Appendix D

Some flat metrics with Cauchy horizons.

In this Appendix we present a family of flat $n+1$ dimensional space-times which have at least two non-isometric extensions across a smooth Cauchy horizon; this example is a generalization of Misner's model for the Taub-NUT space-times [84]. The space-times considered here do not have compact spacelike hypersurfaces, as opposed to Misner's example which, in $n+1$ dimensions, can be given $\mathbb{R} \times S^{1} \times T^{n-1}$ topology, where T^{ℓ} is an ℓ dimensional torus. In view of the renewed interest in flat Lorentzian manifolds [130] [92] [83] it would be useful to understand the global structure of all flat Lorentzian manifolds, at least in 4 dimensions.

For $n \geq 2$ let $(t, x, y), y=y^{1}$ if $n=2$ or $y=\left(y^{1}, \ldots, y^{n-1}\right)$ otherwise, be coordinates in $n+1$ dimensional Minkowski space,

$$
\begin{equation*}
d s^{2}=-d t^{2}+d x^{2}+d y^{2} \tag{D.0.1}
\end{equation*}
$$

with $d y^{2}=\left(d y^{1}\right)^{2}$ if $n=2$ and $d y^{2}=d \vec{y}^{2}=\left(d y^{1}\right)^{2}+\ldots+\left(d y^{n-1}\right)^{2}$ otherwise. Let Λ_{0} be a fixed Lorentz boost in the $t-x$ plane,

$$
\Lambda_{0}=\left[\begin{array}{ccc}
\gamma_{0} & \gamma_{0} \beta & 0 \\
\gamma_{0} \beta & \gamma_{0} & 0 \\
0 & 0 & i d_{\mathbb{R}^{n-1}}
\end{array}\right]
$$

$$
\gamma_{0}=\frac{1}{\sqrt{1-\beta_{0}^{2}}}, \quad\left|\beta_{0}\right|<1
$$

where $i d_{\mathbb{R}^{n-1}}$ is the identity matrix in \mathbb{R}^{n-1}. Let \mathcal{H}_{τ} denote a hyperboloid in \mathbb{R}^{n+1},

$$
\mathcal{H}_{\tau}=\left\{\tau=t^{2}-x^{2}-\vec{y}^{2}\right\}
$$

with \mathcal{H}_{0} - the light cone at the origin. Define $\mathcal{M}_{\Lambda_{0}}$ as the quotient of the interior $I^{+}(0)$ of the solid future light cone $J^{+}(0)$ from the origin by the group generated by Λ_{0}. In $I^{+}(0)$ we can introduce coordinates $\left(\tau, \beta, \beta_{1}\right)$ as follows:

$$
\begin{gather*}
\tau=t^{2}-x^{2}-y^{2}-z^{2}>0 \\
t=\operatorname{ch} \beta_{1} \operatorname{ch} \beta+\frac{(\tau-1) e^{-\beta}}{2 \operatorname{ch} \beta_{1}}, \quad x=\operatorname{ch} \beta_{1} \operatorname{sh} \beta-\frac{(\tau-1) e^{-\beta}}{2 \operatorname{ch} \beta_{1}} \tag{D.0.2}\\
y=\operatorname{sh} \beta_{1} \text { if } n=2, \quad \vec{y}=\operatorname{sh} \beta_{1} \vec{\omega}, \vec{\omega} \in S^{n-1}(1) \text { if } n>2, \tag{D.0.3}
\end{gather*}
$$

where $S^{k}(1)$ is the k-dimensional unit sphere. In terms of (D.0.2) the metric (D.0.1) takes the form

$$
\begin{align*}
d s^{2}=\gamma_{\mu \nu} d x^{\mu} d x^{\nu}=(\tau & \left.+s^{2} \beta_{1}\right) d \beta^{2}+\frac{1+\tau \operatorname{sh}^{2} \beta_{1}}{\operatorname{ch}^{2} \beta_{1}} d \beta_{1}^{2}-d \tau d \beta \\
& -\frac{\operatorname{sh} \beta_{1}}{\operatorname{ch} \beta_{1}} d \tau d \beta_{1}+\frac{2(\tau-1) \operatorname{sh} \beta_{1}}{\operatorname{ch} \beta_{1}} d \beta_{1} d \beta \tag{D.0.4}
\end{align*}
$$

and a term $s h^{2} \beta_{1} d \vec{\omega}^{2}$ has to be added to (D.0.4) if $n>2$. One finds

$$
\begin{equation*}
\operatorname{det} \gamma_{\mu \nu}=-\frac{1}{4} c h^{2} \beta_{1} s h^{2(n-2)} \dot{\beta}_{1} \operatorname{det} h_{A B}^{0} \tag{D.0.5}
\end{equation*}
$$

$h_{A B}^{0}$ - the round metric on a $n-1$ dimensional sphere ($\operatorname{det} h_{A B}^{0}=1$ if $n=2$). Equation (D.0.4) and the definition of $\mathcal{M}_{\Lambda_{0}}$ show that (τ, β, β_{1}) can be used as coordinates on $\mathcal{M}_{\Lambda_{0}}$ if β is identified with $\beta+\beta_{0}$. By (D.0.5) it follows that (D.0.4) gives an analytic extension of the flat metric on $\mathcal{M}_{\Lambda_{0}}$ to the larger manifold M,

$$
\begin{gather*}
\tau \in(-\infty, \infty), \quad \beta_{1} \in(-\infty, \infty) \text { for } n=2, \quad \sinh \beta_{1} \vec{\omega} \in \mathbb{R}^{n-1} \text { for } n>2 \tag{D.0.6}\\
\left.\beta \in\left[0, \beta_{0}\right]\right|_{\bmod \beta_{0}}
\end{gather*}
$$

Another extension $(\tilde{M}, \tilde{\gamma})$ is obtained by defining coordinates $\left(\tau, \tilde{\beta}, \beta_{1}\right)$, with $\left.\tilde{\beta} \in\left[0, \beta_{0}\right]\right|_{\bmod \beta_{0}}$ and $\tau, \beta_{1}-$ as in (D.0.6), by

$$
\begin{equation*}
t=\operatorname{ch} \beta_{1} \operatorname{ch} \tilde{\beta}+\frac{(\tau-1) e^{\tilde{\beta}}}{2 \operatorname{ch} \beta_{1}}, \quad x=\operatorname{ch} \beta_{1} \operatorname{sh} \tilde{\beta}+\frac{(\tau-1) e^{\tilde{\beta}}}{2 \operatorname{ch} \beta_{1}} \tag{D.0.7}
\end{equation*}
$$

y as in (D.0.3), which yields

$$
\begin{align*}
d s^{2}=\tilde{\gamma}_{\mu \nu} d x^{\mu} d x^{\nu}= & \left(\tau+\operatorname{sh}^{2} \beta_{1}\right) d \tilde{\beta}^{2}+\frac{\left(1+\tau s h^{2} \beta_{1}\right)}{\operatorname{ch}^{2} \beta_{1}} d \beta_{1}^{2}+d \tau d \tilde{\beta} \tag{D.0.8}\\
& -\frac{s h \beta_{1}}{\operatorname{ch} \beta_{1}} d \tau d \beta_{1}-\frac{2(\tau-1) \operatorname{sh} \beta_{1}}{\operatorname{ch} \beta_{1}} d \tilde{\beta} d \beta_{1} \tag{D.0.9}\\
\operatorname{det} \tilde{\gamma}_{\mu \nu}= & -\frac{\operatorname{ch}^{2} \beta_{1}}{4} \operatorname{sh}^{2(n-2)} \beta_{1} \operatorname{det} h_{A B}^{0}
\end{align*}
$$

There exists an isometry $\Phi:\{p \in M: \tau(p)>0\} \rightarrow \tilde{M}$, where Φ is obtained by calculating $\left(\tau, \tilde{\beta}, \beta_{1}\right)$ as a function of ($\left.\tau, \beta, \beta_{1}\right)$ from (D.0.2) and (D.0.7). From the equation

$$
e^{\tilde{\beta}}=\frac{e^{\beta} \operatorname{ch}^{2} \beta_{1}}{\tau+\operatorname{sh}^{2} \beta_{1}}
$$

it follows that $\tilde{\beta}$ blows up at $\tau=\beta_{1}=0$, thus Φ cannot be extended beyond $\tau=0$. It should be noted that the map $\Psi: M \rightarrow \tilde{M}$ defined by

$$
\tau \rightarrow \tau, \quad \beta \rightarrow-\tilde{\beta}, \quad \beta_{1} \rightarrow \beta_{1}
$$

is a globally defined isometry, thus (M, γ) and $(\tilde{M}, \tilde{\gamma})$ are isometric. (M, γ) and $(\tilde{M}, \tilde{\gamma})$ are, however, inequivalent space-times from a Cauchy problem point of view for the following reason: let $i: \Sigma \rightarrow M, \tilde{\imath}: \tilde{\Sigma} \rightarrow \tilde{M}$ be embeddings such that M and \tilde{M} are developments of the Cauchy data set (Σ, g, K), then there exists no isometry $\Xi: M \rightarrow \tilde{M}$ such that $\Xi \circ i=\tilde{\imath}(c f .[36])$.

It should be noted that the space-times described above, restricted to the $t-x$ plane, coincide with the so-called "Misner model" for the Taub-NUT space-time.

