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§1. Introduction

In this note we will study Fourier multiplier operators on Lipschitz surfaces. On
Lipschitz curves the notion of a Fourier transform is initially introduced by R. Coifman
and Y. Meyer ([CM]). The monogenic extensions of the exponential functions (see [LMcQ])
enable us to define this notion on surfaces. The paper extends a proof in [GQW] using
the monogenic extensions of the Gauss-Weierstrass kernels, and hence proves that the
boundedness of certain operators on infinite surfaces can be transferred to the induced
operators on periodic surfaces. More general Fourier multipliers rather than the H* ones
are considered. For the latter the reader is referred to [McQ1]-[McQ3], [LMcS], [LMcQ)
and [GQW].

The author would like to thank A. McIntosh. The discussions with him in Brisbane
on the monogenic extensions of the Gauss-Weierstrass kernels exp(—mt|z|*),t > 0, benefit
this study.

§2. Transference from v to T’

Denote the standard basis vectors of R**? by eq,e1, ..., en, where e2 = 1,e? = ~1,i =
1,..,n, and e;e; = —eje;,1 <1 < j < n. We then imbed R™? into the real Clifford
algebra R("*1) generated by eg, €1, ..., en, according to which we write a typical z € R™*!
as & = X + Zgeg, where X = z1e; + -+ + e, € R™. In the sequel we will identify e = 1.

We will use the following sets: For p € (0,5,Cu+ = {0 # z = x4+ zrep €
R™? | zp > —|x|tanp},Cy - = —-C, 4,and S, =C, 1 NC, .

Let « be an infinite Lipschitz graph parameterized by
v={x+g(x)eo]x € R™,g: R" = R, g,Vg € L=(R")}.

Denote by N = HVg”oo < o0 its Lipschitz constant. Without loss of generality, we assume
—M = min{g(x)[x € R"} = —max{g(x)|x € R"},0 < M < co. Denote D; = Y =, e;—ori—i
and D, = 5 = & _¢;. For a Clifford-valued function f we define

i=0 8z;

n 8f n af
D,f:éaa—i, D,fzzéze,-.

=0
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A function f is said to be left-monogenic or right-monogenic, if Dif = 0 or.D,.f = 0,
respectively. The good thing with monogenicity is that if f is right-monogenic and g is
left-monogenic in a neibourghood of a domain D with smooth boundary, then Cauchy’s
theorem holds: :

/ (2)n(a)g(=)do() = 0,
8D

where n(z) is the outer nomal on 8D and do(z) the area element on the bound-
ary. The Cauchy integral formula also holds (see [LMcQ)] for example). Let A(y) =
{f|f is left — monogenically defined in — M —§ < 2o < M + § for some § > 0}. It is easy
to prove that A(«) is dense in L?(y),1 < p < oo (see [CM]).

A function defined on R™ is said to be 2m-periodic if it is 2m-periodic in every coor-
dinate. A Lipschitz surface is said to be 2w-periodic if its parameterization function g is -
2m-periodic. We denote such a g by G. Denote D™ = [—m, 7] X -+ X [, 7] (n-factors),
and I' = {x + eoG(x)|x € D™}. One can similarly define the subspace A(T") of L?(T') with
the difference that the left-monogenic functions consisting of A(I') are 2w-periodic. The
density of A(T") in LP(T") holds too.

Let ( = {+14n = 35, (¢ € C,j = 1,...,n. The following defined ¢(z,7) is the
left- and right-monogenic extension of exp(—ix¢) : e(z,¢) = ey (z,{) + e—(z,(), ex(z,{) =
00> oFaaltlon (), (¢) = 3(1 + iClnlg?), where 615 = 30y €2, Re((Clo) > O (see
[LMcQ).

Let n = n + nrer be a unit vector in R™!. We will use the open half tubes in
R CF = {z € R"™! | x € D™, +(z,n) > 0}, and the real n-dimensional surface
n(C™) in C™, defined by

n(C)={(=¢+imneC | I¢I& ¢ (—00,0] and nrn = Re(|¢|c)n}.

See [LMcQ)] for some equivalent characterizations of n(C™) and the relation that n € T ()
if and only if n(C™) C S,(C™), where

SW(C™M) ={¢=¢+ine C" | ¢t ¢ (—00,0] and In] < Re(lC]c) ten ).

Functions e4(z,() satisfy the following relations:

lex(z, ()] = ™M FerRellle [y, ()

Sec(#) x;n e n n m
< ZpreFemRedllo/ns, ¢ @ n(C") C8,(CT).

The Banach space of bounded Clifford-valued holomorphic functions defined on
5,(C™), denoted by H>(S,(C™)) in the sequel, is of special interest (see [LMcQ]). Theo-
rem 1 below will be applied to conclude the boundedness of the Fourier multiplier operators
on periodic Lipschitz surfaces induced by H*(S,(C™)) functions.
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In virtue of the extended exponential function one can define Fourier transforms or
Fourier coefficients on a given Lipschitz surface, depending on the surface type being
infinite or periodic, respectively. For f € A(y), define

7O = [ d-min@)se)iote), ecrn

If v is periodic, i.e. v =T, then for f € A(T"), one can define the Fourier coefficients

) = @;1; [ e n(a)f(@e(@), 1€ 7.

Now we are ready to introduce Fourier multiplier operators. Let b be a bounded
function from R™ — R™. Then for f € A(7) the following integral is absolutely convergent,
that can be proved similarly to the series case in [Q2], and so it well definesa the operator

maf(e) = gr5s [ WOelm,OF (O

For f € A(y), the following series is absolutely convergent, as proved in [Q2], and so it
defines the operator

Myf(z) = 3 b(De(=, ) f (D).

lezn»

Owing to the fact 5,(C™) N R™ = R™ \ {0}, we make the convention that for b €
H=(S.(C™))

Myf(z) = > bbe(z, 1) ().

0£lEZ™

Theorem 1. Let the function b be continuous at every ! € Z™. If m; is a bounded operator
on L?(7),1 < p < oo, then My is a bounded operator on L?(I'),1 < p < co.

The proof given below will follow the pattern in pp 261-262 [SW] (also see [GQW]).
What is new here is the calculation of the monogenic extensions of the Gauss-Weierstrass
kernels exp(—t|x|?),t > 0.

The monogenic extensions of the Gauss-Weierstrass kernels can be calculated as fol-
lows. First we calculate the Fourier transforms of the kernels:

) 2
! e <EY> exp(~t|z|?)de = a, exp(— 'yL )
JR=
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where a, = a,(t) = (%)_% . Then we calculate the inverse Fourier transforms of the result

functions using the monogenic extensions of the exponential functions,
Lin ! yl®
onl ) [ elo) expl- M0yt = an i) [ (o) en(- oy

tonlge) [ e(cam) (-

1 yl?
= an( / <=9 exp(~aolyl) 5 (1 + i) exp(— L Yay
™ R™ ly|
1l i<x,y> L ¥ ____lyl
+ an(2ﬂ_) /“ e exp(:coly|)2(1 |y|)exp( )dy.

Both integrals in the last sum are absolutely convergent, and the result functions are the
monogenic extensions of the kernels. Denote by

1

So)" [ &< explaalyl) exp(- W)y,
R™

HE (o) = (5=

the unique harmonic extensions of a]! exp(—t|z|?) to R™"!, respectively. We conclude
that the desired monogenic extension of exp(—t|x|?), denoted by My(z), is

M(z) = an( (1 +iDG) (@) JH* (o) + 3 (1 = iD(x)(z))H™ ()

where D(x) = Y7, aie., and I(zg) is the indefinite integral with respect to the variable
zg that vanishes at z¢ = oo.

The following assertions are needed in following the argument in [SW].

Lemma 1. The monogenic exponential function system {e(z,[)},1 € Z", is dense in
I*(I),1 < p < co.

Lemma 2. Let f € L*(D™) and f, its periodic extension to R™. Then

t—0 /5

tim [ e exp(—txfix = / f(x)dx.
Lemma 3. Let f € L*(T') and f, its periodic extension to . Then

lim a7 (1) / fol@yn(e) Mu(@)da(@) = [ fle)n(e)doto).

Lemma 4. Suppose P and Q are monogenic trigonometric polynomials, my is'a bounded
operator in LP(y),1 < p < oo, then

hn}’ a;l(t)/ymb(PMm)(:c)n(:c)QMgg(m)dcr(a:) = /;(MbP)(:z:)n(:n)Q(ac)da'(z).
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Proofs of Lemma 1, 2 are similar to Lemma 3.9 in [SW] and the corresponding Lemmas
in [GQW]. Lemma 4 can be proved using Cauchy’s theorem and the argument in [SW]
(also see [GQW]). ' :

‘We only provide a proof of Lemma 3.

Proof of Lemma 3. We first change integral variable z — x. Owing to Lemma 2, what
we need to prove is :

Jim a7 (1) fR F()(Ma(e) — Mlx))dx = 0,
where F(x) = f(m).n(-:z:)w/——l T V(=P

In doing so we use the formula for M;(z). Changing variable in the integral expression
of H*(z), we have

7o) = (O [l explaemaly exp(— 2 )y

Then Mi(z) — My(x) can be expressed as a sum of certain differentials and indefinite
integrals of the mentioned type of the following integral:

(g "/n ei<x,\/iy>(CXP(ZF\/Z(Boly|) —1)exp(— Iyl I gy,

Since on the surface < the zy coordinate is bounded, the last integrals with respect to
different t’s, their differentials and indefinite integrals of the mentioned type all tend to 0
as t — 0. Using the Lebesgue dominated theorem, we conclude the desired relation.

In completing the proof we use Hélder’s inequality to the left hand side, before taking
the Hmit ¢ — 0, of the equality in Lemma 4, and use the boundedness assumption on ms.
Multiplying a;*(¢) to both sides of the obtained inequality, taking the limit ¢ — 0 and
using Lemma 4 and 3 to the two ends, respectively, we conclude the desired boundedness

for Ms.

Corollary. Let I' be a 2w-periodic Lipschitz surface, N its Lipschitz constant, and w =
arctan V. Then for any function b € H®(S,(C™)),¥ > u > w, M, is extensible to a
bounded operator on L?(I'),1 < p < oo.
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