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sp(f * ¢) C sp(p). Finally, suppose A € R\ supp f. By iemma 2.1, with w = 1, there

exists g € L'(R) such that § = 0 on a neighbourhood of supp fand G(A) =1. As 5f =0,

so f * g =0 and therefore g € I(f * ¢). But §(}) # 0 s0 A & sp(f * o).

(b) If ¢ = 0 then I(p) = L(R) and sp(p) = §. Conversely, if sp(p) = 0 then f* =0 for
all fe IM(R). Ifp=1, f = gives 3> =0 and hence ¢ = 0. If 1 < p < oo then f*xp =0
for all f € C.(R), the space of continuous functions on R with compact support. Since
C.(R) is dense in LI(R), where 1/p+ 1/¢g = 1, and the mapping f — f * ¢ is continuous
from L4(R) to Co(R), we conclude f* ¢ = 0 for all f € L4(R). So [=_ f(z —t)p(t)dt = 0
for all z € R and f € LY(R). Taking z = 0 and applying the Hahn-Banach theorem we

conclude that ¢ = 0.

Let S(R) be the Schwartz space of rapidly decreasing infinitely differentiable complex-
valued functions on R. Let S'(R) be the dual space of tempered distributions. If ¢ €
LP(R), then Ty(f) = fi f(t)p(t)dt for f € S(R), defines a distribution T, € S'(R). So

T(P(g) = T,(g) for g € S(R), defines the Fourier transform fﬁp of T,. (See [17, p.146-152]).

o~

Proposition 2.3. Let ¢ € LP(R) where 1 < p < co. Then sp(¢) = supp T,.

The proof is essentially the same as for [2, proposition 4.1]

§3. Indefinite integrals. Let C,(R) and Cys(R) denote respectively the spaces of uni-
formly continuous and uniformly continuous bounded functions on R. To study indefinite
integrals, we use the weight

(3.1) w(z) =1+ |z|, z € R.

It is readily seen that w is a symmetric weight function satisfying condition (2.4).
Proposition 3.1. If ¢ € LP(R) where 1 < p < oo and w is given by (3.1), then Py €
C.(R)N LL(R). Moreover,

(3.2) sp(p) C spw(Pyp) C sp(p) U {0}.
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Proof. If p = 1, it is well-known that Py is absolutely continuous and hence uniformly
continuous. For arbitrary p, and z,h € R, |Py(z + h) — Pp(z)| = | f(;h elz +t)dt] <
[[1=2/7 |, showing that Py € Cu(R). Moreover, [Po(a)| = | [7 ¢(8) dt] < o "/7[lp]l,
showing that Py € L (R). For p = o0, (3.2) is given in [2, proposition 4.4]. The proof of

(8.2) for other p is essentially the same.
Proposition 3.2. If ¢ € L?(R) where 1 < p < oo and 0 & sp(p), then Py € Cyup(R).

Proof. Since 0 & sp(y) there exists a neighbourhood V' = [—§, §] such that sp,(¢)NV = 0.
Let w(z) = 1 + |2|. By lemma 2.1 there is a function h € LL(R) such that A =1 for [A| <
§/4 and h = 0 for |A| > §/3. By proposition 2.2, h * ¢ = 0. Similarly, by [2, proposition
3.12] and (3.2) spw(h * Pp) C supp AN spy(Pp) C {0}. Since XB2EL) — p 4 = 0 for all
z € R, we conclude that h * Pp=c, a constant. If = Py — ¢ then 0 € spy(n). Indeed,
hsn=h%*Pp—hxc=c—c=0. Thus h € I,(n) and A(0) = 1, showing 0 ¢ sp.(7). By
proposition 3.1, n € Cy(R) and so by [2, theorem 9.5, 77 is bounded and so is Pyp. This

proves that Py € Cyup(R).
Proposition 3.3. If ¢ € L?(R)N Cy(R) where 1 < p < o0, then ¢ € Co(R).

Proof. Assume on the contrary that lim sup,_, |p(¢)] > 3¢ > 0. Choose a sequence
{t»} C R such that t,41 > 2+, and |p(t,)| > 2¢ for all n € N. Since ¢ is uniformly
continuous, there exists 0 < § < 1 such that |¢(t)| > ¢ whenever |t, —t| < § for some

n € N. Hence [7_|o(t)|P dt > limn—,c0 2ncP6 = 0o, a contradiction.

Theorem 3.4. If ¢ € LP(R) where 1 < p < oo and 0 ¢ sp(p), then a + Pp €

L?(R) for some a € C. If moreover p < oo then ¢ is improperly integrable and a =

- hm]T|—>oo foT (,D(t) di.

Proof. For p = co the result is contained in proposition 3.2. So assume 1 < p < co. Let
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an(z) = Pp(z+h)— Po(z) = [} p(a+1)dt = x—1 *p(z), where x_» is the characteristic
function of the interval [-h,0] if b > 0, [0,-h] if b < 0. As each a; € LP(R), we may
define the function a(h) = ||an|lp, b € R. It is easy to verify that a is a continuous
function on R satisfying the property a(h; + hs) < a(hi) + a(hy) for all hy,hy € R.
Therefore w(h) = 1+ a(h)+ a(—h), h € R defines a symmetric weight function satisfying
the Beurling condition (2.4). .Choos;a § > 0 such that [—4,6] N sp(¢) = 0. By lemma 2.1,
there exists f € LL(R) such that f(A) = 1 for |A| < 6/4 and f(}) = 0 for |A| > 6§/3.
By proposition 3.2, Py € Cus(R) and so f * Py is defined and also belongs to Cyus(R).

Moreover, =fxp=0,s0 f*xPp=—awherea € C.

e

Next consider a + Pp(z) = [ [Pp(z) — Po(z — t)]f(t)dt = — [ a_y(z)f(t)dt.
We have |la_i|l, = a(-t) < w(t) and since f € L1 (R), w|f| € L*(R). The function
t = (1) = a_f(t) : R — LP(R) is weakly measurable and its range is separable, as
1 < p < oo. Hence 9 is strongly measurable ([17, p.131]). As the function ¢t — |[9(t)||,
is integrable, Bochner’s theorem [17, p.133] yields that 1 is Lebesgue-Bochner integrable
and its integral is an element of L?(R). So a + Py € LP(R). Finally, by proposition 3.3,

a+ Py € LP(R)N Cyup(R) C Co(R). Hence lim|p|co fOT p(t)dt = —a.

Corollary 3.5. Let ¢ € LP(R). Then f x Py € LP(R)+ C for each f € L*(R) with
0 & supp f = sp(f).

Proof. By theorem 3.4 the function K f defined by K f(z) = f_zw f(t) dt, belongs to L*(R).
By [9, corollary 20.14], we conclude ¢ * Kf € LP(R). Since (f * Pyp) = (K f * ¢)', there

exists a € C such that fx Pp=a+ Kfxp € L?(R)+ C.

Remark 3.6. Let X be a Banach space and L'(R,X) the space of Lebesgue-Bochner
integrable X -valued functions on R. Define LP(R, X)) similarly for 1 < p < co. Then sp(yp)

for ¢ € LP(X,R) is again defined by (2.10) and (2.11). Theorem 3.4 remains true in this
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more general setting.

§4. Derivatives. In this section we briefly consider derivatives in place of indefinite

integrals.

Theorem 4.1. Let ¢ € L*(R). If ¢' € L(R) then ' is improperly integrable, and if

@' € Cup(R) then ¢’ € Co(R).

Proof. Of course p(z) = ¢(0) + f; pl(t)dt. If ¢' € L®(R) then ¢ € Cup(R) and by
proposition 3.3, ¢ € Co(R). Hence lim|;|o0 fy ¢'(t)dt = —(0). If @' € Cus(R), then
1/n

nlp(z +1/n) —p(z)] =n [;'" ¢'(t + ) dt = ¢'(z + 0/n) for some 6 = f(z,n), 0 < < 1.

Hence lim|z| o |¢'(2)] = 0.

Remark 4.2. It can happen that ¢ € L*(R) and ¢' € Cyu(R) yet o' ¢ LYR). For
example, let p(z) = 5 >, n[(z —n)? — 1/n|?gn(z), where g, is the characteristic function
of the interval I, = [n — 1/n'/? n + 1/n'/?]. Then ¢,¢' € Co(R) with ¢ € L*(R) and

o' ¢ L*(R)

§5. Application to a differential equation. Consider the following differential
equation.

(5.1) u'(z) + Au(z) = ¢(z),z € R.
Given X € C and ¢ € L?(R) where 1 < p < oo, we seek solutions v € LP(R). The general
solution of (5.1) is |

(52) u(z) = e *[c+ [i eMo(t) dt],’
where c is a constant. When Re(A)‘ # 0.it is easy to see that (5.1) has a unique solution
u € LP(R) given by

(5.3) u(z) = J7_ e 2=0p(2) dt = g5 * p(a) if Re(X) > 0,

(5.4) w(z) = — [T e XEp(t) dt = hy * p(z) if Re()) < 0.
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Here, ga(z) = e **x4(z) and ha(z) = —e™**(1 — x4(z)) where x4 is the characteristic

function of the interval [0, 00[. The case Re()) = 0 is more delicate.

Theorem 5.1. Suppose Re(A) =0, ¢ € LP(R) and 1) ¢ sp(p). If 1 < p < oo then (5.1)
has a unique solution w € LP(R) given by
(5.5) u(z) = lmpoe [*7 e~ XD (1) dt.

If p = oo then (5.1) has infinitely many solutions u € L*=(R) given by (5.2).

Proof. Let 9(z) = e**¢(z) and v(z) = e**u(z). Then u is a solution in LP(R) of (5.1) if
and only if v is a solution in L?(R) of

(5.6) v'(z) = ¥(z), z € R.
Further, sp(¢) = —iX + sp(p),.s0 0 & sp(¢). f 1 < p < oo, then by theorem 3.4, the
equation (5.6) has a unique solution v € L?(R) given by v(z) = lmzco [~ %(t) di. If
p = 00, the same theorem shows v(z) = ¢+ [y 1(t) dt defines a bounded solution of (5.6)

for each constant c.

Remark 5.2. If ¢ € LP(R) where 1 < p < oo then sp(y) C R. Hence if Re(A) # 0,
then i) ¢ sp(¢). On the other hand if Re(A) = 0 and i) € sp(y) then (5.1) may have no
solution u € LP(R). For example, if A = 0 and ¢ is a non-zero constant, then (5.1) has no
solution w € L*™°(R). Again, if A = 0 and ¢ is defined by (1.2), then (5.1) has no solution

u € L'(R).
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