
Chapter4

Basic Dense Matrix Operations

The following routines are described in the following pages:

Catch errors
Error handlers and extensions
Error handling style
Copy objects
Input object from file
Output to file
General input/output
Deallocate (destroy) objects
Create and initialise objects
Extract column/row from matrix
Initialisation routines
Input object from stdin
Inner product
Operations on integer vectors
Resize data structures
Machine epsilon
Matrix addition and multiplication
Memory allocation information
Static workspace control functions
Matrix transposes, adjoints and multiplication
Matrix norms
Matrix-vector multiplication

Continued ...

49

51
53
57
59
62
65
67
68
70
72
73
62
75
76
77
80
81
83
88
93
94
96

50 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

Output object to stdout
Permutation identity, multiplication and inverse
Permute columns/rows & permute vectors
Set column/row of matrix
Scalar-vector multiplication/addition
Componentwise operations
Linear combinations of arrays and lists
VectQJ:-~'norffis ~ ,~

Operations on complex numbers
Core low level routines

To use these routines use the include statement
.

#include "matrix.h"

To use the complex variants use the include statement

#include "zmatrix.h"

65
98
99

101'
102
104
107

'109.•
111
113

NAME

catch, catchall, catch_FPE, tracecatch-catcherrors

SYNOPSIS

#include "matrix.h"
catch(int err_num, normal_code_to_execute,

code_to_execute_if_error)
catchall(normal_code_to_execute,

code_to_exectue_if_error)
tracecatch(normal_code_to_execute, char *fn_name)
catch_FPE()

DESCRIPTION

51

The catch () macro provides a way of interposing your own error-handling
routines and code in the usual error-handling procedures. The catch () macro works
like this: The global variable restart (of type jmp_buf) is saved. Then the code
normal_code_to_execute is executed. If an error with error number err_num
is raised, then code_to_execute_if_error is executed. If an error with another
error number is raised, an error will be raised with the same error number as the original
error, but win appear to have come from the catch () macro. If no error is raised
then the macro will exit and restart is reset to its old values.

The catchall () macro works just like the catch () macro except that
code_to_execute_if_error is executed if any error is raised.

The tracecatch () macro is really a specialised version of the catchall ()
macro that sets the error-handling flag to print out the underlying error when it is raised.

In every case the old error handling status will be restored on exiting the macro.

The routine catch_FPE () sets up a signal handler so that if a SIGFPE signal
is raised, it is caught and error (} is called as appropriate. The error raised by
error () is an E_SIGNAL en-or.

EXAMPLE

main()
{

MAT *A;
PERM *pivot;
VEC *x, *b;

tracecatch(
LUfactor(A,pivot);
LUsolve(A,pivot,b,x);
, "main");

52 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

would result in the error messages

"lufactor.c", line 28: NULL objects passed in function
LUfactor()

"junk.c", line 20: NULL objects passed in function main()
Sorry, exiting program

being printed to stdout if one ofAorpivot orb were NULL. These messages would
also be printed out to stderr if stdout is not a terminal.

On the other hand,

catch(E_NULL,
LUfactor(A,pi);
LUsolve(A,pi,b,x);

, printf("Ooops, found a NULL object\n"));

simply produces the message Ooops, found a NULL object in this case.

However, if another error occurs (say, b is the wrong size) then LUsol ve () raises
an e_SIZES error, and

"junk.c", line 22: sizes of objects don't match in
function catch ()

Sorry, exiting program

is printed out.

SEE ALSO

signal (), error (), set_err_flag (), ERREXIT () etc.

BUGS

If a different error to the one caught in catch () is raised, then the file and line
numbers of the original error are lost.

In an if-then-else statement, tracecatch () needs to be enclosed by braces
({ ... }).

SOURCE FILE: matrix.h

53

NAME
error, set_err_flag, ev_err, err_list_attach,
err_is_list_attached, err_list_free, warning- raise errors and
warnings

SYNOPSIS

#include "matrix.h"
int error(int err_num, char *func_name)
int ev_err(char *file, int err_num, int line_num,

char *fn_name, int list_num)
int set_err_flag(int new_flag)
int err_list_attach(int list_num, int list_len,

char **err_ptr, int warn)
int err_list_free(int list_num)
int err_is_list_attached(int list_num)
int warning(int warn_num, char *func_name)

DESCRIPTION

This is where errors are flagged in the system. The call
error (err_num, func_name) is in fact a macro which expands to

ev_err(__ FILE __ ,err_num, __ LINE __ ,func_name,O)

This call does not return.

Warnings are raised by warning (warn_num, func_name) which are expands
to

ev_err(__ FILE __ ,warn_num, __ LINE __ ,func_name,l)

This call returns zero.

The call to ev _err () prints out a message to stderr indicating that an error
has occurred, and where in which function it occurred, and the list of error messages
to use (0 is the default). For example, it could look like:

"testl.c", line 79: sizes of objects donut match in
function f ()

which indicates that an error was flagged in file "testl. c" at line 79, function "f"

where the sizes of two objects (vectors in this case) were incompatible.

Once this information is printed out, control is passed to the the address saved in the
buffer called restart by the last associated call to setjmp. The most convenient
way of setting up restart is to use a ••• catch .•. () macro or by an ERREXIT ()
or ERRABORT () macro. If restart has not been set then the program exits.

54 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

If you wish to do something particular if a certain error occurs, then you could
include a code fragment into main () such as the following:

if ((code=setjmp(restart)) != 0)
{

if (code = E_MEM } /* memory error, say */
/* something particular */
{ }

else
exit(O);

}

else
/* make sure that error handler does jump */
set_err_flag(EF_JUMP);

The list of standard error numbers is given below:

E_UNKNOWN
E_SIZES
E_BOUNDS
E_MEM
E_SING
E_POSDEF
E_FORMAT
E_INPUT
E_NULL
E_SQUARE
E_RANGE
E_INSITU2
E_INSITU
E_ITER
E_CONV
E_START
E_SIGNAL
E_INTERN
E_EOF
E_SHARED_VECS
E_NEG
E_OVERWRITE

0 /* unknown error (unused) */
1 /* incompatible sizes */
2 /* index out of bounds */
3 /* memory (de)allocation error */
4 /* singular matrix */
5 /* matrix not positive definite */
6 /* incorrect format input */
7 /* bad input file/device */
8 /* NULL object passed */
9 /* matrix not square */

10 /* object out of range */
11 /* only in-situ for square matrices */
12 /* can't do operation in-situ */
13 /* too many iterations */
14 /* convergence criterion failed */
15 /* bad starting value */
16 /* floating exception */
17 /* some internal error */
18 /* unexpected end~of-file */
19 /* cannot release shared vectors */
20 /* negative argument */
21 /* cannot overwrite object */

The set_err_flag () routine sets a flag which controls the behaviour of the
error handling routine. The old value of this flag is returned, so that it can be restored
if necessary.

The list of values of this flag are given below:

55

EF_EXIT 0 I* exit on error default *I
EF_ABORT 1 I* abort on error dump core *I
EF_JUMP 2 I* do longjmp () see above code *I
EF_SILENT 3 I* do not report error, but do longjmp() *I

If there is a just a warning, then the default behaviour is to print out a message to
stdout, and possibly stderr; the only value of the flag which has any effect is
EF _SILENT. This suppresses the printing.

The set of error messages, and the set of errors, can be expanded on demand
by the user by means of err_list_attach(list_num, list_len, err_ptr,
warn). The list number list_num should be greater than one (as numbers zero and
one are taken by the standard system). The parameter list_len is the number of
errors and error messages. The parameter err__ptr is an array of list_len strings.
The parameter warn is TRUE or FALSE depending on whether this class of "errors"
should be regarded as being just warnings, or whether they are (potentially) fatal. Then
when an "error" should be raised, call

ev_err(__ FILE __ ,err_num, __ LINE __ ,func_name,list_num);

It may well be worthwhile to write a macro such as:

#define my_error(my_err_num,func_name) \
ev_err(__ FILE __ ,err_num, __ LINE __ ,func_name,list_num)

If when originally set, the warn parameter was TRUE, then these calls behave sim
ilarly to warning (), and if it was FALSE, then these calls behave similarly to
error () . These errors and exceptions are controlled using catch () , catchall ()
and tracecatch () (if warn was FALSE), just as for error () calls.

The call err _list_free (list_num) unattaches the error list numbered
list_num, and allows it to be re-used.

The call err_is_list_attached (list_num) returns TRUE if error list
list_num is attached, and FALSE otherwise. This can be used to find the next
available free list

EXAMPLE

Use of error () and warning () :

if
if

! A)

A->m ! = A->n)
error(E_NULL, "my_function");
error(E_SQUARE,"my_function");

if i < 0 I I i >= A->m error (E_BOUNDS, "my_function");
I* this should never happen *I
if (panic && something_really_bad)

error (E_INTERN, "my _function") ;
/* issue a warning -- can still continue */
warning(WARN_UNKNOWN,"my_function"};

56 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

Use of err_list_attach():

char *my_list[] = { "short circuit", "open circuit" };
int my_list_num = 0;

main()
{

}

for (my_list_num = 0; ; my_list_num++)
if (! err_is_list_attached(my_list_num)

break;
err_list_attach(my_list_num,2,my_list,FALSE);

tracecatch(circuit_simulator(...•),"main");

err_list_free(my_list_num);

void circuit_simulator(....)
{

}

/* open circuit error */
ev_err(__ FILE __ ,l, __ LINE __ ,

"circuit_simulator",my_list_num);

SEE ALSO

ERREXIT (), ERRABORT (), setjmp () and longjmp ().

BUGS

Not many routines use tracecatch (), so that the trace is far from complete.
Debuggers are needed in this case, if only to obtain a backtrace.

SOURCE FILE: err.c

NAME

ERREXIT, ERRABORT, ON_ERROR - what to do on error

SYNOPSIS

#include "matrix.h"
ERREXIT();

ERRABORT{);

ON_ERROR();

DESCRIPTION

57

If ERREXIT (} is called, then the program exits once the error occurs, and the
error message is printed. This is the default.

If ERRABORT () is called, then the program aborts once the error occurs, and the
error message is printed. Aborting in Unix systems means that a core file is dumped
and can be analysed, for example, by (symbolic) debuggers. Behaviour on non-Unix
systems is undefined.

If ON_ ERROR () is called, the current place is set as the default return point if an
error is raised, though this can be modified by the catch () macro. The ON_ ERROR ()

call can be put at the beginning of a main program so that control always returns to the
start. One way of using it is as follows:

main()
{

}

ON_ERROR();

printf("At start of program; restarts on error\n");
/* initialisation stuff here */

I* real work here */

This is a slightly dangerous way of doing things, but may be useful for implementing
matrix calculator type programs.

Other, more sophisticated, things can be done with error handlers and error han
dling, though the topic is too advanced to be treated in detail here.

SEE ALSO

error () and ev _err ().

BUGS

With all of these routines, care must be taken not to use them inside called functions,
unless the calling function immediately re-sets the restart buffer after the called

58 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

function returns. Otherwise the restart buffer will reference a point on the stack
which will be overwritten by subsequent calculations and function calls. This is a
problem inherent in the use of setjmp {) and longjmp {). The only way around
this problem is through the implementation of co-routines.

With ON_ERROR {) , infinite loops can occur very easily.

SOURCE FILE: matrix.h

NAME
bd_copy, i v _copy, px_copy, m_copy, v _copy, zm_copy,
zv _copy, m_move, v ..move, zm_move, zv _move - copy objects

SYNOPSIS

#include "matrix.h"
BAND *bd_copy(BAND *in, BAND *out)
IVEC * i v _copy (IVEC *in, IVEC *out)
MAT *m_copy (MAT *in, MAT *out)
MAT *_m_copy(MAT *in, YJAT *out, int iO, int jO)
PERM *px_copy(PERM *' l.ll,
VEC *v_copy (VEC *in,
VEC *_v_copy(VEC *in,
MAT *m_move (MAT *in,

MAT *out,
VEC *v_move (VEC *in,

VEC *out,
VEC *mv_move(MAT *in,

VEC *out,
M.l\'I' *vm_move(VEC *in,

MAT ~'out,

#include "zmatrix.h"
ZMAT *zm_copy{ZJliiAT *

PERM *out)
VEC *out)
VEC *out, int iO)
int iO, int j 0' int mO, int
int il, int j 1)

int iO, int dimO,
int i1)
int iO, int j 0' int mO, int
int il)
int iO,
int il, int j 1, int ml, int

ZMA.T *out)
ZMJ!~T *_zm_copy(ZY.IAT *in, ZMAT *out, int iO, int jO)

ZVEC '~<zv_copy(ZVEC * ZVEC *out)
ZVEC * _zv _copy (ZVEC '~in, ZVEC '~out)

59

nO,

nO,

nl)

ZMAT *zm_move (Zl!..l.\.T
ZifJll.T

ZVEC *zv_move (ZVEC
ZVEC

ZVEC *zmv_move{Z~1AT

ZVEC
ZMAT *zvm_move(ZVEC

ZMAT

*in, ~ ' ~ l.nc.. iO int j 0' int mO, int nO,
*out, int il, int j 1)

*in, int iO, int dimO,
*out, int il)

*in, int iO, int j 0 f int mO, int nO,
*ou·t, int il)
*in, int iO,
*out, int il, int jl, int ml, int nl)

DESCRIPTION

All theroutinesbd_copy(), iv_copy(), m_copy(}, px_copy(), v_copy(),
zm_copy {) and zv _copy () copy all of the data from one data structure to another,
creating a new object if necessary (i.e. a NULL object is passed or out is not suffi
ciently big), by means of a call to bd_get () , i v _get () , m_get () , px_get (} or
v _get () etc. as appropriate.

60 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

Form_ copy(), v_copy(), bd_copy(), iv_copy(), zm_copy(), and
zv _copy () if in is smaller than the object ou·t, then it is copied into a region in
out of the same size. If the sizes of the permutations differ in px_copy() then a
new permutation is created and returned.

The "raw" copy routines are _m_copy (in, out, iO, j 0) and
_ v _copy (in, out , i 0 } . Here (i 0 , j 0) is the position where the (0, 0) element
of the in matrix is copied to; in is copied into a block of out. Similarly, for
_ v __ copy () , i 0 is the position of out where the zero element of in is copied to; in
is copied to a block of components of out.

The •• _copy() routines all work in situ with in == out, however, the
_ •• _copy () routines will only work in situ if i 0 (and also j 0 if this is also passed)
is (are) zero.

The complex routines zm_copy(out), zv_copy(in,out), and their
"raw" versions _zm_copy(in, out, iO, j 0) and _zv_copy(int, out, iO) op
erate entirely analogously to their real counterparts.

The routines •. _move () move blocks between matrices and vectors. A source
block in a matrix is identified by the matrix structure (in), the co-ordinates ((iO, j 0))
of the top left comer of the block and the number of rows (mO) and columns (nO) of
the block. The target block of a matrix is identified by out and the co-ordinates of the
top left comer of the block ((i 1, j 1)), except in the case of moving a block from a
vector to a matrix (vm_move ()). In that case the number of rows and columns of the
target need to be specified.

The source block of a vector is identified by the source vector (in), the starting
index of the block (iO) and the dimension of the block (dimO). The target block of a
vector is identified by the target vector out and the starting index (il).

The routine m_move (} moves blocks between matrices, v _move () moves blocks
between vectors, mv_m.ove () moves blocks from matrices to vectors (copying by
rows), and vm_move () moves blocks from vectors to matrices (again copying by
rows). The routine zm_move () moves blocks between complex matrices, zv _move ()
moves blocks between complex vectors, zmv _move () moves blocks from complex
matrices to complex vectors (copying by rows), and zvm_move () moves blocks from
complex vectors to complex matrices (again copying by rows).

EXAMPLE

I* copy x to y */
v_copy(x,y);
I* create a new vector z = x */
z = v_copy(x,VNULL);
I* copy A to the block in B with top-left corner (3,5) */
_m_copy(A,B,3,5);
I* an equivalent operation with m_move() */
m_move(A,O,O,A->m,A->n, B,3,5);

I* copy a matrix into a block in a vector ... *I
mv_move(A,O,O,A->m,A->n, y,3);
I* ... and restore the matrix*/
vm_move(y,3,A->m*A->n, A,O,O,A->m,A->n);
I* construct a block diagonal matrix C = diag(A,B) *!
C = m_get(A->m+B->m,A->n+B->n);
m_move(A,O,O,A->m,A->n, C,O, 0);
m_move(B,O,O,B->m,B->n, C,A->m,A->n);

SEE ALSO

.. _get () routines

SOURCE FILE: copy.h, ivecop.c, zcopy.c, bdfactor.c

61

62 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
iv_finput, m_finput, px_finput, v_finput, z_finput,
zm_f input, zv _f input -input object from a file

SYNOPSIS

#include <stdio.h>
#include "matrix.h"
IVEC *iv_finput(FILE *fp, IVEC *iv)
iv = iv_finput(fp,VNULL);

MAT *m_finput(FILE *fp, MAT *A)
A= m_finput(fp,MNULL);

PERM *px_finput(FILE *fp, PERM *pi}
pi = px_finput(fp,PXNULL);

VEC *v_finput(FILE *fp, VEC *v)
v = v_finput(fp,VNULL);

complex z_finput(FILE *)

z = z_finput(fp);

ZMAT *zm_finput(FILE *fp, ZMAT *A)
A= zm_finput(fp,ZMNULL);

ZVEC *zv_finput(FILE *fp, ZVEC *v)
v = zv_finput(fp,ZVNULL);

DESCRIPTION

These functions read in objects from the specified file. These functions first deter
mine if fp is a file pointer for a "tty" (i.e. keyboard/terminal). There are also the macros
m_input(A),px_input(pi), v_input(x), zm_input(A), zv_input(x),
and which are equivalent to m_finput (stdin,A), px __ finput (stdin,pi),
v_finput (stdin,x), zm_finput (stdin,A), and zv_finput (stdin,x)
respectively. If so, then an interactive version of the input functions is called; if
not, then a "file" version of the input functions is called.

The interactive input prompts the user for input for the various entries of an object;
the file input simply reads input from the file (or pipe, or device etc.) and parses it as
necessary. For complex numbers, the format is different between interactive and file
input: interactive input has the format "x y" or just "x" for zero real part. File input of
complex numbers uses (x, y). For example, -3.2 + 5.1i is entered as -3.2 +5 .1

in interactive mode, and as (- 3 • 2, 5 • 1) in file mode.

63

Note that the format for file input is essentially the same as the output produced by
the •• _foutput () and •• _output () functions. This means that if the output is
sent to a file or to a pipe, then it can be read in again without modification. Note also
that for file input, that lines before the start of the data that begin with a "#" are treated
as comments and ignored. For example, this might be the contents of a file my. dat:

this is an example
of a matrix input
Matrix: 3 by 4
row 0: 0 1 -2
row 1:-2 0 1.5
row 2: 5 -4 0.5

this is an example
a vector input
Vector: dim: 4

-1

2
0

7 -1.372 3.4

this is an example
of a permutation input
Permutation: size: 4

0->1 1->3 2->0 3->2

this is a complex number
(3.765, -1.465324)
this is a complex matrix
ComplexMatrix: 3 by 4
row 0 : (1 , 0) (- 2 , 0) (3 , 0) (-1 , 0)
row 1 : (5 , 3) (- 2 , - 3) (1 , - 4) (2 , 1)
row 2 : (1 , 0) (2 • 5 , 0) (2 • 5 , - 3 • 5 6) (2 . 5 , 0)
#and this is a complex vector •..
ComplexVector: dim: 3

(-1.342235, -1.342) (2.3,-5}
1, 1)

Interactive input is read line by line. This means that only one data item can be
entered at a time. A user can also go backwards and forwards through a matrix or
vector by entering "b" or "f" instead of entering data. Entering invalid data (such as
hitting the return key) is not accepted; you must enter valid data before going on to the
next entry. When permutations are entered, the value given is checked to see if lies
within the acceptable range, and if that value had been given previously.

If the input routines are passed a NULL object, they create a new object of the size
determined by the input. Otherwise, for interactive input, the size of the object passed
must have the same size as the object being read, and the data is entered into the object

64 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

passed to the input routine. For file input, if the object passed to the input routine has
a different size to that read in, a new object is created and data entered in it, which is
then returned.

EXAMPLE

The above input file can be read in from stdin using:

complex z;
MAT *A;
VEC *b;
PERM *pi;
ZMAT *zA;
ZVEC *zv;

esueoo

A "" m_input(MNULL);
b = v_input(VNULL);
pi = px_input(PXNULL);
z = z_input();
zA = zm_input(ZMNULL);
zv -~ zv_input(ZVNULL);

If you know that a vector must have dimension m for interactive input, use: .

b = v_get (m);
v_input(b); /*use b's allocated memory*/

SEE ALSO

.. _output () entries, •• _input () entries

BUGS

Memory can be lost forever; objects should be resize'd.

On end-of-file, an "unexpected end-of-file" error (E_EOF) is raised.

Note that the test for whether the input is an interactive device is made by
i sat ty (f i leno (fp)) . This may not be portable to some systems.

Interactive complex input does not allow (x, y) format; nor does it allow entry of
the imaginary part without the real part.

SOURCE FILE: matrixio.c, zmatio.c

65

NAME
iv_foutput, m_foutput, px_foutput, v_foutput, z_foutput,
zm_foutput, zv_foutput, iv_dump, m_dump, px_dump, v_dump,
zm_dump, zv _dump - output to a file or stream

SYNOPSIS

#include "matrix.h"
void iv_foutput(FILE
void m_foutput(FILE
void px_foutput(FILE
void v_foutput(FILE

#include "zmatrix.h"
void :z_foutput(FILE
void zm_foutput(FILE
void zv_foutput(FILE

DESCRIPTION

*fp,
*fp,
*fp,
*fp,

*fp,
*fp,
*fp,

IVEC *v)
MAT *A)
PERM *pi)
VEC *v)

complex z)
ZMAT *A)
ZVEC *v)

These output is a representation of the respective objects to the file (or device, or
pipe etc.) designated by the file pointer fp. The format in which data is printed out is
meant to be both human and machine readable; that is, there is sufficient information
for people to understand what is printed out, and furthermore, the format can be read
in by the •• _finput () and •• _input () routines.

An example of the format for matrices is given in the entry for the •• _f input ()
routines.

Therearealsotheroutinesm_output (A) ,px_output (pi) andv_output (x)
which are equivalent to m_foutput (stdout,A), px_foutput (stdout,pi)
and v_foutput (stdout,x) respectively.

Note that the •• _output () routines are in fact just macros which translate into
calls of these •• _foutput () routines with "fp = stdin".

In addition there are a number of routines for dumping the data structures in their en
tiretyfordebuggingpurposes. These routines arem_dump (fp, A) ,px_dump (fp, px),
v_dump (fp, x), zm_dump (fp, zA) and zv_dump (fp, zv) where fpisaFILE *,

AisaMAT *,pxisaPERM *andxisaVEC *,zAisaZMAT *,andzvisaZVEC *.
These print out pointers (as hex numbers), the maximum values of various quantities
(such as max_ dim for a vector), as well as all the quantities normally printed out. The
output from these routines is not machine readable, and can be quite verbose.

EXAMPLE

/* output A to stdout */

66 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

m_output (A) ;
I* ••• or to file junk.out */

if t (fp = fopen("junk.out","w")) --NULL)
error(E_EOF,"my_function");

m_foutput(fp,A);
I* ••• but for debugging, you may need ••• */
m_dump(stdout,A);

SEE ALSO

•. _finput (), .• _input 0

SOURCE FILE: matrixio.c, zmatio.c

67

NAME

f input, input, £prompter, prompter -general input/output routines

SYNOPSIS

#include <stdio.h>
#include "matrix.h"
int finput(FILE *fp, char *prompt, char *fmt, void *var)
int input(char *prompt, char *fmt, void *var)
int fprompter(FILE *fp, char *prompt}
int prompter(char *prompt)

DESCRIPTION

The macros finput () and input () are for general input, allowing for com
ments as accepted by the •• _f input () routines. That is, if input is from a file, then
comments (text following a '#' until the end of the line) are skipped, and if input is
from a terminal, then the string prompt is printed to stderr. The input is read for
the file/stream fp by finput () and by stdin by input (). The fmt argument
is a string containing the scanf () format, and var is the argument expected by
scanf (} according to the format string fmt.

For example, to read in a file name of no more than 30 characters from stdin, use

char fname[31];

input("Input file name: ","%30s",fname);

The macros fprompter () and prompter () send the prompt string to stderr
if the input file/stream (fp in the case of fprompter (), stdin for prompter ())
is a terminal; otherwise any comments are skipped over.

SEE ALSO

scanf (), •• _finput ()

SOURCE FILE: matrix.h

68 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
IV _FREE, M_FREE, PX_FREE, V _FREE, ZM_FREE, ZV _FREE,
i v _free_ vars, m_f ree_ vars, px_f ree_ vars, v _free_ vars,
zm_f ree_ vars, zv _free_ vars - destroy objects and free up memory

SYNOPSIS

#include "matrix.h"
void IV_FREE(IVEC *iv)
void M_FREE (MAT *A)
void PX_FREE(PERM *pi)
void V_FREE (VEC *v)
int iv_free_vars(IVEC
int m_free_vars(MAT
int px_free_vars(PERM
int v_free_vars(VEC

#include "zmatrix.h"
void ZM_FREE(ZMAT *A)
void ZV_FREE(ZVEC *v)
int
int

zm_free_vars(ZMAT
zv_free_vars(ZVEC

DESCRIPTION

**ivl, IVEC **iv2,
**Al, MAT **A2,
**pil, PERM **pi2,
**vl, VEC **v2,

**Al, ZMAT **A2,
**vl, ZVEC **v2,

• • • I

• • • I

• • • I

• • • I

• • • I

• • • I

NULL)
NULL)
NULL)
NULL)

NULL)
NULL)

The •• _FREE () routines are in fact all macros which result in calls to thje
corresponding •• _free () function, so that IV _FREE (i v) calls i v _free (i v) .
The effect of calling •• _free () is to release all the memory associated with the
object passed. The effect of the macros •• _FREE (object) is to firstly release all
the memory associated with the object passed, and to then set object to have the
value NULL. The reason for using macros is to avoid the "dangling pointer" problem.

The problems of dangling pointers cannot be entirely overcome within a conven
tional language, such as 'C', as the following code illustra~s;

VEC *x, *y;

x = v_get(lO);
Y = x;
V_FREE(x);

/* y and x now point to the same place */
/* x is now VNULL */

/* y now "dangles" -- using y can be dangerous */
y->ve[9] = l.O; /* overwriting malloc area! */
V_FREE(y); /*program will probably crash here! */

The •• _free_ vars () functions free a NULL-terminated list of pointers to
variables all of the same type. Calling

69

•• _free_vars(&xl,&x2, ••• ,&xN,NULL)

is equivalent to

•• _free (xl); xl = NULL;

•• _free (x2); x2 :::: NULL;

c • o a e •

•• _free (xN); xN ::: NULL;

The returned value of the •• _free_ vars () routines is the number of objects freed.

SEE ALSO

.. _get () routines

BUGS

Dangling pointer problem is neither entirely fixed, nor is it fixable.

SOURCE FILE: memory.c, zmemory.c

70 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
bd_get, i v _get, :m__get, px_get, v _get, zm_get, zv _get,
i v _get_ vars, m_get_ vars, px_get_ vars, v _get_ vars,
zm_get.:.vars, zv_get_vars- create and initialise objects

SYNOPSIS

#include "matrix.h"
BAND *bd_get(int lb, int ub, int n)
IVEC *iv_get(unsigned dim)
MAT
PERM
VEC
int

* m_get(unsigned m, unsigned n)
*px_get(unsigned size)
* v_get(unsigned dim)
*iv_get_vars(unsigned dim,

IVEC **xl, IVEC **x2, ••• , NULL)
int * m_get_vars(unsigned m, unsigned n,

MAT **Al, MAT **A2, ••• , NULL)
int *px_get_vars(unsigned size,

PERM **pxl, PERM **px2, ••• , NULL)
int * v_get_vars(unsigned dim,

VEC **xl, VEC **x2, ••• , NULL)

#include "zmatrix.h"
ZMAT *zm_get(unsigned m, unsigned n)
ZVEC *zv_get(unsigned dim)
int *zm_get_vars(unsigned m, unsigned n,

ZMAT **Al, ZMAT **A2, ••• , NULL)
int *zv_get_vars(unsigned dim,

ZVEC **xl, ZVEC **x2, • • • I NULL)

DESCRIPTION

All these routines create and initialise data structures for the associated type of
objects. Any extra memory needed is obtained from malloc () and its related routines.

Also note that zero relative indexing ·is used; that is, the vector x returned by
x = v_get (10) can have indexes x->ve [i] fori equal to 0, 1, 2, ... , 9, not 1,
2, ... , 9, 10. This also applies for both the rows and columns of a matrix.

The bd_get (lb, ub, n) routine creates a band matrix of size n x n with a
lower bandwidth of lb and an upper banwidth of ub. The i v _get (dim) routine
creates an integer vector of dimension dim. Its entries are initialised to be zero. The
m_get (m, n) routine creates a matrix of size m x n. That is, it has m rows and n
columns. The matrix elements are all initialised to being zero. The px_get (size)
routine creates and returns a permutation of size size. Its entries are initialised to
being those of an identity permutation. Consistent with C's array index conventions,
a permutation of the given size is a permutation on the set {0,1, ... ,size-1}. The

71

v _get (dim) routine creates and returns a vector of dimension dim. Its entries are
all initialised to zero.

The •• _get_ vars (} routines allocate and initialise a NULL-terminated list of
pointers to variables, all of the same type. All of the variables are initialised to objects
of the same size. Calling

•• _get_vars([m,]n,&xl,&x2, ••• ,&xN,NULL)

is equivalent to

xl = •• _get([m,]n);
x2 = •• _get { [m,] n);

xN = •• _get([m,]n);

(Note that "[m,]" indicates that ''m," might or might not be present, depending on
whether the data structure involved is a matrix or not.) The returned value of the
•• _get_ vars () routines is the number of objects created.

EXAMPLE

MAT *A;

I* allocate 10 x 15 matrix */

A= m_get(10,15);

SEE ALSO

.. _free(), .. _FREE(), and •• _resize 0.

BUGS

As dynamic memory allocation is used, and it is not possible to build garbage
collection into C, memory can be lost. It is the programmer's responsibility to free
allocated memory when it is no longer needed.

SOURCE FILE: memory.c, zmemory.c, bdfactor.c

72 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
get_col, get_row, zget_col, zget_row- extract columns or rows
from matrices

SYNOPSIS

#include "matrix.h"
VEC *get_col(MAT *A, int col_num, VEe *v)
VEC *get_row(MAT *A, int row_num, VEC *v)

#include "zmatrix.h"
ZVEC *zget_col(ZMAT *A, int col_num, ZVEC *v)
ZVEC *zget_row(ZMAT *A, int row_num, ZVEC *v)

DESCRIPTION

These put the designated column or row of the matrix A and puts it into the vector
v. If v is NULL or too small,· then a new vector object is created and returned by
get_col () and get_row () . Otherwise, v is filled with. th~ necessary data and
is then returned. If v is larger than necessary, then the additional entries of v are
unchanged.

The complex routines operate exactly analogously to the real routines.

EXAMPLE

MAT *A;
VEC *row, *col;
int row_num, col_num;

row= v_get(A->n);
col = v_get(A->m);
get_row(A, row_num, row);
get_col(A, col_num, col);

SEE ALSO

set_col (), set_row(), and zset_col (), zset_row().

SOURCE FILE: matop.c, zmatop.c

NAME
m..ident, m..ones, v_ones, m..rand, v_rand, m..zero, v_zero,
zm..rand, zv_rand, zm_zero, zv_zero, mrand, smrand,
mrandlist- initialisation routines

SYNOPSIS

#include "matrix.h"
MAT *m_ident(MAT *A)
MAT *m_ones(MAT *A)
VEC *v_ones(VEC *x)
MAT *m_rand(MAT *A)
VEC *v_rand(VEC *x)
MAT *m_zero(MAT *A)
VEC *v_zero(VEC *x)
Real mrand()
void smrand(int seed)
void mrandlist(Real a[],

#include "zmatrix.h"
ZMAT *zm_rand(ZMAT *A)
ZVEC
ZMAT
ZVEC

*zv_rand(ZVEC *x)
*zm_zero(ZMAT *A)
*zv_zero(ZVEC *x)

DESCRIPTION

int len)

The routine m_ident () sets the matrix A to be the identity matrix. That is, the
diagonal entries are set to 1, and the off-diagonal entries to 0.

The routines m_ones () , v _ones () fill A and x with ones.

The routines v _rand () , m_rand () and zv _rand () , zm_rand () fill A and
x with random entries. For real vectors or matrices the entries are between zero and
one as determined by the mrand () function. For complex vectors or matrices, the
entries have both real and imaginary parts between zero and one as determined by the
mrand () function.

The routines m_zero () , v _zero () and zin_zero () , zv _zero () fill A and x
with zeros.

These routines will raise an E_NULL error if A is NULL.

The routine mrand () returns a pseudo-random number in the range [0, 1) using an
algorithm based on Knuth's lagged Fibonacci method in Seminumerical Algorithms:
The Art of Computer Programming, vol. 2 §§3.2-3.3. The implementation is based on
that in Numerical Recipes inC, pp. 212-213, §7.1. Note that the seeds for mrand ()
are initialised using smrand () with a fixed seed. Thus mrand () will produce the

74 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

same pseudo-random sequence (unless smrand () is called) in different runs, different
programs, and but for differences in floating point systems, on different machines.

The routine smrand () allows the user to re-set the seed values based on a user
specified seed. Thus mrand () can produce a wide variety of reproducible pseudo
random numbers.

The routine mrandlist () fills an array with pseudo-random numbers using the
same algorithm as mrand () , but is somewhat faster for reasonably long vectors.

EXAMPLE

Let e = [1, 1, ... , lf.

MAT *A;
ZMAT *zA;
VEC *x;
ZVEC *zx;
PERM *pi;

.. • e e • •

m_zero(A);
m_ident (A) ;
m_ones (A);

I*

I*

A == zero matrix */
I* A == identity matrix */
A == e.eAT */

m_rand(A); I* A[i] [j] is random in interval [0,1) */
zm_rand(zA);/* zA[i] [j] is random in [0,1) x [0,1) */
v_zero(x); /* x ==zero vector*/
v_ones(x); /* x == e */
v_rand(x); /* x[i] is random in interval [0,1) */
zv_rand(zx);/* zx[i] is random in [0,1) x [0,1) */

BUGS

The routine m_ident () "works" even if A is not square.

There is also the observation of von Neumann, Various techniques used in connec
tion with random digits, National Bureau of Standards (1951), p. 36:

"Any one who considers arithmetical methods of producing random digits is, of
course, in a state of sin."

SOURCE FILE: init.c, matop.c, zmatop.c, zmemory.c,zvecop.c

NAME

in_prod, zin_prod- inner product

SYNOPSIS

#include "matrix.h"
double in_prod(VEC *x, VEC *y)

#include "zmatrix.h"
complex zin_prod(ZVEC *x, ZVEC *y)

DESCRIPTION

The inner product xT y = :Ei XiYi of x and y is returned by in _prod () . The
complex inner product xT y = :Ei XiYi of x andy is returned by zin_prod (). This
will fail if x or y is NULL. .

These are built on the "raw" inner product routines:

double _in_prod (VEC *x, VEC *y, int iO)
complex _zin_prod(ZVEC *x, ZVEC *y, int iO, int conj)

which compute the inner products ignoring the first i 0 entries. For the routine
_zin_prod() if the flag conj is Z_CONJ (or TRUE) then the entries in the x
vector are conjugated and :Ei~io XiYi is returned; otherwise if conj is Z_NOCONJ (or
FALSE) then :Ei~io XiYi is returned.

EXAMPLE

VEC *x, *y;
ZVEC *zx, *zy;
Real x_dot_y;
complex zx_do_zy;

x_dot_y = in_prod(x,y);
zx_dot_zy = zin_prod(zx,zy);

SEE ALSO

ip () , _zip_ () and the core routines.

BUGS

The accumulation is not guaranteed to be done in a higher precision than Real,
although the return type is double. To guarantee more than this, we would either
need an explicit extended precision long double type or force the accumulation
to be done in a single register. While this is in principle possible on IEEE standard
hardware, the routines to ensure this are not standard, even for IEEE arithmetic.

SOURCE FILE: vecop.c, zvecop.c

76 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

iv_add, iv_sub- Integer vector operations

SYNOPSIS

#include
IVEC
IVEC

"matrix.h"
*iv_add(IVEC *ivl,IVEC *iv2, IVEC *out)
*iv_sub(IVEC *ivl, IVEC *iv2, IVEC *out)

DESCRIPTION

The two arithmetic operations implemented for integer vectors are addition
(i v _add ()) and subtraction (i v _sub ()). In each of these routines, out is resized
to be of the correct size if it does not have the same dimension as i vl and i v2.

This dearth of operations is because it is envisaged that the main purpose for using
integer vectors is to hold indexes or to represent combinatorial objects.

EXAMPLE

IVEC *x, *y, *z;

X= co,..;

y ::: •.. ;

I* z = x+y, allocate z */
z = iv_add(x,y,IVNULL);
I* z = x-y, z already allocated */
iv_sub(x,y,z);

SEE ALSO

Vector operations v_ •.. () and iv_resize ().

SOURCE FILE: ivecop.c

NAME
bd_resize, iv_resize, m_resize, px_resize, v_resize,
zm_resize, zv_resize, iv_resize_vars, m_resize_vars,
px_resize_vars, v_resize_vars, zm_resize_vars,
zv_resize_vars- Resizing data structures

SYNOPSIS

#include "mat.ri:x:.h"
BAND *bd_resize(BAND *A,

int. new_lb, int new_ub, int new_n}
IVEC *iv_resize(IVEC *iv, int new_dim)
MAT *m_resize (MAT *A, int new_m, int new_n)
PERM *px_resize(PERM *p:x:, int new_size)
VEC *v_resize (VEC *:x:, int new_dim)
int *iv_resize_vars(unsigned new_dim,

IVEC **xl, IVEC **x2, ••• , NULL)
int *m_resize __ vars (unsigned new_m, unsigned new_n,

MAT **Al, MAT **A2, ••• , NULL)
int *px_resize_vars(unsigned new_size,

PERM **pxl, PERM **px2, ••• , NULL)
int *v_resize_vars (unsigned new_dim,

VEC **:x:l, VEC **:x:2, ••• , NULL)

#include "zmatrix.h"
ZMAT *zm_resize(ZMAT *A, int new_m, int new_n)
ZVEC *zv_resize(ZVEC *x, int new_dim)
int *zm_resize_vars(unsigned new_m, unsigned new_n,

ZMAT **Al, ZMAT **A2, ••• , NULL)
int *zv_resize_vars(unsigned new_dim,

ZVEC **xl, ZVEC **x2, NULL)

DESCRIPTION

77

Each of these routines sets the (apparent) size of data structure to be identical to
that obtained by using •. _get (new_ •.•). Thus the VEC *returned by
v_resize (x, new_dim) has x~>dimequal tonew_dim. The MAT *returned by
m_resize (A, new_m, new_n) is a new_m x new_n matrix.

The following rules hold for all of the above functions except forpx_resize ().
Whenever there is overlap between the object passed and the re-sized data structure, the
entries of the new data structure are identical, and elsewhere the entries are zero. So if
Aisa5 x 2matrixandnew_A = m_resize(A,2,5), thennew_A->me[l] [0]
is identical to the old A->me [1] [0]. However, new_A->me [1] [3] is zero.

For px_resize () the rules are somewhat different because permutations do not
remain permutations under such arbitrary operations. Instead, if the size is reduced,

18 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

then the returned permutation is an identity permutation. If size is increased, then
new_px->pe [i'l , == · i for i greater than or equal to the old· size.

Allocation or reallocation and copying of data structure entries is avoided if possible
(except, to some extent, in m_r~size ()). Thefe.ls a "high-water mark" field con
tained within each data structure; for the VEC and IVEC data structures it is max_dim,
which contains the actual amount of memory that has been allocated (at some tim:e)
for this data structure. Thus resizing does not deallocate memory! To actually free
up memory, use one of the •• _free () routines or the •• _FREE () macros.

You should not rely on the values of entries 'outside the apparent size of the data
structures but inside the maximum allocated area. These areas may be zeroed or
overwritten, especially by the m_resize () routine. ,

The •• _resize_ vars () routines resize a NULL-terminated list of pointers to
variables, all of the same type. The new sizes of the a)l variables in the list are the
same. Calling

•• _resize_vars ([m,] n, &xl, &x2, .:- •• , &xN, NULL)

is equivalent to

xl = •• _resize(xl, [m,]n);
x2 = •• _resize(x2, [m,]n);

xN = •• _resize(xN, [m,]n);

(Note that" [m, l" indicates that "m," might or might not be present, depending on
whether the data· structure involved is a matrix or not.) The .returned value of the
•• _resize_ vars () mutines is the number of objects resized.

EXAMPLE

I* an alternative to workspace arrays */
my_function(•••)

{

}

static VEC *x = VNOLL;

x = v_resize(x,new::_size)';
MEM~STAT::_REG(x,TYP~_VEC);

......
v_copy(• .;·., x);

BUGS

79

Note the above comment: resizing does not deallocate memory! To frt<e up
the actual memory allocated you will need to use the •• _FREE () macros or the
.. _free () function calls.

SEE ALSO

•• _get () routines; MEM_STAT_REG () .

SOURCE FILE: memory. c, zmemory. c, bdfactor. c and i vecop. c

80 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

· MACHEPS -machine epsilon

SYNOPSIS

#include "matrix.h"
Real macheps = MACHEPS;

DESCRIPTION

The quantity MACHEPS is a #define'd quantity which is the "machine epsilon"
or "unit roundoff" for a given machine. For more information on this concept, see, e.g.,
Introduction to Numerical Analysis by K. Atkinson, or Matrix Computations by G.
Golub and C. Van Loan. The value given is for the standard floating point type Real
only. Normally the standard floating point type is double, but in the installation this
can be changed to be float or long double. (See the chapter on installation.)

For ANSI C implementations, this is set to the value of the DBL_EPSILON or
FLT_EPSILON macro defined in <float. h>.

EXAMPLE

while (residual > lOO*MACHEPS

{ /* iterate */ }

BUGS

The value of MACHEPS has to be modified in the source whenever moving to
another machine if the floating point processing is different.

SOURCE FILE: machine.h

81

NAME
m_add, m...mlt, m_sub, sm...mlt, zm_add, zm._mlt, zm_sub,
zsm...ml t- matrix addition and multiplication

SYNOPSIS

#include "matrix.h"
MAT *m_add{MAT *A, MAT *B, MAT *C)
MAT *m_mlt(MAT *A, MAT *B, MAT *C)
MAT *m_sub(MAT *A, MAT *B, MAT *C)
MAT *sm_mlt(double s, MAT *A, MAT *OUT)

#include "zmatrix.h"
ZMAT *zm_add(ZMAT *A, ZMAT *B, ZMAT *C)
ZMAT *zm_mlt(ZMAT *A, ZMAT *B, ZMAT *C)
ZMAT *zm_sub(ZMAT *A, ZMAT *B, ZMAT *C)
ZMAT *zsm_mlt(complex s, ZMAT *A, ZMAT *OUT)

DESCRIPTION

The functions m_add () , zm_add () adds the matrices A and Band puts the result
in c. If c is NULL, or is too small to contain the sum of A and B, then the matrix is
resized to the correct size, which is then returned. Otherwise the matrix c is returned.

The functions, m_sub () , zm_sub () subtracts the matrix B from A and puts the
result in c. If c is NULL, or is too small to contain the sum of A and B, then the matrix
is resized to the correct size, which is then returned. Otherwise the matrix c is returned.
Similarly, m_ml t () multiplies the matrices A and B and puts the result in c. Again, if
c is NULL or too small, then a matrix of the correct size is created which is returned.

The routines sm_mlt (), zsm_mlt () above puts the results of multiplying the
matrix A by the scalar s in the matrix OUT. If, on entry, OUT is NULL, or is too small
to contain the results of this operation, then OUT is resized to have the correct size.
The result of the operation is returned. This operation may be performed in situ. That
is, you may use A == OUT.

The routines m_add () , m_sub () and sm_ml t () routines and their complex
counterparts can work in situ; that is, c need not be different to either A or B. However,
m_mlt () and zm_mlt () will raise an E_INSITU error if A == cor B == c.

These routines avoid thrashing on virtual memory machines.

EXAMPLE

MAT *A, *B, *C;
Real alpha;

C = m_add(AsB,MNULL); /* C = A+B */

82

m_sub(A,B,C);
sm_mlt(alpha,A,C);
m_mlt(A,B,C);

CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

I* c ::: A-B */
l* c = alpha.A */
I* c "' A.B */

SEE ALSO

v_add(},mv_mlt(),sv_mlt(),zv_add(),zmv_mlt(),zv_mlt{).

SOURCE FILE: matop.c, zmatop.c

NAME
mem_info, mem_info_on, mem_info_is_on, mem_info_bytes,
mem_info_numvar, mem_info_file, mem_attach_list,
mem_free_list, mem_bytes_list, mem_numvar_list,
mem_dump_list, mem_is_list_attached -Meschach dynamic memory
information

SYNOPSIS

#include "matrix.h"
void mem_info()
int mem_info_on(int true_or __ false)
int mem_info_is_on(void)
void mem_info_file(FILE *fp, int list_num)
void mem_dump_list(FILE *fp, int list_num)
long mem_info_bytes (int type_num, int list_num)
int mem_info_numvar(int type_num, int list_num)

83

int mem_attach_list(int list_num, int ntypes, char *names[],
int (*frees[])(), MEM_ARRAY info_sum[])

int mem_free_list(int list_num)
int mem_is_list_attached(int list_num)
void mem_bytes(int type_num, int old_size, int new_size)
void mem_bytes_list(int type_num, int old_size, int new_size,

int list_num)
void mem_numvar(int type_num, int diff_numvar)
void mem_numvar_list(int type_num, int diff_numvar,

int list_num)

DESCRIPTION

These routines allow the user to obtain information about the amount of memory
allocated for the Meschach data structures (VEC, BAND, MAT, PERM, IVEC, ITER,
SPMAT, SPROW, ZVECandZMAT). Thecallmem_info_on(TRUE); setsaftagwhich
directs the allocation and deallocation and resizing routines to store information about
the memory that is (de)allocated and resized. The call mem_info_on(FALSE);
turns the flag off.

The routine mem_info_is_on () returns the status of the memory information
flag.

To get a general picture of the state of the memory allocated by Meschach data
structures call mem_info_file (fp,list_num) which prints a summary of the
amount of memory used for the different types of data structures to the file or stream
fp. The 1 is t _num parameter indicates which list of types to use; use zero for the list
of standard Meschach data types. The printout for mem_info_file (stdout, 0),
or the equivalent macro mem_info () looks like this for one real and one complex
vector of dimension 10 allocated (with the full system installed on an RS/6000):

84 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

MEMORY INFORMATION (standard types):
type MAT 0 alloc. bytes 0 alloc. variables
type BAND ·0 alloc. bytes ·o alloc. variables
type PERM 0 alloc. bytes 0 alloc. variables
type VEC 92 alloc. bytes 1 alloc. variable
type IVEC 0 alloc. bytes 0 alloc. variables
type ITER 0 alloc. bytes 0 alloc. variables
type SPROW 0 alloc. bytes 0 alloc. variables
type SPMAT 0 alloc. bytes 0 alloc. variables
type ZVEC 204 alloc. bytes 1 alloc. variable
type ZMAT 0 alloc. bytes 0 alloc. variables
total: 296 alloc. bytes· 2 alloc. variables

(Note that this is for the system built with all of Meschach, including the sparse
part: ITER, SPMAT; and the complex part: ZVEC, ZMAT. The mem_info_ ••• ()
routines also work for partial installations of Meschach.) There is also the routine
.mem:....:dump_list () which provides a more complete printout, which is suitable for
debugging purposes.

To obtain information about the amount of memory allocated for objects of a par
ticular type, use mem_info_bytes () (with list_num equal to zero for a standard
Meschach structures). To find out the amount of memory allocated for ordinary vectors,
use

printf("Bytes iii VEC'S = %ld = %ld\n",
mem_info_bytes(TYPE_VEC,O));

The routine mem_info_numvar () returns the number of data structures that are
allocated for each type. Use 1 is t_num equal to zero for standard Meschach structures.

Each Meschach type. has an associated type macro TYPE_. • • which is a small
integer. The " ••• " is the ordinary name of the type, such as VEC, MAT etc. This is the
complete list of TYPE_. • • macros:

TYPE_MAT 0 I* real dense matrix *I
TYPE_BAND 1 I* real band matrix *I
TYPE_PERM 2 I* permutation *I
TYPE_VEC 3 I* real vector *I
TYPE_IVEC 4 I* integer vector *I
TYPE_ ITER 5 I* iteration structure *I
TYPE_SPROW 6 I* real sparse matrix row *I
TYPE_SPMAT 7 I* real sparse matrix *I
TYPE~ZVEC 8 I* complex vector *I
TYPE_ZMAT 9 I* complex dense matrix *I

This is how different types are distinguished within the mem_info_ ••• system.

85

Note that SPROW is an auxiliary type; when an SPROW (sparse row) is allocated as
part of a SPMAT (sparse matrix), then the memory allocation is entered under SPMAT;
only "stand-alone" SPROW's have their memory allocation entered under the typer
SPROW.

The routine mem_attach_list (} can be used to add new lists of types to
the Meschach system for both tracking memory usage, and also for registering static
workspace arrays with MEM_STAT_REG (} . The routine is passed a collection of
arrays: names is an array of strings being the names of the different types, frees is
an array of the •• _free (} routines which deallocate and destroy objects of the cor
responding types, info_sum is an array in which the memory allocation information
is stored. This array has the component type MEM_ARRAY which is defined as

typedef struct {
long bytes; /* # allocated bytes for each type */
int numvar; /* # allocated variables for each type */

} MEM_ARRAY;

This is defined in matrix. h.

The parameter ntypes is the number of types, which should also be the common
length of the arrays. The parameter 1 i st_num is the list number used to identify which
list of types should be used. The routine mem_attach_list (} returns the zero on
successful completion, and (-1) if there is an invalid parameter. An E_OVERWRITE
error will be raised if the specified list_num has already been used.

To track memory usage for any new types, the allocation, deallocation and resizing
routines for these types you should use mem_bytes_list (} and
mem_numvar _1 i st (} to inform the mem_inf o_ ••• (} system of the change in the
number of bytes allocated, and number of structures allocated, respectively, of an object
of a particular type (as specified by the type_num and list_num parameters). In
mem_bytes_list (}, the parameter old_size should contain the old size in bytes,
and new_size should contain the new size in bytes. Inmem_numvar_list (},the
parameter diff_numvar is the change in the number of allocated structures: + 1 for
allocating a new structure, and -1 for destroying a structure.

The routines mem_bytes (} and mem_numvar (} are just macros that call
mem_bytes_list (} and mem_numvar(} respectively, with list_num zero for
the standard Meschach structures.

The routine mem_attach_list (} should be used once at the beginning of a
program using these additional types.

Here is an example of how this might be used to extend Meschach with three types
for nodes, edges and graphs:

/* Example with three new types: NODE, EDGE and GRAPH */
#define MY_LIST 1
#define TYPE_NODE 0

86 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

#define TYPE_EDGE 1
#define TYPE_GRAPH 2
static char *my_names[] = { "NODE", "EDGE", "GRAPH" };
static int (*my_frees[]) = { n_free, e_free, gr_free };
static MEM_ARRAY my_tnums[3]; I* initialised to zeros */

main(.•.)
{

}

I* declarations */
mem_attach_list(MY_LIST,3,my_names,my_frees,my_tnums);

...... I* actual work */
mem_info_file(stdout,MY_LIST); /* list memory used*/

/* n_get -- get a node data structure;
NODE has type number 0 */

NODE *n_get(•.•)
{

}

NODE *n;

n = NEW(NODE);
if (n == NULL

error(E_MEM,"n_get"); /*can't allocate memory*/
mem_bytes_list(TYPE_NODE,O,sizeof(NODE),MY_LIST);
mem_numvar_list(TYPE_NODE,l,MY_LIST);

I* n_free -- deallocate node data structure */
int n_free(NODE *n)
{

}

if (n != NULL
{

}

free(n);
mem_res_elem_list(TYPE_NODE,sizeof(NODE),O,MY_LIST);
mem_numvar_list(TYPE_NODE,-l,MY_LIST);

return 0;

For more information see chapter 8.

BUGS

Memory used by the underlying memory (de)allocation system (malloc (),

87

calloc (), realloc (), sbrk () etc.) for headers are not included in the amounts
of allocated memory.

The numbers of vectors, matrices etc. currently allocated cannot be found by this
system.

SEE ALSO

.. _get (), •. _free (), •. _resize () routines; MEM_STAT_REG () and the
mem_stat_ ... () routines.

SOURCE FILE: meminfo.c, meminfo.h

88 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
MEM_STAT-REG, mem_stat_reg_list, menLstat_reg_vars,
mem...stat_mark,. menLstat_free, mem...stat_dump,
mem...stat_show_mark- Static workspace control routines

SYNOPSIS

·#include ."matrix.h"
int MEM_STAT_REG(void *var, int type) .
int mem_stat_reg_list(void **var, int type, int list_num)
int mem_stat_reg_vars(int list_num, int type,

void **var1, void **var2, ••• , NULL)
int mem_stat_mark(int mark)
int mem_stat_free(int mark)
void mem_stat_dump(FILE *fp)
int mem_stat_show_mark()

DESCRIPTION

Older versions ofMeschach (v.l.lb and previous) had a limitation in that it was es
sentially impossible to control the use of static workspace arrays used within Meschach
functions. This can lead to problems where too much memory is taken up by these
workspace arrays for memory intensive problems. The obvious alternative approach
is to deallocate workspace at the end of every function, which can be quite expensive
because of the time taken to deallocate and the reallocate the memory on every usage.

These functions provide a way of avoiding these problems, by giving users control
over the (selective) destruction of workspace vectors, matrices, etc.

The simplest way to use this to deallocate workspace arrays in a routine hairy1 (•••)
is as follows:

mem_stat_mark(1); /* ''group 1'' of workspace arrays */
for (i = 0; i < n; i++)

hairy1(.••); /*workspace registered as ''group 1'' */
mem_stat_free(1); /* deallocate ''group 1'' workspace */

The call mem_stat_mark (num) sets the current workspace group number. This
number must be a positive integer. Provided the appropriate workspace registration
routines are used in hairy1 (•••) (seelater), then the workspace arrays are registered
as being in the current workspace group as determined by mem_stat_mark () . If
mem_stat_mark () has not been called, then there is no current group number
and the variables are not registered. The call mem_stat_free (num) deallocates
all static workspace arrays allocated in workspace group num, and also onsets the
current workspace group. So, to continue registering static workspace variables,
mem_stat_mark(num),or
mem_stat_mark (new_num) should follow.

89

Keeping two groups of registered static workspace variables (one for hairyl ()
and another for hairy2 ()) can be done as follows:

for (i = 0; i < n; i++
{

mem_stat_mark(l);
hairyl(•••);
mem_stat_mark(2);
hairy2(•••);

}

mem_stat_free(2);
hairyl(•••);

I* don't want hairy2()'s workspace *I
I* keep hairyl()'s workspace *I

For the person writing routines to use workspace arrays, there are a number of rules
that must be followed if these routines are to be used.

e the workspace vari~bles must be static pointers to Meschach data structures.

• they must be initialised to be NULL vectors in the type declaration.

• they are allocated using a •• _resize() routine.

• they are allocated before registering.

• the pointer variable is passed to MEM_STAT_REG (), but
mem_stat_reg_vars () andmem_stat_reg_vars (} require the address
of the pointer to be passed.

The type parameter ofMEM_STAT_REG () should be a macro of the form TYPE_ •••
where the " ••• " is the name of the type used. An example of its use follows:

VEC *hairyl(x, y, out)
VEC *x, *y, *out;
{

}

static VEC *wkspace = VNULL;
int new_dim;

wkspace = v_resize{wkspace,new_dim);
MEM_STAT_REG(wkspace,TYPE_VEC);

mv_mlt(•••• ,wkspace); I* use of wkspace */

I* no need to deallocate wkspace */
return out;

90 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

MEM_STAT_REG() is a·macro which calls mem:.::_stat_reg_list () with
list_num set to zero.

The call mem_stat_dump (fp) prints out a representation of the registered
workspace variables onto the file or stream fp suitable for debugging purposes. It
is not expected that this would be needed by most users of Meschach.

The routine mem_stat_show_mark () returns the current workspace group, and
zero if no group is active.

A NULL terminated list of variables can be registered at once using ·
mem_stat_reg_vars(). Thecall

mem_stat_reg_vars(list_num,type_num,&xl,&x2, ••• ,&xN,NULL);

is equivalent to

mem_stat_reg_list(&xl,type_num,list_num);
mem_stat_reg_list(&x2,type_num,list_num);

mem_stat_reg_list(&xN,type_num,list_num);
' . . .

Note that xl, x2, ... , xN must be of the same type.

For non-Meschach data structures, you can use mem_stat_reg_list 0 in
conjunction with mem_attach_list (). For more information on the use of this
function see chapter 8.

SEE ALSO

mem_info_ ••• () routines.

BUGS

There is a static registration area for workspace variables, so there is a limit on the
number of variables that can be registered. The default limit is 509. If it is. too small,
an appropriate message will appear and information on how to change the limit will
follow.

Attempts to register a workspace array that is neither static or global will most
likely result in a crash when mem_stat_free () is called for the workspace group
containing that variable.

SOURCE FILE: memstat.c

NAME
m_load, m_save, v_save, d_save, zm_load, :Lsave, zm_save,
zv_save- MATLAB save/load to file

SYNOPSIS

#include "matlab.h"
MAT *m_load(FILE
MAT *in_save(FILE
VEC *v_save(FILE
double d_save(FILE

#include "matlab.h"
ZMAT *zm_load(FILE
ZMAT *zm_save(FILE
ZVEC *zv_save(FILE
complex z - save (FILE

DESCRIPTION

*fp,
*fp,
*fp,
*fp,

*fp,
*fp,
*fp,
*.fp,

char **name)
MAT *A, char **name)
VEC *x, char **name)
double d, char **name)

char **name)
ZMAT *A, char **name)
ZVEC *x, char **name)
complex z, char **name)

91

These routines read and write MATLAB™ load/save files. This enables results to
be transported between MATLAB and Meschach. The routine m_load () loads in a
matrix from file fp in MATLAB save format. The matrix read from the file is returned,
and name is set to point to the saved MATLAB variable name of the matrix. Both the
matrix returned and name have allocated memory as needed. An example of the use
of the routine to load a matrix A and a vector x is

MAT *A, *Xmat;
VEC *x;
FILE *fp;
char *namel, *name2;

if ({fp=fopen("fred.mat","r")) !=NULL)
{

}

A = m_load(fp,&namel);
Xmat = m_load(fp,&name2);
if Xmat->n != 1)
{ printf("Incorrect size matrix read in\n");

exit (0); }
x = v_get(Xmat->m);
x = mv_move(Xmat,O,O,Xmat->m,l,x,O};

The m_save () routine saves the matrix A to the file/stream fp in MATLAB save
format. The MATLAB variable name is name.

92 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

The v _save () routine saves the vector x to the file/stream fp as an x- >dim x 1
matrix (i.e. as a column vector) in MATLAB save format. The MATLAB variable
name is name.

The d_save () routine saves the double precision number d to the file/stream fp
in MATLAB save format The MATLAB variable name is name.

The MATLAB save format can depend in subtle ways on the type of machine used,
so you may need to set the machine type in machine . h. This should usually just
mean adding a line to machine . h to be one of

#define MACH_ID INTEL
#define MACH_ID MOTOROLA
#define MACH_ID VAX_D
#define MACH_ID VAX_G

I* 80x87 format */
I* 6888x format *I
I* VAX D format */
I* VAX G format */

to be the appropriate machine. The machine· dependence involves both whether IEEE
or non IEEE format floating point numbers are used, but also whether or not the
machine is a "little-endian" or a "big-endian" machine.

BUGS

The m_load () routine will only read in the real part of a complex matrix.

The routines are machine-dependent as described above.

SOURCE FILE: matlab.c, zmatlab.c

NAME
bd_transp, m_transp, mmtr..mlt, mtrm..mlt, zm...adjoint,
zmma..ml t, zmam..ml t - matrix transposes, ad joints and multiplication

SYNOPSIS

#include "matrix.h"
BAND *bd_transp(BAND *A, BAND *OUT}
MAT *m_transp(MAT *A, MAT *OUT)
MAT *mmtr_mlt(MAT *A, MAT *B, MAT *OUT)
MAT *mtrm_mlt (MAT *A, MAT *B, MAT *OUT)

#include "zmatrix.h"
ZMAT *zm_adjoint(ZMAT *A, ZMAT *OUT)
ZMAT *zmma_mlt(ZMAT *A, ZMAT *B, ZMAT *OUT)
ZMAT *zmam_mlt(ZMAT *A, ZMAT *B, ZMAT *OUT)

DESCRIPTION

93

The routine bd_transp () computes the transpose of the banded matrix A and
puts the result in OUT. Both are BAND structures.

The routine m_transp () transposes the matrix A and stores the result in OUT. The
routine m_adjoint (} takes the complex conjugate transpose (or complex adjoint)
of A and stores the result in OUT. These routines may be in situ (i.e. A == OUT) only
if A is square. (Note that BAND matrices are always square.) The complex adjoint of
A is denoted A*.

The routine mmtr_mlt () forms the product ABT, which is stored in OUT. The
routine mma_mlt () forms the product AB*, which is stored in OUT. The rou
tine mtrm_mlt () forms the product AT B, which is stored in OUT. The routine
mam_mlt () forms the product A* B, which is stored in OUT. Neither of these routines
can form the product in situ. This means that they must be used with A ! = OUT and
B ! = OUT. However, you can still use A == B.

For all the above routines, if OUT is NULL or too small to contain the result, then
it is resized to the correct size, and is then returned.

EXAMPLE

MAT *A, *B, *C;

• e e • • •

c = m_transp(A,MNULL); I* c .. A~T *I
:mmtr_mlt(A,B,C); I* c = A.BAT *I
mtrm_mlt (A, B, C); I* c = A~T.B *I

SOURCE FILE: matop.c, zmatop.c

94 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
m_norml, nLnorm_inf, m...nornLfrob '· zm_norml, zm...norm_inf,
zm_norm_frob...,. matrix norms

SYNOPSIS

#include "matrix.h"
Real m_norml(MAT *A)
Real m_norm_inf(MAT *A)
Real m_norm_frob(MAT *A)

#include "zmatrix.h"
Real zm_norml{ZMAT *A)
Real
Real

zm_norm_inf(ZMAT *A)
zm_norm_frob(ZMAT *A)

DESCRIPTION

These routines compute matrix norms. The routines m_norml () and zm_norml {)
compute the matrix norm of A in the matrix. 1-norm; m-'norm_inf () and
zm_norm_inf () compute the matrix norm of A in the matrix oo-norm;
m_norm_frob () and z:m_norm_frob {) compute the Frobenius norm of A. All of
these routines are unsealed; that is, there is no scaling vector for weighting the elements
of A.

These norms are defined through the following formulae:

(4.1)

(4.2) IIAIIF =

The matrix 2-norm is not included as it requires the calculation of eigenvalues or
singular values.

EXAMPLE

MAT *A;

printf ("I IAI 1_1 = %g\n", m_norml (A));
printf (" IIAII_inf = %g\n", m_norm_inf {A));
printf (" IIAII_F = %g\n", m_norm_frob(A));

SEE ALSO

v _norml () , v _norm_inf () , zv _norml (l, zy:_norm_inf () .

95

BUGS

The Frobenius nonn calculations may overflow if the elements of A are of order
JHUGE.

SOURCE FILE: norm.c, z:norm.c

96 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
mv..mlt, .. vnunlt, mv..mltadd, VIlLlll.ltadd, zmv..mlt, ZVIlLlll.lt,

. z~~ ~i t~dd,. , ·2!~:inlt~dd _:_ 1Ilatrix-~ector mrllrlplication ~ •.

SYNOPSIS

#include "matrix.h"
VEC *mv_mlt(MAT *A, VEC *x, VEC *out)
VEC *vm_mlt (MAT *A, VEC *x, VEC *out)
VEC *mv_mltadd(VEC *vl, VEC *v2, MAT *A,

double s, VEC *out)
VEC *vm_mltadd(VEC *vl, VEC *v2, MAT *A,

double s, VEC *out)

#include "zmatrix.h"
ZVEC *zmv_mlt(ZMAT *A, ZVEC *x, ZVEC *out)
ZVEC *zvm_mlt (ZMAT *A, ZVEC *x, ZVEC *out)
ZVEC *zmv_mltadd(ZVEC *vl, ZVEC *v2, ZMAT *A,

complex s, ZVEC *out)
ZVEC *zvm_mltadd(ZVEC *vl, ZVEC *v2, ZMAT *A,

complex s, ZVEC *out)

DESCRIPTION

The routines mv _ml t {) and vm_ml t () form Ax and AT x = (xT A) T respec
tively and store the result in out. The routines zmv_mlt () and zvm_mlt ()
form Ax and A*x = (x* A)* respectively and store the result in out. The routines
mv_mltadd() and vm_mltadd() form v1 + sAv2 and v1 + sATv2 respectively,
and stores the result in out. The routines zmv_mltadd() and zvm_mltadd()
form v1 + sAv2 and v1 + sA*v2 respectively, and stores the result in out. If out is
NULL or too small to contain the product, then it is resized to the correct size.

These routines do not work in situ; that is, out must be different to x formv _ml t ()
and vm_ml t () , and in the case of mv _ml tadd () and vm_ml tadd () , out must be
different to v2.

These routines avoid thrashing virtual memory machines.

EXAMPLE

MAT
VEC
Real

*A;
*x, *y, *out;
alpha;

out = mv_mlt(A,x,VNULL);
vm_mlt(A,x,out);
mv_mltadd(x,y,A,out);
vm_mltadd (x, y ,.A, out).;

I* out
I* out
I* out
I* out

= A.x *I
= A~T.x *I
= X + A.y *I
= X + A~T.y *I

SOURCE FILE: matop.c, zmatop.c

98 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
px_ident, px_inv, px...ml t, px_transp, px_sign- permutation
identity, inverse and multiplication

SYNOPSIS

#include "matrix.h"
PERM *px_ident(PERM *pi)
PERM
PERM
PERM
int

*px_mlt(PERM *pil, PERM *pi2, PERM *out)
*px_inv(PERM *pi, PERM *out)
*px_transp(PERM *pi, int i, int j)

px_sign(PERM *pi)

DESCRIPTION

The routine px_ident () initialises pi to be the identity permutation of the size
ofpi->size on entry. The permutation pi is returned. If pi is NULL then an error
is generated.

The routine px_mlt () multiplies pil by pi2 to give out. If out is NULL or
too small, then out is resized to be a permutation of the correct size. This cannot be
done in situ.

The routine px_inv () computes the inverse of the permutation pi. The result
is stored in out. If out is NULL or is too small, a permutation of the correct size is
created, which is returned. This can be done in situ if pi == out.

The routine px_transp () swaps pi->pe [i] and pi->pe [j]; it is a multi
plication by the transposition i +-+ j.

The routine px_sign (pi) computes the sign of the permutation pi. This sign
is (-1)P where pi can be written as the product of p permutations. This is done by
sorting the entries of pi using quicksort, and counting the number of transpositions
used. This is also the determinant of the permutation matrix represented by pi.

EXAMPLE

PERM *pil, pi2, pi3;

pil = px_get(lO);
px_ident(pil);
px_transp{pi1,3,5);
px_inv(pil,pil);
px_mlt(pil,pi2,pi3);

I* sets pil to identity *I
I* pil is now a transposition *I

I* invert pil -- in situ *I
I* pi3 = pil.pi2 *I

printf("sign(pi3) =%d.= %d\n",
px_sign(pil)*px_sign{pi2), px_sign(pi3));

SOURCE FILE: pxop.c

99

NAME
px_cols, px_rows, px_vec, pxinv_vec, px_zvec, pxinv_zvec-
permute rows or columns of a matrix, or permute a vector

SYNOPSIS

#include "matrix.h"
MAT *px_rows(PERM *pi, MAT *A, MAT *OUT)
MAT *px_cols(PERM *pi, MAT *A, MAT *OUT)
VEC *px_vec (PERM *pi, VEC *x, VEC *out)
VEC *pxinv_vec(PERM *pi, VEC *x, VEC *out)

#include "zmatrix.h"
ZVEC
ZVEC

*px_zvec (PERM *pi, ZVEC *x, ZVEC *out)
*pxinv_zvec(PERM *pi, ZVEC *x, ZVEC *out)

DESCRIPTION

The routines px_rows () and px_cols {} are for permuting matrices, permuting
respectively the rows and columns of the matrix A. In particular, for px_rows () the
i-th row of OUT is the pi- >pe [i] -th row of A. Thus OUT = P A where P is the
permutation matrix described by pi. The routine px_cols () computes OUT= AP.

The result is stored in OUT provide it has sufficient space for the result. If OUT is
NULL or too small to contain the result then it is replaced by a matrix of the appropriate
size. In either case the result is returned.

Similarly, px_ vee () and px_zvec () permute the entries of the vector x into
the vector out by the rule that the i-th entry of out is the pi->pe [i] -th entry ofx.
Conversely, pxinv _vee () and pxinv _zvec () permute x into out by the rule that
the pi->pe [i] -th entry of out is the i-th entry ofx. This is equivalent to inverting
the permutation pi and then applying px_ vee () , respectively, px_zvec () for real,
resp., complex vectors.

If out is NULL or too small to contain the result, then a new vector is created and
the result stored in it In either case the result is returned.

EXAMPLE

PERM *pi;
VEC *x, *tmp;
ZVEC *z, *ztmp;
MAT *A, *B;

/* permute x to give tmp */
tmp = px_vec(pi,x,tmp);
ztmp = px_zvec{pi,z,ZVNULL);
I* restore x & z */

100 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

x = pxinv_vec(pi,tmp,x);
pxinv._zvec(pi,ztmp,z);
I* symmetric permutation */

B = px_rows(pi,A,MNULL);
A= px_cols(pi,B,A);

SEE ALSO

The px_ .•• () operations; in particular px_inv {)

SOURCE FILE: pxop.c, zvecop.c

·101

NAME
set_col, set_row, zset_col, zset_row- set rows and columns of
matrices

SYNOPSIS

#include "matrix.h"
MAT *set_col(MAT *A, int k, VEC *out)
MAT *set_row(MAT *A, int k, VEC *out)

#include "zmatrix.h"
ZMAT *zset_col(ZMAT *A, int k, ZVEC *out)
ZMAT *zset_row(ZMAT *A, int k, ZVEC *out)

DESCRIPTION

The routines set_ col () and zset_col () above sets the value of the kth
column of A to be the values of out. The A matrix so modified is returned.

The routine set_row () above sets the value of the kth row of A to be the values
of out. The A matrix so modified is returned.

If out is NULL, then an E_NULL error is raised. If k is negative or greater than
or equal to the number of columns or rows respectively, an E_BOUNDS error is raised.

As the MAT and ZMAT data structures are row-oriented data structures, the set_row ()
routine is faster than the set_ col () routine.

EXAMPLE

MAT *A;
VEC *tmp;

I* scale row 3 df A by 2.0 *I
tmp = get_row(A,3,VNULL);
sv_mlt(2.0,tmp,tmp);
set_row(A,3,tmp);

SEE ALSO

get_col () and get_row ()

SOURCE FILE: matop.c, zmatop.c

102 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
sv..mlt, v_add, v..mltadd, v_sub, zv..mlt, zv_add, zv..mltadd,
zv _sub - scalar-vector multiplication and addition

SYNOPSIS

#include ":matrix.h"
VEC *sv_:mlt{double s, VEC *x, VEC *out)
VEC *v_add(VEC *vl,VEC *v2, VEC *out)
VEC *v_:mltadd(VEC *vl, VEC *v2, double s, VEC *out)
VEC *v_sub(VEC *vl, VEC *v2, VEC *out)

#include "z:matrix.h"
ZVEC *zv_:mlt(co:mplex s, ZVEC *x, ZVEC *out)
ZVEC *zv_add(ZVEC *vl, ZVEC *v2, ZVEC *out)
ZVEC
ZVEC

*zv_:mltadd(ZVEC *v1, ZVEC *v2, complex s, ZVEC *out)
*zv_sub(ZVEC *vl, ZVEC *v2, ZVEC *out)

DESCRIPTION

The routines sv_ml t () and zv _ml t () perform the scalar multiplication of the
scalars and the vector x and the results are placed in out.

The routines v _add () and zv _add () adds the vectors vl and v2, and the result
is returned in out.

The routines v_mltadd() and zv_:mltaddO set out to be the linear combi
nation vl+s. v2.

The routines v _sub () and zv _sub () subtract v2 from vl, and the result is
returned in out.

For all of the above routines, if out is NULL, then a new vector of the appropriate
size is created. For all routines the result (whether newly allocated or not) is returned.
All these operations may be performed in situ. Errors are raised if vl or v2 are NULL,
or if vl and v2 have different dimensions.

EXAMPLE

VEC *x, *y, *z, *tmp;
ZVEC
Real

*v, *w;
alpha;

complex beta;

t:mp = v_get(x->dim);
z = v_get(x->dim);
printf ("# 2-Norm of x - y = %g\n",

v_norm2(v_sub(x,y,tmp)));

/* z = x + alpha.y */
v_mltadd(x,y,alpha,z);
/* ••• or equivalently*/
sv_mlt(alpha,y,z);
v_add(x,z,z);
zv_mltadd(v,w,beta,v);

SOURCE FILE: vecop.c, zvecop.c

104 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
v_conv, v..map, v..max, v..min, v_pconv, v_star, v_slash,
v_sort, v_swn, zv..map, zv_star, zv_slash, zv_swn
Componentwise operations

SYNOPSIS

#include "matrix.h"
VEC *v_conv (VEC *x, VEC *y, VEC *out)
VEC *v_pconv(VEC *x, VEC *y, VEC *out}
VEC *v_map (double (*fn) (double), VEC *x, VEC
double v_max (VEC *x, int *index)
double v_min {VEC *x, int *index)
VEC *v_star (VEC *x, VEC *y, VEC *out)
VEC *v_slash(VEC *x, VEC *y, VEC *out)
VEC *v_sort (VEC *x, PERM *order)
double v_swn (VEC *x)

#include "mzatrix.h"

*out)

ZVEC *zv_map(complex {*fn)(complex), ZVEC *x, ZVEC *out)
ZVEC *zv_star(ZVEC *x, ZVEC *y, ZVEC *out)
ZVEC *zv_slash(ZVEC *x, ZVEC *y, ZVEC *out)
complex zv_sum(ZVEC *x)

DESCRIPTION

The routines v_conv(} and v_pconv{) compute convolution-type products of
vectors. The routine v_conv() computes the vector z where zi = :Eo::;j::=;i XiYi-i·

The routine v _pconv () computes a periodic convolution with period y- >dim. The
routine v _conv () can be used to compute the product of two polynomials, with the
polynomial x(t) = 2::1~~"' xiti and y(t) = :E1~~Y Yiti.

The routines v _map () and zv _map () apply the function (* fn) () to the com
ponents ofx to give the vector out. That is, out->ve [i] = (*fn) (x->ve [i]).

There are also versions

VEC

ZVEC

*_v_map(double (*fn)(void *,double),
void *fn_params, VEC *x, VEC *out)

*_zv_map(complex (*fn) (void *,complex),
void *fn_params, ZVEC *x, ZVEC *out)

where out->ve[i] = (*fn) (fn_params,x->ve[i]). This enables more
flexible use of this function. Both of these functions may be used in situ with
x == out.

The routine v _max () returns the maximum entry of the vector x, and sets
index to be the index of this maximum value in x. Note that index is the in-

105

dex for the .first entry with this value. Thus max_x = v_max(x, &i) means that
x->ve[i] == max_x.

The routine v _min () returns the minimum entry of the vector x, and sets index
to be the index of this minimum value similarly to v _max () . Both v _min () and
v _max {) raise an E_SIZES error if they are passed zero dimensional vectors.

The routines v _star () and zv _star () compute the componentwise, or Hadamard,
product of x andy. That is, out·· >ve [i] = x- >ve [i] *y- >ve [i] for all i. Note
that v _star () is equivalent to multiplying y by a diagonal matrix whose diagonal
entries are given by the entries of x. This routine may be used in situ with x == out.

The routines v _slash () and zv _slash () compute the componentwise ratio of
entriesofyandx. (Note the order!) Thatis, out->ve [i] = y->ve [i] /x->ve [i]

for all i. Note that this is equivalent to multiplying y by the inverse of the diagonal
matrix described in the previous paragraph. This could be useful for preconditioning,
for example. This routine rnay be used in situ with x """' out and/or y == out.
The routine v _slash () raises an E_SING error if :x has a zero entry (the rationale
bei.ng that it is really solving the system of equations Xz = y where z is out).

The routine v _sort () sorts the entries of the vector x in situ, and sets order to
be the permutation that achieves this. Note that the old ordering of x can be obtained
by using pxinv _vee () as illustrated in the example below. The algorithm used
is a version of quicksort based on that given in Algorithms in C, by R. Sedgewick,
pp. 116-124 (1990).

The routines v _sum () and zv _sum {) return the sum of the entries of x.

Note that there are no complex "min", "max" or "sorting" routines, as there is no
suitable ordering on the complex numbers.

EXAMPLE

An alternative way of computing llxlloo (but slower):

VEC *x, *y, *z;
PERM *order;
Real norm;
int i;

y = v_map(fabs,x,VNULL);
norm= v_max(y,&i);

Sorting a vector:

v_sort(x,order);
I* x now sorted *I
y = pxinv_vec(order,x,VNULL);
I* y is now the original x */

106 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

Using the Hadamard product for setting Yi = wixi:

VEC *weights;

for (i = 0; i < weights->dim; i++)
weights->ve[i] = ... ;

v_star(weights,x,y);

SEE ALSO

Other componentwise operations: v _add () , v _sub () , sv _ml t () .

Iterative routines benefiting from diagonal preconditioning: i ter_cg () ,
iter_cgs (), and iter_lsqr ().

SOURCE FILE: vecop.c, zvecop.c

NAME
v_lincomb, v_linlist, zv_lincomb, zv_linlist -linear
combinations

SYNOPSIS

#include "matrix.h"
VEC *v_lincomb(int n, VEC *v_list[], double a_list[],

VEC *out)
VEC *v_linlist(VEC *out, VEC *vl, double al,

1'07

VEC *v2, double a2, ••• , VNULL)

#include "zmatrix.h"
ZVEC *zv_lincomb(int n, ZVEC *v_list[], complex a_list[],

ZVEC *out)
ZVEC *zv_linlist(ZVEC *out, ZVEC *vl, complex al,

ZVEC *v2, complex a2, • • • I ZVNULL)

DESCRIPTION

The routines v_lincomb() and zv_lincomb() compute the linear combi
nation 2:~,:-01 aivi where vi is identified with v_list [i] and ai is identified with
a_list [i]. The result is stored in out, which is created or resized as necessary.
Note that n is the length of the lists.

An E_INSITU error will be raised if out == v_list [i] for any i other than
i == 0.

The routines v_linlist () and zv_linlist () are variants oftheabove which
do not require setting up an array before hand. This returns :Ei aivi where the sum is
over i = 1, 2, ... until a VNULL is reached, which should take the place of one of the
vk's.

An E_INSITU error will be raised if out == v2, v3, v4, •••.

EXAMPLE

VEC
Real

*x[lO], *vl, *v2, *v3, *v4, *out;
a[lO], h;

for (i = 0; i < 10; i++
{ x[i] = ••• ; a[i] = ••• ; }
out = v_lincomb(lO,x,a,VNULL)
/* for Runge--Kutta code:

out = h/6*(v1+2*v2+2*v3+v4) */
v_zero(out);
out = v_linlist(out, vl, h/6.0, v2, h/3.0,

v3, h/3.0, v4, h/6.0,
VNULL);

108 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

SEE ALSO

sv_mlt(),v_mltadd(),zv_mlt(),zv_mltadd()

BUGS

SOURCE FILE: vecop.c, zvecop.c

NAME
v _norml 1 v ..norm2 1 v ..noriiLinf 1 zv _norml 1 zv ..norm2 1

zv _norm_inf - vector norms

SYNOPSIS

#include "matrix.h"
double v _norml (VEC *x)
double v_norm2(VEC *x)
double v_norm_inf(VEC *x)
double _v_norml(VEC *x1 VEC *scale).
double _v_norm2(VEC *x1 VEC *scale)
double _v_norm_inf(VEC *x1 VEC *scale)

#include "zmatrix.h"
double zv_norml(ZVEC *x)
double zv_norm2(ZVEC *x)
double zv_norm_inf(ZVEC *x)
double _zv_norml(ZVEC *x1 VEC *scale)
double _zv_norm2(ZVEC *x1 VEC *scale)
double _zv_norm_inf(ZVEC *x1 VEC *scale)

DESCRIPTION

lgp

These functions compute vector norms. In particular, v _norml () and zv _norml ()
give the 1-norm, v _norm2 () and zv _norm2 () give the 2-norm or Euclidean norm,
and v _norm_inf () and zv _norm_inf () compute the oo-norm. These are defined
by the following formulae:

(4.3)

(4.4)

(4.5)

1lxll1 = L:lxil

llxlloo = m;:tx lxil
t

llxll2 = v~ lxil2·

There are also scaled versions of these vector norms: _ v _norml () , _ v _norm2 ()
and_ v _norm_inf () , and_zv _norml () , _zv _norm2 () and_zv _norm_inf ().
These take a vector x whose norm is to be computed, and a scaling vector. Each com
ponent of the x vector is divided by the corresponding component of the scale vector,
and the norm is computed for the "scaled" version of x. Note that the scale vector is
a (real) VEC since only the magnitudes are important. If the corresponding component
of scale is zero for that component of x, or if scale is NULL, then no scaling is
done. (In fact, v_norml (x) is a macro that expands to _v_norml (x~ VNULL) .)

For example,_ v _norml (x~ scale) returns

L lxijscaleil
i

110 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

provided scale is not NULL, and no element of scale is zero. The behaviour of
_ v _norm2 () and _ v _norm_inf () is similar.

EXAMPLE

VEC *x, *scale;

printf("# 2-Norm of x = %g\n", v_norm2(x));
printf("# Scaled 2-norm of x = %g\n",

_v_norm2(x,scale});

SEE ALSO

m_norml(),m_nor.m_inf(), zm_norml(),zm_norm_inf().

BUGS

There is the possibility that v _norm2 () may overflow if x has components with
size of order y'HUGE.

SOURCE FILE: nor.m.c

NAME
zmake, zconj, zneg, zabs, zadd, zsub, zmlt, zinv, zdiv,
zsqrt,
zexp, zlog- Operations on complex numbers

SYNOPSIS

#include "zmatrix.h"
complex zmake(double real, double im.ag)
complex zconj(com.plex z)
complex zneg{complex z)
double zabs(complex z)
complex zadd{complex zl, complex z2)
complex zsub(com.plex zl, combl.lex z2)
complex zmlt(complex zl, complex z2)
complex zinv(complex z)
complex zdiv(complex zl, complex z2)
complex zsqrt(complex z)
complex zexp(complex z)
complex zlog(complex z)

DESCRIPTION

These routines provide the basic operations on complex numbers.

Complex numbers are represented by the complex data structure which is defined
as

typedef struct { Real re, im; } complex;

and the real part of complex z; is z. re and its imaginary part is z. im. Let
Z =X+ iy.

The routine zmake (real, imag) returns the complex number with real part
real and imaginary part imag.

The routine zconj (z) returns z = x - iy

The routine zneg(z) returns -z.

The routine zabs (z) returns lzl = .jx2 + y2 • Note that it is done safely to avoid
overflow if lxl or IYI is close to floating point limits.

The routine zadd(zl, z2) returns z1 + z2 •

The routine zsub(zl, z2) returns z1 - z2 •

The routine zmlt (zl, z2) returns z1 z2 •

The routine zinv (z) returns 1/ z. An E_SING erroris raised if z = 0.

The routine zdiv(zl, z2) returns zdz2 • An E_SING error is raised if z2 = 0.

112 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

The routine zsqrt (z) returns .Ji. The principle branch is used for a branch cut
along the negative real axis, so the real part of .Ji as computed is not negative.

The routine zexp(z) returns exp(z) = ez =ex(cosy+ isiny).

The routine z log (z) returns log(z). The principle branch is used for a branch
cut along the negative real axis, so the imaginary part of log(z) lies between or on ±1r.

EXAMPLE

To compute log(z + ew)/Jl + z2 :

complex w, z, result;

result = zdiv(zlog(zadd(z,zexp(w))},
zsqrt(zadd(ONE,zmlt(z,z))));

where ONE is 1 + Oi; ONE = zmake (1. 0, 0. 0) ; .

SOURCE FILE: zfunc.c

NAME
__ add __ , __ ip __ , _ _.mlt:add __ , __ smlt __ , __ sub __ , __ zero __ ,
__ zadd __ , __ zconj __ , __ zip __ , __ zmltadd __ , __ zmlt __ , __ zeub __ ,

__ zzero __ - core routines

SYNOPSIS

#include "machine.h"
/* or #include "matrix.h" */

113

void __ add __ (Real dpl[], Real dp2[], Real out[], int len)
double __ ip __ (Real dpl[], Real dp2[], int len)
void __ mltadd __ (Real dpl[], Real dp2[], doubles, int len)
void __ smlt __ (Real dp[], doubles, Real out[], int len)
void __ sub_._ (Real dpl[], Real dp2[], Real out[], int len)
void __ zero __ (Real dp[], int len)

#include "zmatrix.h"
void __ zadd __ (complex zl[], complex z2[],

•complex out[], int len);
void __ zconj __ (complex z[], int len);
complex __ zip __ (complex zl[], complex z2[],

void

void

void

void

int len, int conj);
zmlt (complex zl [], complex s, complex z.2 [],

int len);
__ zml tadd __ (complex z 1 [] , complex z2 [] , . complex s,

int len, int conj);
__ zsub__ (complex zl [], compleJ~; z2.[] , complex out [] ,

int len);
__ zzero __ (complex z[], int len);

DESCRIPTION

These routines are the underlying routines for almost all dense matrix routines.
Unlike the other routines in this library they do not take pointers to structures as
arguments. Instead they work directly with arrays of Real's. It is intended that
these routines should be fast. If you wish to take full advantage of a particular
architecture, it is suggested that you modify these routines.

The current implementation does not use any special techniques for boosting speed,
such as loop unrolling or assembly code, in the interests of simplicity and portability.

Note that zconj (z), referred to below, returns the complex conjugate of z.

The routine __ add_() sets out [i] = dpl [i] +dp2 [i] fori ranging from
zero to len-1. The routine _zadd_() sets out [i] = zl [i] +z2 [i] fori
ranging from zero to len-1.

The routine __ ip_() returns the sum of dpl [i] *dp2 [i] fori ranging from
zero to len-1. The routine _zip __ () returns the sum of zl [i] *z2 [i] for

114 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

i ranging from zero to len-1 if conj is Z_NOCONJ, and returns the sum of
zconj (z1 [i]) *z2 [i] fori ranging from zero to len-1 if conj is Z_CONJ.

The routine _mltadd_() sets dp1 [i] = dp1 [i] +s*dp2 [i] fori rang
ing from zero to len-1. The routine _zmltadd_() sets
z1 [i] = z1 [i] +s*z2 [i] fori rangingfromzeroto len-1if conj is Z_NOCONJ,
and sets dp1 [i] = z1 [i] +s*zconj (z2 [i]) fori ranging from zero to len-1
if conj is Z_CONJ.

The routine _sml t_ () sets out [i l = s *dp [i l for i ranging from zero
to len-1. The routine _zmlt_() sets out [i] = s*z [i] fori ranging from
zero to len-1.

The routine _sub_ () sets out [i] = dp1 [i] -dp2 [i] for i ranging from
zero to len-1. The routine _zsub_() sets out [i] = z1 [i] -z2 [i] fori
ranging from zero to len-1.

The routines _zero_() and _zzero_() set out [i] = 0. 0 fori rang
ing from zero to len-1. These routines should be used instead of the macro
MEM_ZERO () or the ANSI C routine memset () for portability, in case the float
ing point zero is not represented by a bit string of zeros.

EXAMPLE

MAT
ZVEC
Real

*A, *B;
*x, *y;
alpha;

I* set A= A+ alpha.B.*I
for (i = 0; i < m; i++)

mltadd(A->me[i],B->me[i],alpha,A->n);
I* zero row 3 of A *I
zero(A->me[3],A->n);
I* quick complex inner product *I
z_output(_zip_(x->ve,y->ve,x->dim,Z_CONJ));

SOURCE FILE: machine.c, zmachine.c

