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§1. Introduction 

In this note we .~Jl study Fourier multiplier operators on Lipschitz surfaces. On 
Lipschitz curves the notion of a Fourier transform is initially introduced by R. Coifma.n 
andY. Meye:r ([CM]). The monogenic extensions of the exponential functions (see [LMcQ)) 
enable us to define this notion on surfaces. The paper extends a proof in [GQW] using 
the monogenic extensions of the Gauss-Weierstrass kernels, and hence proves that the 
boundedness of certain operators on infinite surfaces can be transferred to the i:ndriced 
operators on periodic surfaces. M9re general Fourier multipliers rather than the H 00 ones 
are considered. For the latt~r the reader is referred to [McQl)-[McQ3], [LMcS], [LMcQ] 
and [GQW]. 

The author would like to thank A. Mcintosh. The discussions with him in Brisbane 
on the monogenic extensions of the Gauss-\Veierstrass kernels exp( -1rtjxj2 ), t > 0, benefit 
this study. 

Transference from / to r 

Denote the standard basis vectors of R n+l by e0 , e1 , ... , en, where e~ = 1, e~ "'-' -1,1: = 
1, ... , n, and eiej = -ejei, 1 ~ ·i < j ~ n. V/e then imbed Rn+l into the real Clifford 
algebra R(n+l) generated by e0 , e1 , ... , en, according to which we write a typical x E Rn+l 

as X=== X+ xoeo, where X= x1e1 + · · · + Xnen ERn. In the sequel we will identify eo = 1. 

We will use the following sets': F'or f..L E (0, ¥], cl-',+ = {0 =1- X = X + XLeL E 
R n+l I . ' I .,. } c c ' c c n c " XL .:> -·-1x "anp, , p.,- =- J.',-h ana.;:::;~-'= p.,+ p.,-· 

I,et 'Y be an infinite Lipschitz graph parameterized by 

1 = {x + g(x)eolx E R'\g; R"' ~· 

Denote by N = jjv gJJoo < oo its Lipschitz constant. Without loss of generality, we assume 
··-111 = min{.g(x)lx ERn}=- rnax{g(x)jx E R"'}, 0 < 1vi < oo. Denote D1 = L~=o e.; 8~7 
and D.,. = 8~, ei. For a Clifford-valued function f we define 
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A function f is said to be left-monogenic or right-monogenic, if Dd = 0 or Drf = O, 
respectively. The good thing with monogenicity is that if f is right-monogenic and g is 
left-monogenic in a neibourghood of a domain D with smooth boundary, then Cauchy's 
theorem holds: 

{ f(:z:)n(~)g(:z:)du(:z:) = 0, lav . 
where n(:z:) is the outer nomal on 8D and· du(:z:) tl:J.e area element on the bound­
ary. The Cauchy integral formula also holds (see [LMcQ] for example). Let A( 'Y) = 
{!if is left -monogenically defined in - M- a< :z: 0 < M +a for some 5 > 0}. It is easy 
to prove that A(-y) is dense in LP(-y), 1 < p < oo (see [CM]). 

A function defined on Rn is said to be 27r-periodic if it is 27r-periodic in every coor­
dinate. A Lipschitz surface is said to be 27r~periodic if its parameterization function g is 
27r-periodic. We denote such a g by G. Denote nn = [-7r,7r] X ..• X [-7r,7r] (n-factors), 
and r= {x + e0 G(x)jx E Dn}. One can similarly define the subspace A(r) ofLP(r) with 
the difference that the left-monogenic functions consisting of A(r) are 27r~periodic. The 
density of A(r) in LP(r) holds too. 

Let ( = e + iiJ = 2:j=1 (j,"Ci E e,j = 1, ... ,n. The following defined e(:z:,17) is the 
left- and right-monogenic extension of exp( -ixe) : e(:z:, () = e+(z, () + e_(:z:, (), e±(:z:, () = 
ei<x,,>e=F:cel(lcX±((),x±(() = ~(1 ± i(I7Jic/), where !Cit= :E~=l ([, Re(i(lc) > 0 (see 
[LMcQ]). 

Let n ~ n + nLeL be a unit vector in Rn+l. We will use the open half tubes in 
Rn+l : c~ = {:z: E Rn+l I X E nm,±(:z:,n) > 0}, and the real n-dimensional surface 
n( en) in en' defined by 

n(en) = {( = e + i1] E en I !Cit 1- ( -oo, 0] and nL1J = Re(l(lc)n}. 

See [LMcQ) for some equivalent characterizations of n( en) and the relation that n E T f'( 1r) 
if and only ifn(en) C Sf'( en), where 

Sf'( en)= {( = e + i1] E en I !Cit rt. ( -oo, 0] and 1171 < Re(l(lc) tanp.}. 

Functions e±(:z:,() satisfy the following relations: 

ie±(:z:, ()I= e-<x,TI>=F:cLRel'lc lx±(()l 

::=; seJ;) e=F<x,n>Rel(ic/nL, ( E n(en) C Sf'(Cm). 

The Banach space of bounded Clifford-valued holomorphic functions defined on 
Sf'( en), denoted by H=(sf'(Cn)) in the sequel, is of special interest (see (LMcQ]). Theo­
rem 1 below will be applied to conclude the boundedness of the Fourier multiplier operators 
on periodic Lipschitz surfaces induced by H 00 (Sf'(en)) functions. 
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In virtue of the extended exponential function one can define Fourier transforms or 
Fourier cceft1cients on a g;iven Lipschitz depending on the surface type being 
infinite or per) odic, respectively. F'or f E A( 1 ), ddine 

H 1 is periodic, i.e. 1 = r, then for f E A(r), one can define the Fourier coefficients 

l E zn. 

Nm.v we are ready to introduc·e Fourie:c operators. Let b be a bounded 
function from R n -t Rn. Then for f E A( 1) the following integral is absolutely convergent, 
tl1at car .. be to the z~eries case ir:t [ Q2] ~ ~and so it "\¥ell defines a the operator 

For f E the as lll and so it 
defines the operator 

to the fa.ct n Rn Rn \ {0}, w··e make the convention that for b E 
H~··=('"' (Cn\) 
' \~fik' ) 

Themr·Brn L I,e;t tbe fuxu:tior1 b br; cod.ixnwus at every l E zn. Ifm& is a bounded 
on 1 :; p < cxJ, then is a bounded operator on LP(f), :; p < CQ. 

below Y<iJl :foil·::JV! the 
Vvhat is ne•;~r here is the calculation of the mor:,.o~;erll 
kernels exp(.-t!x! 2 ), i > 0. 

pp 261=262 see 
extensions cf th"' Gauss-Weierstrass 

'I'he monogenic extensions of the Gam;s-Weierstrass kernels can be calculated a.s fol­
lows. First we caJ.c,J.Iate the Fourier transforms of the kernels: 
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where an= an(t) =(~)-~.Then we calculate the inverse Fourier transforms of the result 
functions using the monogenic extensions of the exponential functions, 

Both integrals in. the last sum are absolutely rr-,,y,u•r<T,,.nt. 

monogenic extensions of the kernels. Denote by 

( 1 \n r - -) J 
27r R!' 

and the result functions are the 

the unique harmonic extensions of a;1 exp(-tjxJ 2 ) to R::_+ 1 , respectively. We conclude 
that the desired monogenic extensi6n of exp(-tjxj 2 ), denoted by .Mt(x), is 

1 + -(1-
2' 

·1vhere ei and I( x 0 ) is the indefinite 
xo that vanishes at x 0 = o;J. 

Lemma L Th.e nH)llCJJZenic 

_[,P(r), 1 ::; p < 00. 

are needed in 

function 

to the variable 

E zn, is dense in 

Lemma 2. Let f E L 1 and fp its periodic extension toRn. Tl1en 

lim f(x)a-.;: 1 
t->0 

I,emma 3. Let f E L 1 and /p its periodic extension to I· Then 

lim r 
t-+0 J "! 

Lemma 4. Suppose P a:n.d Q are monogenic 
operator in Ll'(!), 1 :$ p < oo, then 

li ~1 man 
i-+0 
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Proofs of Lemma 1, 2 are similar to Lemma 3.9 in [SW] and the corresponding Lemmas 
in [GQW]. Lemma 4 can be proved using Cauchy's theorem and the argument in [SW] 
(also see [GQW]). 

We only provide a proof of Lemma 3. 

Proof of Lemma 3. We first change integral variable x --+ :x:. Owing to Lemma 2, what 
we need to prove is 

where F(x) = f(x)n(x)Jl + l\7g(x)l 2 • 

In doing so we use the formula for Mt(x ). Changing variable in the integral expression 
of 7-l±(x), we have 

Then .l'v.ft ( x) - Mt ( x) can be expressed as a sum of certain differentials and indefinite 
integrals of the mentioned type of the following integral: 

Since on the surface 1 the x 0 coordinate is bounded, the last integrals with to 
different t's, their differentials and indefinite c:J:f the mentioned all tend to 0 
as t-+ 0. Using the Lebesgue dominated theorem, we conclude the desired relation. 

~ ···~·~.., 

In completing the proof we use Holder's inequality to the left hand 'side, before taking 
the limit t -+ 0, of the equality in Lemma 4, and use the boundedness assumption on mb. 

MuJ.tiplying a; 1 to both sides of the obtained inequality, taking the limit i -t and 
Lemma 4 and 3 to the two ?<e conclude the desired boundedness 

for M 0 . 

Let r be a 2Tr~periodic "'-!'"'"AU 

il.rctan N. T11en for any function b E 

bounded operator on LP(r), 1 < p < c<J. 
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