &j \1 aJ8k, 8e) 

o;(rjke)- aj(r;ke)- r~kriep + rfkrjep· (86) 

The expressions (75), (86) show that RijkR depends polynomially on the first and second 

derivatives of the metric 9ij· Clearly, the curvature tensor of Rn with the standard 

metric 9ij = O;j vanishes, as might have been expected. 
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Note that it is not essential that indices refer to a basis frame of coordinate vectors 

81 , ... , On - already with the connection 1-form Wij we have seen an example where 

the indices refer to an orthonormal frame of vectors e1, ... , en. In general, the frame 

used to define the indices in any formula will be either understood, or explicitly men­

tioned. Particularly in Riemannian geometry, it is often much more useful to perform 

computations in an orthonormal frame rather than a coordinate frame. 

The curvature tensor has a number of symmetries, the first being the obvious 

R(X, Y, Z, W) = -R(Y,X, Z, W). Expanding out the identity 

(DxDy- DyDx- D[x,YJ) g(Z, W) = 0 

shows that 

R(X, Y, Z, W) = -R(X, Y, W, Z), 

whilst the first Bianchi identity 

R(X, Y, Z, W) + R(Y, Z, X, W) + R(Z, X, Y, W) = 0 

follows from the definition by a straightforward computation, 

R(X, Y, Z, W) + R(Y, Z, X, W) + R(Z, X, Y, W) 

g("Vx'\lyZ- '\ly'\lxZ- "V[x,Y]Z 

+ '\ly'\lzX- '\lz'\lyX- "V[Y,z]X 

+ '\7 z '\7 x Y- '\7 x '\7 z Y- "V[z,x]Y, W) 

g('\7 x[Y, Z]- '\ly[X, Z] + '\7 z[X, Y] 

- "V[x,Y]Z- "V[Y,z]X- "V[z,x]Y, W) 

g([X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]], W) 

0, 

since the Lie bracket satisfies the easily verified Jacobi identity 

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0. 

(87) 

(88) 

(89) 

Finally, combining (87), (88) gives a symmetry between the (12) and (34) positions, 

R(X, Y, Z, W) = R(Z, W, X, Y) (90) 

as follows: 

2R(X, Y, Z, W) - R(Y, Z, X, W) - R(Z, X, Y, W) 
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+ R(Y, W, X, Z) + R(W, X, Y, Z) 

R(X, Y, Z, W) + R(X, Y, Z, W) 

+ R(Y, Z, W, X)+ R(Z, X, W, Y) 

- R(Z, W, Y, X)- R(W, Z, X, Y) 

2R(Z, W, X, Y). 

The definition of Riem can be written in terms of a commutator of covariant deriva­

tives R(X, Y, Z, W) = g(R(X, Y)Z, W), where 

R(X, Y)Z = ('Vx'Vy- Vy'Vx- V[x,YJ)Z. (91) 

In index notation and with a coordinate frame we have 

where Rijk e = Rjkp9pf and (g;j) = (gi/) is the inverse metric. This process of raising 

and lowering of indices using the metric and its inverse, corresponds to the canonical 

isomorphisms between TpM and r; M defined by the inner product g. Using the ·;; 

notation for covariant derivative yields the so-called Ricci identity 

(92) 

Applying the metric isomorphism to the differential df of a function f E C 00 (M) 

gives the gradient operator, 

(93) 

where !;i = 8d. Another way of stating the definition of gradf is 

g(gradf,X) = Dxf = df(X), for all vectors X. (94) 

Taking the covariant derivative of gradf gives the Hessian, or second covariant deriva­

tive matrix of f, 
v7jf = !;ij = aiajJ- r:jakf, (95) 

and the trace of \72 f is the Laplace-Beltrami operator of the metric g 

(96) 
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where V§ = Vde[g. 
Another method for describing the curvature and covariant derivatives was de­

veloped by E. Cartan, and uses orthonormal frames and forms, rather than vectors. 

Because forms behave better than vectors under maps of manifolds, the Cart an calculus 

is frequently better suited to actual computations. 

For this we need the exterior derivative operator 

which is a linear first order differential operator satisfying 

(a) d(f) = dj, for j E C 00 (M); 

(b) d(a 1\ (3) = da 1\ (3 + ( -l)ka 1\ d/3, for a E Ak(M); 

(c) d2 = 0. 

(97) 

These properties uniquely determine d, since they lead to an explicit expression for d 

in any local coordinate system. Firstly, (a) determines d acting on A(M) = C 00 (M). 

By (b) and (c), for any two functions j, g E coo ( M) we have 

d(f dg) df 1\ dg + f d(dg) 

df 1\ dg, 

which determines don A 1(M) since alll-forms may be written as a linear combination 

of terms of the form f dg. Now 

and thus by induction it follows that 

for any functions g1 , ... , 9k· Hence 

(98) 

which shows that the conditions (a), (b), (c) determine don Ak(M). To show that 

this definition is consistent, we note that any k-form may be written as a = a dxi1 1\ 

... 1\ dxik = a 1 dx1 where the coefficients ai1 ···ik = a 1 are uniquely determined and 

I= (i1 < · · · < ik) is a multi-index. Then the local definition 

Oaf i I 
da = ~dx 1\ dx , 

ux' 
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satisfies the required properties, and (98) shows that any definition of dis unique (since 

the differentials dg1 are defined already), hence there exists a unique operator with the 

properties (a), (b), (c). By iterating (99) we see that the property d2 = 0 reflects the 

commutativity of second partial derivatives. 

By combining (71) and (98) we see that d behaves naturally under pullback by a 

map 1> : M -+ N, 

cf>*(da) = d(cf>*a), Va E A(N). (100) 

By computing in local coordinates, we can easily show that for any a E A1 (M) and 

vector fields X, Y E X(M), 

da(X, Y) = Dx(a(Y))- Dy(a(X))- a([X,Y]). (101) 

A standard exercise relates d acting on A(R3 ) to the classical differential operators 

div, grad and curl. 

Now suppose e1, ... , en is an orthonormal frame, and let ell ... , en be the dual 

covector frame. From (101) we have 

- e;([ej, ek]) 

- g(e;, 'Veiek- 'Vekei) 

W;j(ek)- Wik(eJ) 

- (wie 1\ ee) (ej, ek), 

which gives Cartan's first structure equation 

(102) 

where w;1 = g(e;, \lei) is the connection 1-form. A similar computation yields the 

second structure equation, 

(103) 

where rl;1 is the curvature 2-form and is related to the Riemann curvature tensor by 

where the indices in R;1ke refer to components in the basis e1 , ... , en­

The first Bianchi identity (88) is equivalent to 
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and is derived (much more easily this time!) by taking the exterior derivative of (102). 

Taking the exterior derivative of D;j using (103) gives the Cartan form of the second 

Bianchi identity 

(106) 

which is equivalent to 

(V'xR)(Y, Z)W + (\7yR)(Z,X)W + (V'zR)(X, Y)W = 0, (107) 

a form which can be verified directly, but not so simply, from the definition of Riem 

and \7 Riem. The index notation versions of (105) and (106) are 

R[ijk]£ = 0, Rij[kf;m] = 0, (108) 

where enclosing indices in square brackets indicates a total antisymmetrisation over 

those indices, ie. [ijk] = i(ijk- ikj + jki- jik + kij- kji). 
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5 Integration and Stokes' Theorem 

Outline: 

Orientation of a manifold; volume form; integration of an n-form; man­

ifold with boundary; Stokes' Theorem; divergence, Gauf3 and Stokes' for­

mulae; integration by parts; Green's formulae. 

As the first step in understanding the process of integration on a manifold Mn, 
assume w E An(M) is supported in a single coordinate neighbourhood U C M. Let 

(xi) be the local coordinates and o; = Oxi be the coordinate tangent vectors. We define 

the integral of w over M by 

(109) 

where d£~ is then-dimensional Lebesgue measure and w(o1 1\ ... 1\ On) = w(o1 , ••• , On) 

is the multilinear pairing between w and the infinitesimal coordinate parallelepiped 

o1 1\ ... 1\ On, normalised by ( dx 1 1\ ... 1\ dxn) ( o1 1\ ... 1\ On) = 1. To see that this 

definition is independent of the choice of coordinate chart, suppose y = (yi) = y(x) is 

some other coordinate chart covering the support of w. The alternating property and 

(56) imply that 

(110) 

by the change of variables formula for Lebesgue measure 

(111) 

assuming we also have the orientation condition 

oy 
det ox > 0, (112) 
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restricting the admissible coordinate charts. 

We say that M is orientable ifthere is f.L E An(M) such that f.L # 0 everywhere in M; 

an oriented coordinate chart then is required to satisfy f.L(81/\ .. . l\8n) > 0. Equivalently, 

an orientable manifold is one with a covering by coordinate charts satisfying (112). 

The problem of integrating a general w E An(M) is reduced to the case of support 

within a coordinate neighbourhood by the use of a partition of unity: a family of 

functions ,\"' E coo ( M), a E A, satisfying 0 :::; ,\"' (p) :::; 1 and La Aa (p) = 1 for all 

p E M, where only a finite number of terms in the sum are non-zero. If M is separable, 

then a partition of unity exists subordinate to any locally finite covering of M. 

Writing w =La AaW and using the linearity of JM then determines fM w. Note that 

this definition of JM w depends strongly on the choice of orientation f.L E An(M) of 

M: denoting by -M the manifold with the reverse orientation -f.L, we have f(-M)w = 
-fMw. 

If ¢ : Mm --+ Nn and if a E Am(N) then the integral of a over M is defined 

naturally by pull-back: 

r a= r ¢*(a). 
}q,(M) }M 

(113) 

This applies in particular to the situation where M is a submanifold of N and ¢ is the 

inclusion map, which shows that there is a natural dual pairing between Ak(N) and 

k-dimensional submanifolds of N, given by integration along the submanifold. 

On an oriented Riemannian manifold we may normalise the orientation form to 

satisfy II Mil = 1, where IIMII denotes the metric length. This normalised n-form is called 

the volume form of M. In local (oriented) coordinates we have 

(114) 

where det(g) = det(9;;), g;j = g(8;,8j)· Under a change of coordinates y = y(x) we 

have 

and thus the volume form f.L defined by (114) is independent of the choice of oriented 

coordinate system. 

If M is Riemannian but not oriented then it is still possible to define an integral for 

functions (but not n-forms), by using the measure Jdet(g) d£~ in coordinate patches. 
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Although viable and sometimes useful, this non-oriented integral does not satisfy the 

very elegant Stokes' Theorem, a.k.a. the generalised fundamental theorem of calculus. 

In order to state Stokes' theorem, we need a definition of manifold with boundary. 

This is a pair (M, oM) where M is a smooth manifold under the induced topology from 

M c MUoM, and where points in oM admit boundary coordinate charts. A boundary 

coordinate chart is (c/J, U), U c M u oM, where ¢J: U-+ R+ = {(x\ ... , xn), xn 2 0} 
and as usual we require the boundary charts to be C 00-compatible in the interior set M, 

and such that the charts (c/JiaM, UnoM) define a coo structure on oM. The definitions 

of tangent vector, smooth function etc, extend naturally to the case of a manifold with 

boundary. Note, however, that C00 (M u oM) # C00 (M). 

If Misoriented by 11 E An(M), then there is a natural induced orientation on oM 
defined by ( -1) n o1 1\ ... On_1 , where ( x1, ... , xn) is any oriented boundary coordinate 

chart with the boundary defined by xn 2 0 (ie. On is inward pointing). The induced 

orientation form on oM is then [1. = -Lan/1· 

Theorem 4 (Stokes) Suppose (M, oM) is an oriented manifold with boundary, and 

wE An-1(M). Then 

r dw = 1 w. 
}M JaM 

(115) 

Proof : By invoking a partition of unity we may distinguish two cases, with w sup­

ported in either an interior coordinate chart or a boundary chart. In the interior case, 

by linearity we may assume w = f(x)dx2 1\ ... 1\ dxn with f E C~(Rn), and then 

dw = 8~1 f dx1 1\ ... 1\ dxn. By Fubini's theorem we have 

which vanishes by the fundamental theorem of calculus, since f has compact support. 

If w is supported in a boundary chart ( c/J, U) with boundary defined by xn 2 0, then 

we distinguish two subcases, 

(a) w = f(x) dx1 1\ ... 1\ dxn- 1; and 

(b) w = f(x) dx2 1\ ... 1\ dxn. 
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In care (a} we have 

and thus 

Since-

dw. { "1..\_"--1 8.-J .J;; 1 d. ,.,_ = - :Jc.J -;;--ux A ... A X , 
uxn-

{ .. dw(llt A .•• Aa,...)d£: 
. '1-

- '-l}n-t- £. . (too uf dx'"t dx1 ... fixn-r 
iJl>'-1 Jo. &~ ' 

= (-lt-1 £ .. _Jf(lf,x")Jf'; dx1 • • -dxn-l 

= {-tt £.,_1 ftx',Jl} d.C:;,-1-

on oM, we see that the final expression is just faM w as req_uired. 

The final sub case (b) with w not involving dxn is computed similarly, but the interior 

integral is now f.':"oo a':,d(x', 0) dx1 which again vanishes by the fundamental theorem 

of calculus and the compact support of f. • 
If M is an oriented Riemannian manifold and J.L. is the metric volume form, then we 

can define the divergence of a vector fietd X E X(M) by 

divX J.L = d(txJ.L). (116) 

In coordinates, 

= X~. (117) 

The divergence form of Stokes's theorem is thus 

{ divXJ.L= 1 txJ.L, 
}M JaM 

(118) 

which we may write in a more familiar form by noting that the induced oriented volume 

form on oM is defined by Jt = LnJ.L, where n E Tp(M u oM), p E oM, is the outward 

pointing unit normal to aM. This implies that 

txp = g(X, n }ij + a term involving dx", 

so. that 
{ divX J.L = ,£- g{X, n)it. 

fM JaM 
(Uft) 
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This reduces to the well-known Gaul3 and Green's formulae in dimensions' 3 and .2 

respectively. 

A more general form of (119) is sometimes useful, for example when integrating 

along a null hypersurface in a Lorentzian manifold, where the metric volume ·form 

vanishes and it is not possible to define a unit length normal vectpr. If f.L and jl 

are orientation forms on M and 8 M ,respectively, then there is a 1-form v such that 

f.L = v 1\ P,; vis called a conormal to a}vf. Then (118) gives 

( d(ix!L) = 1 v(X) P,. 
}M laM . 

(120) 

To derive the classical Stokes' theorem for the integral ofcurl V over a surface S 

in R 3 we need to pull back from the surface to R2 with the parameterisatiori map 

X : U C R 2 --+ S c R 3 . Details are left as an exercise. 

Several useful identities may be obtained from the divergence form of Stokes' the­

orem. Choosing a vector field of the form f X, where f E c= ( M) and X E X ( M), we 

find 

( (fdivX + Dx(f)) dvM = 1 f g(X, n) dS, 
}M ~M 

(121) 

where we use the common notation dvM = M and dS = P, for the volume forms of M 

and aM respectively. 

Comparing (93), (96) and (117) we see that 

D-gf = div(gradf); (122) 

the divergence identity applied with X = gradf gives 

(123) 

where Dnf is the outer normal derivative of f. Combining (121) and (123) gives the 

Green's identities for two functions ¢, 'ljJ E c=(M), 

r 'l/JD.g¢dv }M 

JM ('l/JD-9¢- cpD-9 '1/J) dv 

- ( g(gradcp,grad'lj;)dv+ 1 '1/JDncpdS, (124) 
}M ~M 

1 ( '1/JDnc/!- c/!Dn 'ljJ) dS. (125) 
laM 

These identities enable us to integrate by parts over a manifold, and turn out to be 

very useful in studying the functions and operators associated with M. For example, 

we have 

Corollary 5 Suppose M is a connected compact oriented manifold without boundary. 

The only harmonic functions (ie. satis-fyi'M 6.9 cp = 0} on M are constants. 
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Proof: Applying (124) with¢= '1/J gives 

( ¢!:::.9 ¢ dv + f g(grad¢, grad¢) dv = J ¢ Dn¢ dS. 
}M }M ~M 

Since aM= 0 and !:::.9 ¢ = 0 this gives 

JM g(grad¢, grad¢) dv = 0. 

Since g is positive definite, it follows that grad¢ = 0 identically, hence ¢ is constant. 

II 

In a similar fashion we may prove uniqueness for solutions u E C2 (M) of the 

Dirichlet problem 

in M } 
on 8M 

(126) 

where f E C0 (M) and ¢ E C0 (8M) are given. For, suppose u 1, u2 are two solutions 

of (126), then the difference w = u1 - u2 satisfies the Dirichlet problem with f = 0 

and zero boundary conditions. The previous argument carries over and shows that w 

is constant, hence w = 0 identically by the zero boundary conditions. 
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