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MULTIWELL PROBLEMS AND 

RESTRICTIONS ON MICROSTRUCTURE 

KEWEI ZHANG 

§1. Problems and Background. 

Consider a variational problem: 

(1) . min f F(Du(x))dx, 
u=u0 on8fl } 0 

and suppose the integrand F is continuous and bounded below with reasonable growth at 

infinity. (1) is wealky lower semicontinuous in W 1·P ifF is quasiconvex (see e.g. Acerbi

Fusco [AF)). By definition this means 

L F(P + Drf>(x))dx ~ F(P)meas(G), 

for some domain G and for all p E Mnxn, r/> E wg'00 (G; RN). 

Integrands F that arise in the study of martenstic phase transitions are not quasiconvex. 

(1) is not lower semicontinuous and it cannot be solved by the direct method.ofthe calculus 

of variations. A minimizing sequence can develop spatial oscillations in its gradients Duk, 

leading to weak rather than strong convergence. The central idea of the energy minimizing 

is that these oscillations model the microstructure observed in real materials (Ball-James 

[BJ1, BJ2)). 

The most interested integrands at the moment are those F which have 'multiple well 

structure', i.e. F ~ 0 everywhere and F = 0 on a known set K. The connected components 

of K are 'elastic energy wells'. They represent preferred gradients. 

In this talk I will restrict to the situation when K is a finite subset of Mn x N, m 

particular, a finite set of M 2 x2 or M 3 X 3 • 
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There are two interesting situations: 

(a) when the minimum value of (1) 1s 0 and it is achieved. This occurs if there is 

a Lipschitz continuous deformation u( x ), satisfying the boundary condition, such that 

Du(x) E ](for a.e. x; 

(b) when the minimum value of (1) is 0, but it is not achieved. Then a m1mm1zmg 

sequence uk has the property that Duk is approximately in ]{ except on a subset of 

D of arbitrarily small measure as k --+ oo (Young measure). We may think of Duk as 

determining a microstructure, with length scale gets finer as k --+ oo. When k is large, 

Duk partitions D into regions which are nearly stress free (where Duk is near I< and some 

'transition layers' (sets of small measure, where Duk is not near I<). 

Lemma (Young measure). (see e.g. [T), [B)) Suppose {Uk} C L00 (D; R 8 ) is a ~equence 

and for some compact set J( C R•, meas({x E n : Uk(x) ~ G}) --+ 0 ask --+ 0 for 

every open set G ::J I<. Then there exists a subsequence (still denoted by and an 

associated fan'lily of probability measures Vx on R 8 such that (i) Vx is supported on ]( 

for a. e. x E D; (ii) for any continuous function '1/' on R8 , '1/J(Uk) converges weakly to the 

function x --+ 

In (1) the sequence uk has the form uk = Duk, where Uk is the minimizing sequence of 

(1). The corresponding Vx is called Young measure limit of gradients. The Young measure 

is trivial if Vx is a Dirac measure for a.e. x. In this case there exists a function u such that 

1/x is the Dirac measure at Du(x) and in general, the Young measure may be nontriviaL 

The minimum value of ( 1) is 

lim { F(Duk)dx = f { F(J...)dvxdx. 
k->oo Jo Jn J K 

In particular, ifF~ 0 with F(P) = 0 exactly for P E I<, then limk-+oo J0 F(Duk)dx = 0 

if and only if Vx is supported on J{ for a.e. x E D. 

Question L (Existence) Given a set of matrices K, does ]{support nontrivial Young 

measures? i.e. does Duk develop non-trivial microstructure? 
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Question 2. (Regularity) Are there non-affine deformations u(x) such that Du(x) E J{ 

almost everywhere? 

If F(Duj) grows like I Duj IP, then the natural growth hypothesis of the minimizing 

sequence of ( 1) would seem to be u k E W 1 ,p. However, we have 

Theorem. (Zhang {Z2},) If a Young measure limit of gradients has compact support, then 

it arises from a bounded sequence u~; E W 1 ' 00 • 

§2. Results on finite number of matrices 

In this section, Young measur.e means Young measure limit of gradients. 

Definition.; Two N x n matrices A and B are compatible H they are 'rank-one connected', 

i.e. if 

rank(A- B) :::; 1. 

Otherwise they are called incompatible. 

This terminology is from the layer construction: If rank( A- B)= 1, then A- B = c®n 

for some vectors c and n, and 'mixing A and Bin layers orthogonal ton' yields a nontrivial 

Young measures supported on {A, B} (see e. g. [BJl]). 

The following theorem is the simplest case in multiwell problems. The number p cor

responds to the Sobolev space W 1 ,P such that the Young measure limit of gradients was 

generated by a bounded wl,p sequence. 

Theorem 2.L (Two incompatible matrices) 

(Chipot-Kinderlehrer {CK} (p = oo), Ball-James {BJl} (p > 2,), Zhang {Zl} (p = 2,), 

Svenik {Svl} (l < p < 

Suppose that A and B are incompatible and Vx is a Young measure supported on {A, B}. 

Then 

a) Vx is trivial -it is a Dirac measure for a.e. x; and 

b) Vx is independent of x. 
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Remark. For the quasiconvexification of two-well and multiwellenergies, some important 

work has been done by Kohn [K], Firoozye and Kohn [FK]. In [K], an explicit formular is 

given for the relaxed enery of the two-well problem. 

Theorem 2.2.. Three matrices Let A, B and C be N x n matrices which are pair

wise incompatible. Assume that Vx is a Young measure limit of gradients supported on 

{A,B,C}. Then 

a) (Sverak {Sv2}) Vx is trivial -it is a Dirac measure for a.e. x; and 

b) (Jodeit-Olver {JO}, Zhang {Z4}) Vx is independent ofx. 

Theorem 2.3.. Four matrices 

(Tartar {T2}, Bhattacharya-Firoozye-James-Kohn {BFJK]) 

There exist four pairwise incompatible diagonal 2 x 2 matrices A, B, C and D and a 

Young measure limit of gradients Vx supported op {A, B, C, D}, such that Vx is nontrivial. 

The example is given in Figure 1 below. We call the sets in Fig. standard patterns. 

Remark. To study a finite set of diagonal 2 x 2 or 3 x 3 matrices, we take the projection 

( e. g. for 2 X 2 matrices): 

( ~ ~) ~(a, b) 

so that we can draw pictures in R2 or R 3 . The line segments in figures below are rank-one 

connections. 

In order to solve the multiwell problem for finite subsets of diagonal 2 x 2 matrices, we 

need the following 

Definition 2.4. A finite set K of diagonal 2 x 2 matrices without rank-one connections 

is called separable if there exists a diagonal 2 x 2 matrix C, such that 

K- C := {A- C, A E K} = K1 U K2 , 

K1, Kz are both non-empty and K 1 n K 2 = 0, satisfying either 

a) the elements in K 1 are all positive definite, those in K 2 are negative definite; or 
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b) the elements in J K1 are all positive definite, those in J K 2 are negative definite, 

where 

JK; = {JA, A E Ki}, 

K is called completely separable if every subset of K with more than one element is 

separable. 

Lemma 2.5. ([Z3}) If a finite set K of diagonal2x2 matrices without rank-one connections 

is not separable. Then it contains at least one of the standard patterns. 

Theorem 2.6 .. several 2 x2 d~agonal matrices (Zhang {Z3}) Suppose A; (i = 1, ... , m) 

be pairwise incompatible matrices and Vx is a Young measure supported on K = {A1 ... , Am}-11 

Then Vx is trivial if and only if the set K is "separable." Furthermore, if]{ is separable, 

Vx is independent of x. 

The idea of the proof is to use Theorem 4.6 which is a generalization of a result due to 

V. Svenik [Sv2] and the induction. 

Theorem 2.7 .. six matrices in 3D(Zhang {Z3}) There exists a set ]( of six pairwise 

incompatible diagonal 3 X 3 matrices A; (i = 1, ... , 6) and a Young measure limit of 

gradients Vx supported on I< := { A1 ... , A6}, such that Vx is nontrivial. However, Young 

measure limit of gradients Vx supported on any fixed five elements of K must be trivial 

and independent of x. 

The examples are given in figure 2. The proof of the theorem is similar to that in [T2] 

for separately convex functions. If the claim is not true, the Young measures are trivial. 

Then there exists a quasiconvex function F such that F 2 0, F(P) = 0 if and only if 

P E K. However, for the special feature of K we can show that F = 0 on those line 

segments in Fig.2. This leads to a contradiction. 

Definition 2.8. A finite set ]{ C MNxn is called minimal if it can support nontrivial 

Young measure limit of gradients, while for any A E ]{, K \ {A} can only support trivial 

Young measures. K C J..;JNxn is called weakly minimal if it can support nontrivial Young 
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measure limit of gradients and there exists at least one element Ao E K, J{ \ {Ao} can 

only support trivial Young measures. 

The standard patterns in Fig.l are the only minimal set for 2 X 2 diagonal matrices. 

The examples shown in Fig. 2 are the known patterns for 3 X 3 diagonal matrices. There 

are some examples of weakly minimal sets which I do not know whether they are minimal. 

Example 2. 9. The three sets described in Figures 3, 4 and 5 are weakly minimal. 

In Fig. 3, the element to be removed is A7 ; in Fig. 4, A8 ; in Fig. 5, A4 or A 5 • 

§3. A stability result for the multiwell problem 

The question of stability for the multi well structure is that suppose the original set J{ 

supports only trivial Young measures, what happens if we perturb the set a little bit? 

The following is a general stability result due to Ball and James [BJ3]. · 

Theorem 3.1. Suppose J{ = K 1 U K 2 , K1, K2 are both non-empty andX1 nK2 = 0. Let 

n c Rn be open, bounded and s.atisfies the cone condition. K 1 and K 2 separate Young 

measures in the sense that if {vx}xen is any family of Young measure limit of gradients, 

such that supp Vx C J{ a. e. x E n, then supp Vx C K 1 a. e. or supp Vx C K 2 a. e .. 

Then there exists e > 0 and an e-neighbourhoodof K' of K, J{' ={A E MnxN, dist(A; x: 
€} such that supp Vx c J{' a. e. X E n, implies supp Vx c Iq a. e. X E n or supp Vx c Ki 

a.e. X En. 

The following is a special case of Theorem 3.1. However, in this case the e in the theorem 

is computable. 

Theorem 3.2. (Zhang {Z5}) Suppose J{ C M 2 xz is finite, diagonal and completely sepa

rable. Then, there exists an e = e( d), · 

d = min{J a;- a3· I, I b;- b3· I} 
i#j 

(
a; 

A;,Ai E K, A;= O ~) 
such that if v is a homogeneous Young measure limit of gradients ([KP}, see Proposition 

4.3 below), supp v C UAEK B(A, r), then there exists A0 E K, such that supp v C B(A0 , r), 

where B(A, r) C M 2 x2 is a closed ball. 
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The proof of the theorem relies on the following observations: 

(1) Since K is completely separable, we may use the induction argument and assume 

that K = Kt U JC, a; :2: d/2, b; :2: d/2 for A; E Kt and aj :::; -d/2, bj :::; 

-d/2 for Aj E J{_. We seek to prove that supp v C UAEK+B(A, r) or supp v C 

UAEK+B(A, r). 

(2) For small r > 0, the set UAEKB(A, r) is contained in the class of monotone in-

creasing or decreasing mappings: 

E, := {P E M 2 x 2 ,det(E(P)) :2: t:}, (€ > 0) 

in the sense that if P E E,, Px is either a monotone increasing mapping from R 2 

to R 2 or a monotone decreasing mapping, where E(P) = P+/T. Also E, is weakly 

closed in the sense that if dist(Duj; E<) ~ 0 a.e. and Uj ~ u in W 1•00 (S1; R2) 

weak-*, then Du( x) E E, a. e .. This can be easily seen from the fact that 

which is the level set of a polyconvex function. 

(3) We may assume that the sequence is bounded in W 1•00 (see [Z2], [KP]). Since we 

only look at homogeneous Young measures, the weak limit of the ~equence Duj 

is a constant matrix P E E,. We may assume that Px is monotone decreasing, 

i.e. E(P) is negative-definite. We try to show that E(Duj) is 'essentially' semi

negative definite for large j in a fixed ball contained inn. Use the change of variable 

formulars as in [Sv2]: 

r <P( Uj( X)) det Duj(X) dx = r q)(y) deg( Uj' B, y )dy; JB JR2 

r tfi(uj(x)) I detDuj(x) I dx = r q)(y)N(uj I B,y)dy, h lw 
where B is a unit ball inn, deg(uj, B, y) is the Brouwer degree of Uj, N(uj I B, y) 

is the number of solutions of Uj(x) =yin B. 
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With this topological m~thod, it can be shown that (a): Uj is essentially one

to-one in B1; 2 and (b): 

(u;(x)- Uj(a)) · (x- a)~ Eo I x- a 12 

for x E 8B1; 2 and a E B 1; 4 . We want to claim that essentially E(Duj(a)) is 

semi-negative definite in B~;4 • ~y Rademacher's theorem, Uj is differentiable a.e .. 

If it is not the case, we may find a set of 'essentially' positive measure such that 

E(Duj(a)) is positive definite, and (uj(x)- Uj(a)) · (x- a)> 0 whenever j x- a I 
is small. However, we can not show that this will lead to contradictions because of 

the Poincare-Bendixson theorem, a limit circle may occur. To avoid this we need 

the following argument: 

(4) We may assume that a= 0, Uj(a) = 0. Since the sequence Duj converges to a 

'thin set', i.e., let Uj = (u],uJ), and D ={(a, b) E R2 , I xI~ M, I y ~~ r}, where 

M > 0 and r the radius of the balls. Then dist(Du}; D)---+ 0 a.e .. Use the maximal 

function method as in (Z2J, We may find another sequence Vj bounded in W 1 •00 

such that up to a subsequence, Duj -Dvj---+ 0 a.e. in B, so that Dv; generates the 

same Young measure in Band l8yv}(x, y) I~ Cr for some constant C independent 

of j. Similarly, we can have I Bxv](x,y) I~ Cr. Then consider the new sequence 

Wj =Vj + (2Cry, 2Crx), we can claim that 8yw}(x, y) 2:: Cr and Bxw](x, y) 2:: Cr. 

If we choose r > 0 small, The argm;nents in previous can go through. Now, if we go 

back to step ( 4), and use a simple degree argument, we may find another solution 

of Uj(x) = 0 in the domain 

V={(x,y)EB1;2 ; 8<Vx2 +y2 <1/2, x>O, y>O.} 

This contradicts to the uniqueness ofthe solution Uj(x) = 0 in B1; 2 . 

§4. Some restrictions of microstructure 

The following are some of the tools used to study Young measure limit of gradients. 
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Lem1na 4.1. Let F : MNxn ---+ R be quasiconvex, and Vx be a Young measure defined 

for X En and supported on K. Then 

Corollary 4.2. (minors relations) 

Let J : j\,![NXn ---+ R be a minors, and Vx be a Young measure defined for X E n and 

supported on K. Then 

J ([ ,\dvx(A)) = J( J(.A)dvx(A), for a.e. XED,. 

If Vx is independent of x, it is called a homogeneous Young measure. 

Proposition 4.3. (Homogeneous Young measure ( Kinderlehrer-Pedregal)) Let Vx 

be a Young measure limit of gradients. Then for a.e. a E n, t}w parameterized measure 

Vx = Va is a Young measure limit of gradients. 

Theorem 4.4. (BFJK) Let v be a nontrivial, homogeneous Young measure limit of gra

dients. Assume as normalization J ,\dv( ,\) = 0 The the linear span of the support of v 

must contain a rank-one matrix. 

Theorem 4.5. (Svenik {Sv2}) Let K be a bounded subset of 

{A : A is symmetric 2 X 2 matrix and det A = 1}. 

Then Young measure limits of gradients supported on K must be trivial. 

Theorem 4.6. (Separation Lemma {Z3]) Assume D, c R 2, p > 2. Let 

K 0 ={A E M 2 x2 , A is symmetric and det A 2: 0} 

and we denote by Kt, K 0 and Go the subsets of Ko as 

K(i ={A E Ko, A is semi-positive definite} 

K 0 ={A E K 0 , A is semi-negative definite} 
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Go= {A E Ko,detA = 0} 

respectively and we assume tbat uk -+ u weakly in W 1·P(f2) and 

Tben 

(i) for almost every X En sucb tbat D 2 u(x) is positive (negative) definite, tbere exists 

Ox > 0 sucb tbat tbe Young measures corresponding to D 2uk satisfy supp Vy C 

Kci U Go (respectively K 0 U Go) for a.e. y E Bx,6.,· Moreover, D 2u(y) E Kci UG0 

(respectively K 0 U G0 ) for a.e. y E Bx,6.,. If moreover, all tbe elements in K 0 are 

diagonal matrices, D2 u(y) is nonnegative definite (respectively nonpositive definite) 

a.e. in 1J C Bx,o.,, wbere Dis any square centred at x. 

(ii) for almost every x En sucb tbat D 2u(x) E G0 , suppvz C G0 . 

Theorem 4.6 is a generalization of Theorem 4.5 obtained by V. Svenik. The idea of the 

proof is to use Hodge decomposition and theory of Monge-Ampere equation. 

Remark. For 2 X 2 diagonal matrices, We can obtain a complete picture of whether a finite 

set supports a nontrivial Young measure by the Separation Lemma. However, for 2 x 2 

symmetric matrices, we can not classify the Young measures by this lemma. 

Example 4.7. There exists a set of 2 x 2 symmetric matrices K = {AbA2 ,B1,B2 } such 

that B;- A- j is positive definite for i,j = l, 2. However, there is no 2 x 2 symmetric 

matrix C separating {A1 , Az} and {B1 , B 2 } in the sense that Bi- C, C- A; are positive 

definite for i,j = 1, 2. 

Fig. 6 provides such an example. We may assume that all the matrices are positive 

definite. Consider the level curve 

If c exists, then !{ Bt u K B2 c K c c KAt n K A2. This is not always possible for a quadratic 

form xTCx. 



269 

Figure 1 
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