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RESOLVING THE TRANSMISSIVITY ZONATION 
IN A CONFINED AQUIFER 

R. S. Anderssen and S.-S. Chow 

ABSTRACT 

For aquifers having a zonation structure with the transmissivity varying smoothly 
and slowly over each zone, a common approach in determining transmissivity is 
to presume a known zonation structure and seek a constant approximation to the 
transmissivity over each zone. However, this procedure is not always acceptable as 
it may lead to instability in the estimation process. 

In this paper, we discuss how one may simultaneously determine the zonation 
structure and a piecewise constant representation of the transmissivity by adapting 
the linear functional strategy proposed by Anderssen and Dietrich (1987). The 
implementation of this idea results in several adaptive and highly parallelizable 
procedures for the parameter identification problem. Some stability results and 
a generalization of the method using a Petrov-Galerkin interpretation are also 
described. 

1. Introduction. 

The problem of parameter identification plays a crucial role in the study of 
groundwater flows in aquifers. For the modelling equations to be completely spec
ified, it is necessary to have sufficiently accurate information regarding the various 
parameters used to describe the flow system. For example, before one performs any 
simulation studies on the problem of steady groundwater flow in a confined aquifer, 
it is necessary to have available an accurate representation of the transmissivity 
within the aquifer. 

It has long been recognized that the parameter identification problem is inher
ently ill-posed and often complicated by the fact that in most practical situations 
only a sparse amount of measured data is available for one to employ to ascertain 
the parametric values of the flow system. Moreover, in practice, boundary infor
mation for the aquifer is difficult if not impossible to determine, since the location 
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of the boundary of a confined aquifer is not usually known with great certainty. 
Consequently, in developing numerical procedures for this type of problem, one 
should only consider methods which first of all possess a stabilizing property in 
order to deal with the ill-posedness, secondly, generate an accurate but not "overly 
sophisticated" representation of the parameters, and finally does not require an 
excessive amount of (or better still, any) boundary information. 

In the transmissivity identification problem arising from the study of steady 
flow of groundwater in a confined aquifer n, one typically assumes that the trans
missivity T is a piecewise constant function over n (i.e., over each of the disjoint 
subregions of n, T assumes a constant value), and then proceeds to determine 
these constant values. This approach is the zonation method (Coats et a!. [6], 
Emsellem and de Marsily [10], Yeh and Yoon [14], and Cooley [7,8]). 

In most practical problems, particularly those involving aquifers in uncom
plicated geological formations, the piecewise constant assumption is a valid one. 
Moreover, the amount of data available is unable to support more than a simple 
approximation, such as a piecewise constant. However, as observed by Sun and 
Yeh [12] and Yeh [13], the associated problem of determining the zonation structure 
is often neglected. The zones over which the transmissivity is constant are often 
assumed known and only the constant values of T are estimated. This practice is 
seldom acceptable, since the available geographical field data are in most instances 
insufficient to determine the zonation structure. Any a priori assumptions about 
the zonation structure that are not sufficiently accurate may lead to instability in 
the estimation of the piecewise constant structure of T (Sun and Yeh [12]). Such 
difficulties are avoided, if one aims to determine simultaneously the subregions over 
which the transmissivity is constant and the value of these constants. 

In this paper, we discuss how the linear functional strategy proposed by Ander
ssen and Dietrich [2] (see also Anderssen [1]) may be adapted to simultaneously de
termine a piecewise constant representation of the transmissivity and the zonation 
structure of the aquifer. The inherent stabilizing property of the linear functional 
strategy is highly desirable in tackling the parameter identification problem. More
over, since the linear functional strategy is a localized procedure, applicable to any 
subregion of n, the lack of data on the boundary does not cause any problem in 
the implementation of this methodology. 

2. Linear Functional Strategy. 

The governing equation of steady flow in a confined aquifer n is given by 

- div (T grad</>) = q, (1) 
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where T is the transmissivity of the aquifer, </> the piezometric head, and q the 
i'!OUrce term (Bear [4), Yeh [15)). In the parameter identification problem, </>and q 

are known and T is to be determined. 

By multiplying both sides of (1) by a test function Wand integrating by parts 
over a subdomain A of n, we have the weak formulation 

f T grad</>· grad Wdx = f qWdx + f T grad</>· nWds, (2) 
}A }A JaA 

where {)A denotes the boundary of A and n denotes the unit outward normal on 
A. 

Following Anderssen and Dietrich [2), we now develop a linear functional strat
egy to determine the transmissivity in the subregion A where T assumes a constant 
value To. By utilizing a test function W that satisfies 

W = 0 on 8A, 

we may compute T0 over A from (2) as 

To= ((q, W)) / ((grad</>, grad W)), (3) 

where 
((q, W)) = i qWdx, 

and 
((grad¢, grad W)) = i grad</>· grad Wdx. 

For confined aquifers with constant transmissivity zones, this strategy may be 
employed to determine the zonation structure of the aquifer as well as the constant 
values associated with the various zones. The basic idea is that if the transmissiv
ity is constant over a region A, then it must also be constant over any subregion A' 
contained in A. Furthermore, if the transmissivity is only approximately constant 
over A, (3) may still be employed to compute a representative constant approx
imate value ·for the transmissivity over the subregion A. So, by evaluating the 
transmissivity values over A and A', (possibly making use of several different test 
functions,) and comparing the values obtained from applying the linear functional 
strategy, we would be able to decide whether the transmissivity is indeed constant 
over A and if so, what the value of the transmissivity is. In this manner,we would 
be able to construct a reasonable picture of the zonation structure as well as the 
constant values that the transmissivity takes over the various zones. 

Note that the implementation of this idea along with the linear functional strat
egy would allow us to develop adaptive and highly parallelizable procedures for the 
parameter identification problem. 'Moreover, the estimation process has inherent 
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stability associated with the use of bounded linear functionals (Anderssen [1)), 
thus enabling us to treat the ill-posedness of the problem with some degree of 
confidence. 

3. Simultaneous Zonation and Transmissivity 
Identification. 

3.1 Global Source Term. 

To begin our investigation, we assume that the source term is a global function 
over n rather than point sources or sinks. The latter case will be considered in the 
next section. For simplicity let us assume that n is a region which is decomposable 
into rectangular subregions. · The assumption is not essential, but does greatly 
simplify the discussion. 

Let us first consider the straightforward approach. We shall refer to it as the 
:fine grid strategy. If from geological data one is able to determine a length scale l 
such that over most squares of area !2 the transmissivity is approximately constant, 
then one may partition n into squares of area ZZ and small rectangles along the 
boundaries. We may then computeT on each rectangular element using (3). If I 
is sufficiently small, this procedure will yield a reasonably accurate representation 
of the variation of transmissivity over n. In fact, if the test function W defined 
on a. given square is constructed so that it converges to the Dirac delta function 
associated with the center of the square as l tends to zero, then it can be shown 
that the estimated transmissivity for the square tends to the true transmissivity 
value at the center as the square shrinks. 

Clearly the implementation of this method is straightforward. Once the trans
missivity values are computed, they may be sorted into ascending order and par
titioned into a certain number of groups. To each group a colour type or gray 
scale is then assigned. By displaying the transmissivity values in a graphical form, 
the zonation structure ma.y easily be identified and regions that· require further 
analysis may also be pinpointed. Note however that this procedure may also have 
some potential disadvantages. The requirement that l be small implies not only a 
large storage requirement, but also a substantial amount of computing time since 
we must determine the appropriate form of the test function W and evaluate (3) 
over a large number of cells as well as post-process the computed transmissivity 
values so as to identify the nature of the zonation. 

An alternative procedure, which we will call the adaptive grid approach, is 
to begin with a coarse mesh, and then adaptively refine that mesh, using the com
puted values of T as the control, in order to determine the nature of the zonation. 
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This approach will not only minimize the storage requirement and the amount of 
computational work required, but its implementation will also be facilitated by the 
existence of data structures developed for various finite element mesh refinement 
schemes (Bank eta!., [3], Rheinboldt and Mesztenyi [11]). Moreover, the procedure 
is easily parallelizable, since the estimation for each subregion is independent of 
the others. 

The basic algorithm for this adaptive grid approach will have the following 
structure. First decompose !1 into a suitably small number of rectangular subdo
mains !1;, i = 1, · · · , N. For each i, we compute the corresponding transmissivity 
T; with (3) after setting A= !1;. Each of the f!;'s is then subdivided into four rect
angular regions {f!;j}J=ll and the transmissivity T;j of nij is evaluated from (3) 
with A = f!;i· We then compare the T;i with T;. If they agree to a preassigned 
tolerance, we take the transmissivity of !1; to be T; and assume that no refinement 
of !1; is required. On the other hand, if the comparison of the values of T; and T;j 

fails the specified criterion, the procedure described above is applied adaptively to 
each of the subregions f!;i with each f!;i now playing the role of !1;. This refine
ment procedure may be carried on until the length scale of the smallest subregion 
is small enough for us to determine the interfaces of regions with different transmis
sivity. This mesh has, not surprisingly, a striking resemblance with finite element 
meshes generated by adaptive refinement procedures (Demkowicz and Oden [9]). 
Thus, in implementing this algorithm, it is possible to utilize any one of the many 
well-tested data structure routines designed for handling this type of mesh struc
ture. Another important consideration is that since this procedure automatically 
places more grid points near the zonation interfaces, the resulting mesh is also well 
suited for any subsequent solution of forward problems involving (1). Because the 
solution of the forward problem is generally less accurate on regular meshs near 
discontinuities, the aggregation of mesh points in such regions will help to improve 
the accuracy. 

We note in passing that triangles could have been chosen to subdivide the 
domain. The basic algorithm remains essentially the same. 

We now discuss a third approach, which will be called the hybrid approach 
because it may be regarded as a compromise between the two methods described 
above. Beginning with a suitably coarse mesh, the corresponding transmissivities 
T; and T;i are computed for each of the subregions. Over subregions where the 
transmissivities fail the specified criterion, a uniformly refined local mesh is im
posed. Over the refined region, this process is continued until the nature of the 
zonation is clarified. 

On first sight, it may appear that the approach is not as computationally ef
f}.cient as the adaptive grid idea described earlier. However, due to the uniform 
refinement characteristics of the hybrid approach, it drastically decreases the book-
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keeping necessary to keep track of the adaptive mesh strategy. Moreover, it also 
permits the application of the method in a para.llel computing environment and 
implementation is considerably easier than the adaptive approach. 

It is important to note that the linear functional strategy (3) will fail if 0 = 
(( grad </J, grad W)) is equal to zero. Thus, to minimize error, W should be 
chosen so that 101 is as large as possible. This fact has already been noted by 
Anderssen and Dietrich [2]. Consequently, if¢ is constant in some subregion A, T 
cannot be determined and new measurements with a source term q that generates 
a non-constant ¢ in A must be employed to identify T in that region. 

3.2 Point Source Term. 

If the source term is composed of a global piecewise continuous part and a 
discrete set of point sources and sinks, we may proceed in exactly the same manner 
as described in the previous section. Thus as long as we have available a global 
source term, the presence of point sources and sinks poses no additional problem. 

In the situation where the source term q corresponds only to a series of wells 
(modelled as Dirac delta functions) inside the aquifer, the problem of determining 
T becomes more difficult, especially when the number of wells is small. Consider 
for example an aquifer with a single well and no other source term. If T is known 
to be constant over a subregion A not containing the well, then either T cannot 
be uniquely determined on A (when ¢is harmonic), or Tis estimated to be zero 
on A (when <P is not harmonic). Both situations are unsatisfactory and are only 
resolved if additional information is supplied by way of drilling a well inside A. 

If Tis constant over some region A containing a well, we must contend with the 
fact that the piezometric head contains a logarithmic singularity. Also the optimal 
way of determining A is not so clear. A natural approach to determine A is to 
begin with a small subregion R 1 containing the well, compute the transmissivity 
TR, using (3) and then comparing it with the transmissivity TR2 computed for 
an enlarged region R2 containing R 1 . If TR, = TR2 then the process may be 
repeated by enlarging R 2 • Eventually we will encounter some region RN such 
that TR, i- TRw We may then take RN-l as an approximation of A. This is a 
reasonable approach but one must bear in mind that there is no guarantee that 
RN-l is "close" to A since the best way to select Rj+l as an enlargement of Rj is 
not at all clear. 

Consequently, in view of the fact that point sources provide only very limited 
and localized information, the determination of the aquifer parameter and thus the 
implementation of the linear functional strategy may be difficult. In fact, in the 
absence of additional information, the problem may not be well-posed. To see this, 
let us suppose that the aquifer consists of one single source inside the subregion 
A and that over this region the transmissivity is constant. By subtracting out the 
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singularity using the fundamental solution r corresponding to the point source, we 
have 

- div (grad (T¢>- f))= 0 in A . 

Thus T¢>- r is harmonic over A. As there are infinitely many harmonic func
tions that may be defined over A, we may obtained many different values of the 
transmissivity T without any further information. This potential source of non
uniqueness indicates that the parameter identification problem may be very ill
posed. 

One possible solution is to approximate the local source terms by global source 
terms. For example, we may use the Gaussian distribution function to approxi
mate the Dirac delta function and then apply the methods described in the previous 
section. This tactic may also be coupled with an interactive approach on a graph
ics workstation. Through sensible human intervention the process of determining 
transmissivity and zonation may be optimized. Hopefully, the strategies proposed 
above will provide us with valuable insight into the nature of the zonation in any 
aquifer of interest. 

4. The Linear Functional Strategy. 

4.1 Sensitivity and Stability. 

In this section we examine the sensitivity of the estimated transmissivity with 
respect to different choices of test functions and describe some stability results. 
In the next section, we discuss the optimal piecewise constant approximation in 
relation to the linear functional stra.tegy. 

For a given approximate piezometric head ¢>h and an approximate source term 
%, let T1 and T2 be the values of the estimated transmissivity over the subregion 
A corresponding to the test functions W1 and W2 , respectively. Thus 

and 
T2(( grad ¢>h, grad W2)) = ((qh, W2)) 

So, applying integration by parts and noting that W1 , W2 , and W2 - W1 vanishes 
on 8A, we obtain 

(T1 - T2)( ( grad ¢>h, grad W1 ) )( ( grad ¢>h, grad W2 )) 

((qh, W1 ))(( grad ¢>h, grad W2))- ((qh, W2))(( grad ¢>h, grad Wt)) 

= ((qh, Wt- W2))(( grad ¢.>h, grad W2)) + ((qh, W2))((~¢h, Wt- W2)), 
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where !::.¢h denotes the Laplacian of rPh· Dividing through by ( ( grad ¢h, grad W2)) 
which is assumed to be nonzero, we find that 

(4) 

This result signifies that, in order to have a transmissivity value which is rela
tively insensitive to changes in the test functions, these functions should be chosen 
so that the inner products ((grad ¢h, grad Wi)), i = 1, 2, are maximized, and the 
actual transmissivity should be approximately constant over the subregion A so 
that the llqh + Tit:.¢hiiL2(A), i = 1, 2, are reasonably small. 

It is easy to check that, when the approximate source term qh and test function 
W are fixed, the sensitivity of the transmissivity with respect to different choices 
of approximate piezometric head functions ¢k and ¢~ is given by the inequality 

where Ti denotes the transmissivity corresponding to ¢j, fori = 1, 2. 

Turning now to consider the issue of stability of the linear functional strategy, let 
us recall that a basic assumption in applying the strategy is that the transmissivity 
T( x) is a piecewise constant function over the region A. In reality, it is more likely 
that the transmissi slowly varying and is only approximately piecewise constant. 
It is therefore of interest to examine the stability of the linear functional strategy 
under small perturbation. 

To model the slow variation of the transmissivity over a subregion A, let us 
assume that 

T(x) = T0 + c(x), 

where T0 is a constant and E is a small perturbation. In [5] it was shown that 
whenever the piezometric head ¢ satisfies certain boundary condition on aA, the 
transmissivity T obtained through the application of the linear functional strategy 
to ( 1) over A satisfies the stability inequality 

(5) 

Moreover, in cases where the piezometric head and the source term are only 
available in approximate forms rPh and qh, the approximate transmissivity 'h, which 
is obtained by applying the linear functional strategy to ( 1) while utilizing rPh and 
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qh in place of¢> and q respectively, may be shown (see [5]) to satisfy the stability 
inequality 

< t;-JITIIL00 (AJJI grad(¢>- cPh)Jiu(A) + Jlt:Ji£oo(Al 
+ ~~~q- qhiiP(A) (6) 

provided that 
II grad cPhiiP(A) ~ Co 

for some positive constant eo. 

These results clearly show that the linear functional strategy yields a stable 
reconstruction of the transmissivity. As long as the perturbation remains small 
and the approximate data are sufficiently accurate, the strategy recovers the rep
resentative parameter value over the subregion A. 

4.2 Optimal Approximation. 

We now turn to consider the optimality of the piecewise constant approxima
tion. Suppose the aquifer is partitioned by n subregions Ail j = 1, ... , n and that 
over each Aj, the transmissivity Tj is approximately constant. In order to compute 
the optimal constant approximation Tj to Tj, we solve the minimization problem 

n 

L !!lin llq + div (Ti grad c/>)ii£2(A;)· 
j=l T;ER 

Differentiating with respect toT;, setting the resulting expression to zero, and 
solving for i';, we obtain 

i = 1, ... ,n. (7) 

The values i'; thus obtained will therefore minimize the residual (or equation 
error), and the optimal piecewise constant approximation to the transmissivity is 
given by 

for x E A;. 

It is easy to check that, if D.¢>= 0 on oA;, then the transmissivity T; computed 
from (7) is identical to the transmissivity T; obtained from the linear functional 
strategy using W =D.¢> as a test function over A;. 

At first sight it appears that, since the T; are easily evaluated using (7) and since 
the resulting piecewise constant approximation T of (7) is optimal in the sense of 
minimizing equation error, there is no need to apply the linear functional strategy 
if we are only seeking a piecewise constant representation of the transmissivity. 
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This is indeed the case if we have an exact expression for !:i¢> and have a clear idea 
of the zonation structure of the aquifer. However, in practice the piezometric head 
is only available in an approximate form ¢>h and more likely than not the zonation 
structure is by and large unknown. 

In fact, the optimal piecewise constant representation approach is quite un
satisfactory in applications. The major defect is its inability to detect zonation 
structure within an aquifer. This is illustrated in an example in the last section. 
The insensitivity to the presence of discontinuous parameter value within a sub
region simply implies that the approach is not of great value compared with the 
linear functional approach. 

Moreover, even if the zonation structure is clearly defined, the transmissivity 
values evaluated from the expression 

j = 1, .. . ,n (8) 

cannot be assumed to he close to those obtained from the optimal constant ap
proximation (7) even if ¢>h approximates ¢> well, since any attempt to numerically 
differentiate ¢>h to find the second derivative term !:i¢>h will introduce a large and 
perhaps unacceptable error. 

On the other hand, since only the first derivative terms grad ¢>h of the ap
proximate piezometric head are needed in the linear functional strategy and since 
test functions may be chosen to minimize any error introduced in the process of 
numerical differentiation, the estimated transmissivity will be less susceptible to 
instability and thus provide a more reliable value. These facts clearly make the 
linear function strategy more favourable. 

Consequently, the idea of combining the two strategies, by first determining 
the zonation structure using the linear functional strategy and then evaluating the 
optimal piecewise constant approximation to the transmissivity via (8), is not as 
attractive as it may seem. Proper use of the linear functional strategy alone will 
lead us to the desired result. 

5. A Petrov-Galerkin Generalization. 

In the event tha.t the amount of data permits a more accurate representation 
of the parameter, it is of interest to consider generalization of the linear functional 
straegy td yield piecewise linear or quadratic. approximation to the transmissivity. 
In [5], it was shown that using a Petrov-Galerkin interpretation of the linear func
tional strategy, it is possible to develop techniques that simultaeously determine 
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the zonation structure of the aquifer under study and an accurate piecewise higher 
order polynomial representation of the transmissivity. 

Essentially, for the piecewise constant approximation that we are considering 
here, a proper choice of trial and test spaces corresponding to the linear functional 
strategy leads to the construction of a Gram matrix A that is in fact diagonal. 
This special structure allows us to explain the total decoupling of the calculation, 
leading to the localized and the highly parallelizable nature of the methodology, 
and the insensitivity to the absence of boundary information. 

Consequently, we see that by choosing the trial space and the triangulation 
carefully, and by constructing the test functions judiciously, the linear functional 
strategy may be extended to compute piecewise linear or higher order approxima
tion to the transmissivity while ensuring that no boundary information is required 
in the computation and that the solution is parallelizable. A proper construction 
would lead to a Gram matrix A with a block diagonal structure, with the block 
boundaries providing a clear picture of the zonation structure of the aquifer. 

6. Numerical Examples. 

To illustrate the numerical performance of the linear functional strategy, let us 
consider the following examples (using the notation of Section 4). 

Example 1. 

(a) Let </>h = ~x\ qh = -qx2 and T = 3 over A= (-1, 1). 
For this example, </Jf., <P'/. and </J'/.' all vanish at x = 0 inside A. However, 
this has no effect on the transmissivity value T estimated from (3) using 
the test function W = 1 - x 2 , as T = 3. 

(b) If <Ph = ~x4 (1 + 8), qh = -9x2 and T = 3(1 + fe") over A = (0, 1 ), then 
with W = x(1- x), we have T = 1!8 which gives a reasonable approx
imation for 181 < 1. Note that since no information concerning the f 

term in T occurs in </Jh and qh, it is not surprising to find that T does not 
reflect such structure ofT. This example also show how perturbation 
in the piezometric head is reflected in the estimated transmissivity. 

Example 2. 

Consider ¢Jh = !x3 + x + 8, qh = -6x and T = 3(1 + fe") over A= (-1, 1). 
The linear functional strategy breaks down when we pick the natural choice of test 
function W = 1 - x2, since we now have (( </Jf., W')) = 0. On the othet. hand, the 
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optimal piecewise constant approximation will give the value T = 3. However, if 
we had selected the test function as W = (1- x2)(1 + u(x + 1)). Then ((c,b/,, W')) = 
--fsu and ((q, W)) = -~u, thus for u =F 0, we recover the transmissivity value 
T = 3. This result is interesting as it demonstrates the robustness of the linear 
functional strategy: even with a test function that is a small perturbation from a 
bad test function, we are still able to estimate the transmissivity value reasonably 
accurately. 

With the test function W = x 2 sin 1rx, which is an odd function like %, we have 

and 
12 2 

((q, W)) = --(1r - 6), 
7r3 

thus again we have T = 3. 

Example 3. 

Consider now a problem with cPh = tx3 + (1 + 8)x, 

and 

{ -6x x > 0, 
qh-

- -2x x < 0, 

T={3 x>O 
l 1 X> 0 

Note that % is continuous at x = 0. It is possible to construct example with qh as 
smooth as we like. 

Over the interval (0, 1) with W = x- x2 and the interval (t, 1) with test 
function W = (2x- 1)(x- 1), it is easy to check that the transmissivity has a 
value 3 over these intervals. Likewise, using W = (2x + 1)(x + 1) over ( -1, -t) 
and W = x + x 2 over ( -1, 0), we recover the transmissivity value 1. 

Over the interval (-a, a) where the transmissivity has a discontinuity at x = 0, 
the test function W = a2 - x2 gives a zero value for ((c,b/,, W')) and so the linear 
functional strategy does not apply. The optimal piecewise constant approximation 
gives a value T = 2 for all a > 0. Such T is obviously the average of the values of 
the transmissivity on both sides of the discontinuous point x = 0. However, the 
independence of T on a is clearly a problem if such method is to be used to detect 
zonation structure. Such method will simply provide false information concerning 
the zone over which the transmissivity is constant. 

On the other hand, by selecting a test function that is a small perturbation of 
the inadmissible test function W = a2 - x 2 , we are able to discover the zonation 
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information contained in the data. More specifically, consider W = ( a2 - x2 )(1 + 
O'X ). We have 

Thus 

( ( 4>~, W')) 

((qh, W)) 

8 5 
--a 0' and 

15 ' 
4 16 5 -a --a 0'. 

15 

- 15 
T=2+-. 

20'a 
(9) 

Thus if we are considering the transmissivity in successively smaller neighbour
hood of the origin, the linear functional strategy will yield increasing values ofT, 
thus indicating the rapid changing nature of the transmissivity near the origin. 

Another interesting feature is the role of the perturbation parameter played in 
(28). The smaller the value of 0', the more prominent will the change ofT be as 
we vary a. Thus, it appears that even if we are making use of test functions that 
are close to those that are inadmissible, we may still be in a fairly good position 
to determine the zonation structure of the transmissivity. 

7. Conclusion. 

In summary, we have shown in this paper that through a careful and system
atic way of employing the linear functional strategy, it is possible to arrive at an 
efficient, robust, accurate, stable, adaptive and parallelizable approach to the prob
lem of determination of the parameter values of the transmissivity of an aquifer. 
The implementation leads not only to a piecewise constant representation of the 
transmissivity but also to a. clear picture of the zonation structure of the aquifer in 
question. With this approach, it seems possible to extract the maximal amount of 
information that is carried by the differential equation ( 1) and the (approximate) 
piezometric head and source data. 
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