Appendix B

On a class of $U(1) \times U(1)$ symmetric metrics found by V.Moncrief.

In this Appendix we shall prove that "strong cosmic censorship" holds in a six parameter family of non-polarized $U(1) \times U(1)$ symmetric metrics found by Moncrief ${ }^{1}$ [93]. Apart from being interesting in their own right, these metrics provide a good testing ground for various a priori estimates one can obtain for general $U(1) \times U(1)$ symmetric metrics, cf. Chapter 3.

Throughout this Appendix the letter C denotes a constant the value of which may vary from line to line.

B. 1 A harmonic map problem.

Let $x(t, \theta)=(\rho(t, \theta), \phi(t, \theta))$ be a map from two-dimensional Minkowski space to a two dimensional constant mean curvature hyperoboloid, set

$$
X_{t}=\frac{\partial x^{A}}{\partial t} \frac{\partial}{\partial x^{A}}=\frac{\partial \rho}{\partial t} \frac{\partial}{\partial \rho}+\frac{\partial \phi}{\partial t} \frac{\partial}{\partial \phi}, \quad X_{\theta}=\frac{\partial x^{A}}{\partial \theta} \frac{\partial}{\partial x^{A}}=\frac{\partial \rho}{\partial \theta} \frac{\partial}{\partial \rho}+\frac{\partial \phi}{\partial \theta} \frac{\partial}{\partial \phi}
$$

On the hyperboloid one can introduce coordinates in which the metric takes the form

$$
d s^{2}=d \rho^{2}+\sinh ^{2} \rho d \phi^{2}
$$

[^0]The Christoffel symbols are easily calculated to be

$$
\Gamma_{\phi \phi}^{\rho}=-\sinh \rho \cosh \rho, \quad \Gamma_{\phi \phi}^{\rho}=\frac{\cosh \rho}{\sinh \rho}
$$

so that the Gowdy equations

$$
\frac{D X_{t}}{D t}-\frac{D X_{\theta}}{D \theta}=-\frac{X_{t}}{t}
$$

where D is the covariant derivative in the target space, $D_{t} \equiv D_{X_{t}}, D_{\theta} \equiv D_{X_{\theta}}$, take the form

$$
\begin{align*}
& \left(\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial \theta^{2}}\right) \phi=-\frac{1}{t} \frac{\partial \phi}{\partial t}-2 \operatorname{coth} \rho\left(\frac{\partial \rho}{\partial t} \frac{\partial \phi}{\partial t}-\frac{\partial \rho}{\partial \theta} \frac{\partial \phi}{\partial \theta}\right) \tag{B.1.1}\\
& \left(\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial \theta^{2}}\right) \rho=-\frac{1}{t} \frac{\partial \rho}{\partial t}+\sinh \rho \cosh \rho\left(\left(\frac{\partial \phi}{\partial t}\right)^{2}-\left(\frac{\partial \phi}{\partial \theta}\right)^{2}\right) \tag{B.1.2}
\end{align*}
$$

It has been observed by V. Moncrief [93] that the ansatz

$$
\begin{equation*}
\rho=\rho(t), \quad \phi=n \theta \tag{B.1.3}
\end{equation*}
$$

is compatible with the above equations, which then reduce to a single ordinary differential equation for ρ

$$
\begin{equation*}
\frac{d^{2} \rho}{d \tau^{2}}=-n^{2} \sinh \rho \cosh \rho e^{-2 \tau}, \quad\left(t=e^{-\tau}\right) \tag{B.1.4}
\end{equation*}
$$

For given θ_{0} the function $\rho(t)$ should be thought of as an affine parameter on the geodesic $\Gamma=\left\{\theta=\theta_{0}, \rho \geq 0\right\} \cup\left\{\theta=\pi+\theta_{0}, \rho \geq 0\right\}$ on the hyperboloid, rather than a radial coordinate constrained to satisfy $\rho \geq 0$, so that a change of sign of ρ means that $\rho(t)$ has crossed the origin along Γ. The following gives a complete description of the behaviour as $t \rightarrow 0$ of solutions of (B.1.4):

Proposition B.1.1 1. For $\tau_{o}>-\infty$ and for every solution $\rho \in C_{2}\left(\left[\tau_{o}, \infty\right)\right)$ of (B.1.4) there exist constants $0 \leq\left|v_{\infty}\right|<1$ and $\rho_{\infty} \in \mathbb{R}$ such that

$$
\begin{equation*}
\left|\rho(\tau)-v_{\infty} \tau-\rho_{\infty}\right|+\left|\frac{d \rho}{d \tau}(\tau)-v_{\infty}\right| \leq C e^{-2\left(1-\left|v_{\infty}\right|\right) \tau} \tag{B.1.5}
\end{equation*}
$$

for all $\tau_{0} \leq \tau<\infty$, for some constant C.
2. For every $0 \leq\left|v_{\infty}\right|<1$ and every $\rho_{\infty} \in \mathbb{R}$ there exists a solution of (B.1.4) satisfying (B.1.5). If $\rho_{\infty}=v_{\infty}=0$ then $\rho(\tau) \equiv 0$.

Proof: 1. Let

$$
g(\tau) \equiv\left(\frac{d \rho}{d \tau}\right)^{2}+\frac{n^{2}}{2} \cosh ^{2} \rho e^{-2 \tau}
$$

We have

$$
\frac{d g(\tau)}{d \tau}=-n^{2} \cosh ^{2} \rho e^{-2 \tau}
$$

which shows that g is monotonically decreasing, so that $g_{\infty}=\lim _{\tau \rightarrow \infty} g(\tau)$ exists and we have

$$
\begin{gather*}
g(\tau)=g_{\infty}+n^{2} \int_{\tau}^{\infty} \cosh ^{2} \rho(s) e^{-2 s} d s \Longrightarrow \\
\int_{\tau_{o}}^{\infty} \cosh ^{2} \rho(s) e^{-2 s} d s<\infty \tag{B.1.6}
\end{gather*}
$$

For $\tau_{1} \geq \tau_{2}$ it follows from (B.1.4) that

$$
\begin{aligned}
\left|\frac{d \rho}{d \tau}\left(\tau_{1}\right)-\frac{d \rho}{d \tau}\left(\tau_{2}\right)\right| & =n^{2}\left|\int_{\tau_{2}}^{\tau_{1}} \sinh \rho(s) \cosh \rho(s) e^{-2 s} d s\right| \\
& \leq n^{2} \int_{\tau_{2}}^{\tau_{1}} \cosh ^{2} \rho(s) e^{-2 s} d s
\end{aligned}
$$

which together with (B.1.6) implies that $\lim _{\tau \rightarrow \infty} \frac{d \rho}{d \tau}(\tau)=v_{\infty}$ exists.
Let us first assume $v_{\infty}=0$, then for any $\epsilon>0$ there exists τ_{1} such for $\tau>\tau_{1}$ we have $\left|\frac{d \rho}{d \tau}\right|<\epsilon$, which implies that $|\rho| \leq \epsilon \tau+C$, and (B.1.4) gives

$$
\left|\frac{d^{2} \rho}{d \tau^{2}}\right| \leq C_{1} e^{-2(1-\epsilon) \tau} \Rightarrow\left|\frac{d \rho}{d \tau}\right| \leq C_{2} e^{-2(1-\epsilon) \tau}
$$

by integration, and one more integration shows that the limit $\lim _{\tau \rightarrow \infty} \rho(\tau)=\rho_{\infty}$ exists and we have

$$
\left|\rho-\rho_{\infty}\right| \leq C_{3} e^{-2(1-\epsilon) \tau} \Rightarrow\left|\frac{d^{2} \rho}{d \tau^{2}}\right| \leq C_{4} e^{-2 \tau} \Rightarrow\left|\rho-\rho_{\infty}\right| \leq C_{5} e^{-2 \tau}
$$

for some constants $C_{1}-C_{5}$, which had to be established for $v_{\infty}=0$.
If $v_{\infty} \neq 0$, it follows that $\frac{d \rho}{d \tau}$ has constant sign for $\tau \geq \tau_{1}, \tau_{1}$ large enough, so that ρ has constant sign for large enough times, and multiplying ρ by -1 if necessary we may
assume that for $\tau>\tau_{1}$ we have $\rho(\tau)>0$, and also $v_{\infty}>0$. Let us show that $v_{\infty}<1$. Equation (B.1.4) implies that $\frac{d \rho}{d \tau}$ is non-increasing, so that if $0<\frac{d \rho}{d \tau}\left(\tau_{o}\right)<1$ we are done, let us therefore assume that $\frac{d \rho}{d \tau}\left(\tau_{o}\right)>1$. Let $\tau_{1} \leq \infty$ be such that for $\tau_{o} \leq \tau<\tau_{1}$ we have $\frac{d \rho}{d \tau}(\tau)>1$, with $\frac{d \rho}{d \tau}\left(\tau_{1}\right)=1$ if $\tau_{1}<\infty$. For $\tau \in\left[\tau_{o}, \tau_{1}\right]$ we have

$$
\rho(\tau)-\rho\left(\tau_{o}\right)=\int_{\tau_{o}}^{\tau} \frac{d \rho}{d \tau}(s) d s \geq \tau-\tau_{o}
$$

so that

$$
\begin{aligned}
\frac{d \rho}{d \tau}(\tau) & =\frac{d \rho}{d \tau}\left(\tau_{o}\right)-\int_{\tau_{o}}^{\tau} \frac{n^{2}}{4}\left(e^{2(\rho(r)-s)}-e^{-2 \rho(s)-2 s}\right) d s \\
& \leq \frac{d \rho}{d \tau}\left(\tau_{o}\right)-\int_{\tau_{o}}^{\tau} \frac{n^{2}}{4} e^{2\left(\rho\left(\tau_{o}\right)-\tau_{o}\right)} d s+\frac{n^{2}}{4} \int_{\tau_{o}}^{\tau} e^{-2\left(\rho\left(\tau_{0}\right)+s\right)} d s \\
& \leq \frac{d \rho}{d \tau}\left(\tau_{o}\right)-\frac{n^{2}}{4}\left(\tau-\tau_{o}\right) e^{2\left(\rho\left(\tau_{o}\right)-\tau_{o}\right)}+\frac{n^{2}}{8} e^{-2\left(\tau_{o}+\rho\left(\tau_{o}\right)\right)}
\end{aligned}
$$

which is smaller than 1 for sufficiently large τ so that $\tau_{1}<\infty$, and our claim follows. Define

$$
r=\rho(\tau)-v_{\infty} \tau
$$

The function r satisfies $\lim _{\tau \rightarrow \infty} \frac{d r}{d \tau}=0$, setting $\lambda=2\left(1-v_{\infty}\right)>0$ one obtains

$$
\begin{equation*}
\frac{d^{2} r}{d \tau^{2}}=-\frac{n^{2}}{4}\left(e^{2 r-\lambda \tau}-e^{-2 r-2\left(1+v_{\infty}\right) \tau}\right) \tag{B.1.7}
\end{equation*}
$$

For $\tau>\tau_{1}(\epsilon)$, with $\tau_{1}(\epsilon)>0$ sufficiently large, we have $\left|\frac{d r}{d \tau}\right| \leq \epsilon$ for any $\epsilon>0$, therefore $|r(\tau)| \leq\left|r\left(\tau_{1}(\epsilon)\right)\right|+\epsilon \tau$ and for $2 \epsilon<\lambda / 2$ one gets $\frac{d^{2} r}{d \tau^{2}}=O\left(e^{-\lambda \tau / 2}\right)$; by integration one obtains $\left|\frac{d r}{d \tau}\left(\tau_{2}\right)-\frac{d r}{d \tau}(\tau)\right|=O\left(e^{-\lambda \tau / 2}\right)$, for $\tau_{2}>\tau$. Passing with τ_{1} to ∞ one gets $\frac{d r}{d \tau}=O\left(e^{-\lambda r / 2}\right)$, which integrating again yields, for $\tau_{2}>\tau$

$$
\left|r\left(\tau_{2}\right)-r(\tau)\right|=O\left(e^{-\lambda \tau / 2}\right)
$$

it ensues in a simple way that there exists a constant ρ_{∞} such that

$$
\left|r(\tau)-\rho_{\infty}\right|=O\left(e^{-\lambda \tau / 2}\right)
$$

Coming back to the equation (B.1.7) satisfied by r we have in fact

$$
\left|\frac{d^{2} r}{d \tau^{2}}\right|=O\left(e^{-\lambda \tau}\right)
$$

which gives by a similar argument

$$
\left|\frac{d r}{d \tau}(\tau)\right|+\left|r(\tau)-\rho_{\infty}(\tau)\right| \leq C e^{-2\left(1-v_{\infty}\right) \tau}
$$

so that (B.1.5) follows.
2. Multiplying ρ by -1 if necessary we may assume $v_{\infty} \geq 0$. Equations (B.1.4) and (B.1.5) are equivalent to the following integral equation for $p(\tau)=\rho(\tau)-v_{\infty} \tau-\rho_{\infty}$:

$$
\begin{gathered}
p(\tau)=T(p)(\tau) \\
T(p)(\tau)=-\frac{n^{2}}{4} \int_{\tau}^{\infty}(s-\tau)\left(e^{2 p(s)+2 \rho_{\infty}}-e^{-2 p(s)+2 \rho_{\infty}-4 v_{\infty} s}\right) e^{-\lambda s} d s
\end{gathered}
$$

with $\lambda=2\left(1-v_{\infty}\right)$. Let $H=\left\{p \in C\left(\left[\tau_{1}, \infty\right)\right),\|p(\tau)\|=\sup _{\tau}\left|e^{\lambda \tau / 2} p(\tau)\right|<\infty\right\}$. One checks without difficulty that there exists $\tau_{1}\left(v_{\infty}, \rho_{\infty}, n\right)<\infty$ such that T takes the unit ball of H into itself, and that T is a contraction - the claim follows by the contraction mapping principle. Finally if $v_{\infty}=\rho_{\infty}=0$ then there are no "driving terms" in T so that the contraction property implies $p \equiv 0$.

Let us analyze the behaviour of solutions of (B.1.4) as $t \rightarrow \infty(\tau \rightarrow-\infty)$:

Proposition B.1.2 For $t_{o}>0$ let $\rho \in C^{2}\left(\left[t_{o}, \infty\right)\right)$ be a solution of (B.1.4).

1. There exists a constant C such that

$$
\begin{equation*}
|\rho|+\left|\frac{d \rho}{d t}\right| \leq C t^{-1 / 2} \tag{B.1.8}
\end{equation*}
$$

2. There exist constants e_{∞}, C_{1} such that

$$
\begin{equation*}
\left|t\left[\left(\frac{d \rho}{d t}\right)^{2}+n^{2} \sinh ^{2} \rho\right]-e_{\infty}\right| \leq C t^{-1} \tag{B.1.9}
\end{equation*}
$$

$$
\text { If } e_{\infty}=0 \text {, then } \rho \equiv 0
$$

Remark: The proof below suggests very strongly that we have the expansion

$$
\rho=A \cos (n t+\delta) t^{-1 / 2}+B_{1}(t) t^{-3 / 2}+B_{2}(t) t^{-5 / 2}+\ldots
$$

for some constants A, δ and some functions $B_{i}(t)$ which are polynomials in $\sin (n t)$ and $\cos (n t)$.

Proof: Define

$$
\psi(t)=t^{1 / 2} \rho(t) ;
$$

ψ satisfies the equation

$$
\begin{equation*}
\frac{d^{2} \psi}{d t^{2}}=-\frac{\psi}{4 t^{2}}-\frac{n^{2} t^{1 / 2}}{2} \sinh (2 \rho) \tag{B.1.10}
\end{equation*}
$$

Let us set

$$
\begin{equation*}
e(t)=\left(\frac{d \psi}{d t}\right)^{2}+\frac{\psi^{2}}{4 t^{2}}+\frac{n^{2} t}{2}(\cosh (2 \rho)-1) \tag{B.1.11}
\end{equation*}
$$

we have

$$
\begin{gather*}
\frac{d e}{d t}=-\frac{\psi^{2}}{2 t^{3}}-n^{2} V(\rho) \tag{B.1.12}\\
V(\rho)=\rho \sinh (2 \rho)+1-\cosh (2 \rho)
\end{gather*}
$$

We have $V(0)=V^{\prime}(0)=0$ and $V^{\prime \prime}(\rho)=4 \rho \sinh (2 \rho) \geq 0$, thus $V(\rho) \geq 0$, so that

$$
\begin{equation*}
\frac{d e}{d t} \leq 0 \tag{B.1.13}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
\left(\frac{d \psi}{d t}\right)^{2} \leq C, \quad t\left(\cosh \left(2 t^{-1 / 2} \psi\right)-1\right) \leq C \tag{B.1.14}
\end{equation*}
$$

for some constant C. The inequality $\cosh (2 \rho)-1 \geq 2 \rho^{2}$ and the second inequality in (B.1.14) give

$$
\begin{equation*}
\psi^{2} \leq C \tag{B.1.15}
\end{equation*}
$$

and (B.1.8) follows. Taylor expanding $\cosh \rho$ to fourth order in (B.1.11) and making use of (B.1.15) one obtains

$$
\begin{equation*}
e(t)=\left(\frac{d \psi}{d t}\right)^{2}+n^{2} \psi^{2}+O\left(t^{-1}\right) \tag{B.1.16}
\end{equation*}
$$

From (B.1.13) it follows that e is monotone, therefore the limit $e_{\infty}=\lim _{t \rightarrow \infty} e(t)$ exists. There exists a constant C_{V} such that for $\rho \leq 1$ we have $|V(\rho)| \leq C_{V} \rho^{4}$, and since ρ tends to zero as t goes to infinity there exists a T such that for $t \geq T$ we have $|V(\rho)| \leq C_{V} \psi^{4} t^{-2} \leq C^{\prime} t^{-2}$, and integrating (B.1.12) one obtains

$$
\begin{equation*}
\left|e(t)-e_{\infty}\right| \leq C t^{-1} \tag{B.1.17}
\end{equation*}
$$

so that (B.1.16) leads to

$$
\left(\frac{d \psi}{d t}\right)^{2}+n^{2} \psi^{2}-e_{\infty}=O\left(t^{-1}\right)
$$

a simple calculation gives

$$
t\left[\left(\frac{d \rho}{d t}\right)^{2}+n^{2} \sinh ^{2} \rho\right]=e_{\infty}+O\left(t^{-1}\right)
$$

which proves (B.1.9). Suppose finally that $e_{\infty}=0$. The inequality (B.1.17) together with $e_{\infty}=0$ implies

$$
\begin{equation*}
\left|\frac{d \psi}{d t}(t)\right|+|\psi(t)| \leq C t^{-1 / 2} \tag{B.1.18}
\end{equation*}
$$

Inserting (B.1.18) into (B.1.12) and repeating iteratively the above argument one shows that for any $\ell \in \mathbb{N}$ there exists $C(\ell)$ such that

$$
\begin{equation*}
|\psi(t)|+e(t) \leq C(\ell) t^{-\ell} \tag{B.1.19}
\end{equation*}
$$

The inequalities (B.1.19) with $\ell=2$ and $V(\rho) \leq C_{V} \rho^{4}$ give

$$
n^{2} V(\rho) \leq C_{V} n^{2} \rho^{4}=\frac{C_{V} n^{2} \psi^{4}}{t^{2}} \leq \frac{C_{V} n^{2} C(2)^{2}}{t^{3}} \frac{\psi^{2}}{t^{3}} \leq \frac{\psi^{2}}{2 t^{3}}
$$

for $t \geq t_{1}=\left[2 C_{V} n^{2} C(2)^{2}\right]^{1 / 3}$, which leads to

$$
\begin{aligned}
-\frac{e}{t} \leq-\frac{\psi^{2}}{4 t^{3}}= & \frac{1}{4}\left[\frac{d e}{d t}-\left(\frac{\psi^{2}}{2 t^{3}}-n^{2} V(\rho)\right)\right] \leq \frac{1}{4} \frac{d e}{d t} \\
& \Longrightarrow \frac{d e}{d t} \geq-\frac{4 e}{t}
\end{aligned}
$$

which implies

$$
t_{1} \leq t_{2} \leq t_{3} \quad e\left(t_{2}\right) \leq \frac{e\left(t_{3}\right) t_{3}^{4}}{t_{2}^{4}}
$$

passing with t_{3} to infinity one obtains $e(t) \equiv 0, \psi \equiv \rho \equiv 0$, which had to be established.

B. 2 Moncrief's space-times.

Let $M=\left\{t \in(0, \infty), \theta, x^{a} \in[0,2 \pi]_{\mid \bmod 2 \pi}, a=1,2\right\}$. Consider the following Gowdy-type metrics

$$
\begin{gather*}
d s^{2}=\gamma_{\mu \nu} d x^{\mu} d x^{\nu}=e^{2 B}\left(-d t^{2}+d \theta^{2}\right)+\lambda t n_{a b}\left(d x^{a}+g^{a} d \theta\right)\left(d x^{b}+g^{b} d \theta\right) \tag{B.2.1}\\
n_{a b} d x^{a} d x^{b}=(\cosh \rho+\cos \phi \sinh \rho)\left(d x^{1}\right)^{2}+2 \sinh \rho \sin \phi d x^{1} d x^{2} \\
+(\cosh \rho-\cos \phi \sinh \rho)\left(d x^{2}\right)^{2} \\
\rho=\rho(t, \theta), \quad \phi=\phi(t, \theta)
\end{gather*}
$$

where λ and g^{a} are real constants, $\lambda>0$. For a metric of the form (B.2.1) the dynamical part of Einstein equations reduces to the equations (B.1.1)-(B.1.2), and assuming Moncrief's ansatz (B.1.3) one finds that $B=B(t)$ (cf. e.g. eqs. (2.30) and (2.33) of [32]; the constants c_{a} appearing in these equations vanish for the metrics (B.2.1)), and

$$
\begin{equation*}
\frac{d B}{d t}=-\frac{1}{4 t}+\frac{t}{4}\left[\left(\frac{d \rho}{d t}\right)^{2}+n^{2} \sinh ^{2} \rho\right] . \tag{B.2.2}
\end{equation*}
$$

In this way we obtain a family of metrics parametrized by six parameters - λ, g^{a}, $a=1,2$, an integration constant B_{o} for B and two real constants parametrizing solutions of the equation (B.1.4), e.g. v_{∞} and ρ_{∞} given by Proposition B.1.1. (Out of these parameters of course only v_{∞} and ρ_{∞} are dynamically interesting.) We shall refer to these space-times as Moncrief's space-times.

Proposition B.2.1 All Moncrief's space-times are future causally geodesically complete.

Proof: If the constant e_{∞} given by Proposition B.1.2 vanishes ($\Rightarrow \rho \equiv 0, c f$. Proposition B.1.2) one easily checks that the metric can be put in Kasner's form with exponents $\left(p_{1}, p_{2}, p_{3}\right)=\left(\frac{2}{3}, \frac{2}{3},-\frac{1}{3}\right)$ or permutation thereof (cf. Section 2.4 for a description of Kasner metrics), in which case it is easy to show future geodesic completeness, we shall thus consider the case $e_{\infty} \neq 0$ only. Let $\Gamma(s)=\left\{x^{\mu}(s)\right\}$ be a future inextendible future
directed affinely parametrized causal geodesic. From $\gamma_{\mu \nu} \frac{d x^{\mu}}{d s} \frac{d x^{\nu}}{d s}=-\epsilon, \epsilon \in\{0,1\}$, and from

$$
\frac{d p_{a}}{d s} \equiv \frac{d}{d s}\left(\gamma_{\mu \nu} \frac{d x^{\mu}}{d s} X_{a}^{\nu}\right)=0
$$

where $X_{a}^{\nu} \frac{\partial}{\partial x^{\nu}}$ are the Killing vectors $\frac{\partial}{\partial x^{a}}, a=1,2$, one obtains the following equations,

$$
\begin{aligned}
& e^{2 B}\left[\left(\frac{d t}{d s}\right)^{2}-\left(\frac{d \theta}{d s}\right)^{2}\right]=\epsilon+\bar{g}^{a b} p_{a} p_{b} \\
& \frac{d x^{a}}{d s}=-g^{a} \frac{d \theta}{d s}+p^{a}, \quad p^{a} \equiv \bar{g}^{a b} p_{b}
\end{aligned}
$$

where $\bar{g}^{a b} \equiv\left(g_{a b}\right)^{-1}, g_{a b}=\lambda t n_{a b}$. The t part of the equations satisfied by a geodesic reads

$$
\begin{equation*}
\frac{d}{d s}\left(B^{2} \frac{d t}{d s}\right)=B^{2} e^{-2 B}\left[\left(\epsilon+\bar{g}^{a b} p_{a} p_{b}\right) \frac{d B}{d t}-\frac{1}{2} \frac{\partial g_{a b}}{\partial t} p^{a} p^{b}\right] \tag{B.2.3}
\end{equation*}
$$

Non-spacelikeness of Γ implies that Γ can be parametrized by t, which allows us to rewrite (B.2.3) as

$$
\begin{gather*}
\frac{d}{d t}\left(B^{4}\left(\frac{d t}{d s}\right)^{2}\right)=f \tag{B.2.4}\\
f \equiv 2 B^{4} e^{-2 B}\left[\left(\epsilon+\bar{g}^{a b} p_{a} p_{b}\right) \frac{d B}{d t}-\frac{1}{2} \frac{\partial g_{a b}}{\partial t} p^{a} p^{b}\right] \tag{B.2.5}
\end{gather*}
$$

From (B.2.2) and Proposition B.1.2, point 2, we have

$$
\frac{d B}{d t}=\frac{e_{\infty}}{4}+O\left(t^{-1}\right) \quad \Longrightarrow \quad B=\frac{e_{\infty}}{4} t+O(\ln t)
$$

which together with (B.1.8) shows that f converges exponentially fast to zero as t goes to infinity, therefore there exists a constant C such that

$$
B^{4}\left(\frac{d t}{d s}\right)^{2} \leq C
$$

which for t large enough gives

$$
t^{4}\left(\frac{d t}{d s}\right)^{2} \leq\left(\frac{8}{e_{\infty}}\right)^{4} C
$$

and for $s_{2} \geq s_{1}$ one obtains

$$
s_{2} \geq s_{1}+\left[3\left(\frac{8}{e_{\infty}}\right)^{2} C^{1 / 2}\right]^{-1}\left(t^{3}\left(s_{2}\right)-t^{3}\left(s_{1}\right)\right)
$$

so that $s_{2} \rightarrow \infty$ as $t\left(s_{2}\right) \rightarrow \infty$, which had to be established.

Proposition B.2.2 Let Γ be either a past inextendible timelike curve parametrized by proper time, or an affinely parametrized past inextendible null geodesic, in a Moncrief's space-time. Then

1. Γ reaches the boundary $t=0$ in finite proper time or finite affine time, say s_{o}, and
2. we have

$$
\left.\lim _{s \rightarrow s_{0}}\left(R^{\alpha \beta \gamma \delta} R_{\alpha \beta \gamma \delta}\right)\right|_{\Gamma}(s)=\infty
$$

Proof: From (B.2.2) and from Proposition B.1.1 it follows that there exists a constant B_{o} such that

$$
\begin{equation*}
e^{B}=e^{B_{o}} t^{\left(v_{\infty}^{2}-1\right) / 4}\left(1+O\left(t^{2\left(1-\left|v_{\infty}\right|\right)}\right)\right) \tag{B.2.6}
\end{equation*}
$$

Consider first a timelike curve $\Gamma=\left\{x^{\mu}(s)\right\}$ parametrized by proper time s, with $t(s)$ decreasing as s increases,

$$
\begin{equation*}
e^{2 B}\left[\left(\frac{d t}{d s}\right)^{2}-\left(\frac{d \theta}{d s}\right)^{2}\right]-\lambda t n_{a b}\left(\frac{d x^{a}}{d s}+g^{a} \frac{d \theta}{d s}\right)\left(\frac{d x^{b}}{d s}+g^{b} \frac{d \theta}{d s}\right)=1 . \tag{B.2.7}
\end{equation*}
$$

Equation (B.2.7) implies

$$
e^{B} \frac{d t}{d s} \leq-1
$$

(recall that Γ is past-directed) which together with (B.2.6) gives, for $s_{2} \geq s_{1}$, with $t\left(s_{1}\right)$ - small enough,

$$
s_{2} \leq s_{1}+\frac{8 e^{B_{0}}}{3+v_{\infty}^{2}}\left(t^{\left(3+v_{\infty}^{2}\right) / 4}\left(s_{1}\right)-t^{\left(3+v_{\infty}^{2}\right) / 4}\left(s_{2}\right)\right),
$$

so that any timelike curve reaches $t=0$ in finite proper time. To prove the result for null geodesics, some more work is required. In what follows we shall write that

$$
f \approx g
$$

if

$$
\lim _{t \rightarrow 0} \frac{f}{g}=1
$$

From (B.2.2) and from Proposition B.1.1 we have

$$
\begin{gather*}
\frac{d B}{d t}(t) \approx \frac{v_{\infty}^{2}-1}{4 t}, \quad B(t) \approx \frac{v_{\infty}^{2}-1}{4} \ln t \tag{B.2.8}\\
d s^{2} \approx e^{2 B_{o}} t^{\left(v_{\infty}^{2}-1\right) / 2}\left(-d t^{2}+d \theta^{2}\right)+\lambda t^{1-\left|v_{\infty}\right|\left\{\frac{1+\cos (n \theta)}{2}\left(d x^{1}+g^{1} d \theta\right)^{2}\right.} \\
\left.+\sin (n \theta)\left(d x^{1}+g^{1} d \theta\right)\left(d x^{2}+g^{2} d \theta\right)+\frac{1-\cos (n \theta)}{2}\left(d x^{2}+g^{2} d \theta\right)^{2}\right\} \tag{B.2.9}\\
\frac{\partial g_{a b}}{\partial t} \equiv \frac{\partial\left(\lambda t n_{a b}\right)}{\partial t} \approx \frac{1-\left|v_{\infty}\right|}{t} g_{a b} \tag{B.2.10}
\end{gather*}
$$

with (B.2.9) holding for $\left|v_{\infty}\right|>0$, and (B.2.8), (B.2.10) holding for $0 \leq\left|v_{\infty}\right|<1$. Consider null geodesics such that $\left(p^{1}\right)^{2}+\left(p^{2}\right)^{2} \neq 0$; the case $p^{1}=p^{2}=0$ is analyzed by a similar simpler argument. From (B.2.4)-(B.2.5) and (B.2.10) one obtains t small enough,

$$
\frac{d}{d t}\left(B^{4}\left(\frac{d t}{d s}\right)^{2}\right) \approx-\frac{e^{-2 B_{o}}}{2}\left(\frac{v_{\infty}^{2}-1}{4}\right)^{4}\left(3-2\left|v_{\infty}\right|-v_{\infty}^{2}\right) t^{-\left(1+v_{\infty}^{2}\right) / 2} \ln ^{4} t \bar{g}^{a b} p_{a} p_{b} \leq 0
$$

so that $B^{4}\left(\frac{d t}{d s}\right)^{2}$ increases as $t(s)$ goes to zero for $t\left(s_{1}\right) \leq t_{1}$, for some t_{1} small enough, therefore for $s \geq s_{1}$

$$
B^{4}\left(\frac{d t}{d s}\right)^{2} \geq C
$$

and an argument similar to the one for timelike curves shows that Γ must reach $t=0$ in finite affine time.

To analyze the behaviour of the curvature near $t=0$, with the help of a SHEEP calculation ${ }^{2}$ one finds

$$
R^{\alpha \beta \gamma \delta} R_{\alpha \beta \gamma \delta} \approx \frac{e^{-4 B}}{4 t^{4}}\left[\left(1-v_{\infty}^{2}\right)^{2}\left(3+v_{\infty}^{2}\right)\right]
$$

and (B.2.6) gives

$$
\begin{equation*}
R^{\alpha \beta \gamma \delta} R_{\alpha \beta \gamma \delta} \geq C t^{-\left(v_{\infty}^{2}+3\right)} \tag{B.2.11}
\end{equation*}
$$

for some constant C , so that the curvature blows up uniformly along all curves as t approaches zero.

From Propositions B.2.1, B.2.2, and C.2.4 one obtains

[^1]Theorem B.2.1 Let $\Sigma=T^{3}$, let $X(\Sigma)$ be the space of Cauchy data for Moncrief's metrics. The Theorem-To-Be-Proved holds in $X(\Sigma)$, with $Y(\Sigma)=X(\Sigma)$; more precisely, every maximal Hausdorff developement of a Cauchy data set for a Moncrief metric is globally hyperbolic, therefore unique, and inextendible, in vacuum or otherwise, in the class of Hausdorff Lorentzian manifolds with $C_{l o c}^{1,1}$ metrics.

[^0]: ${ }^{1}$ A similar class of harmonic maps has been considered independently by Shatah and Tahvildar-Zadeh in [118]; cf. also [63].

[^1]: ${ }^{2}$ The author is grateful to D. Singleton for performing this calculation.

