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Abstract 

In joint work with Robin Balean, we have constructed a param
eterisation of the space of all solutions of Maxwell's equations in an 
exterior domain in Minkowski space. The domain has boundary con
sisting of a null cone and a timelike cylinder, and the construction 
arises from uniqueness and existences theorems, which we establish 
within a certain "Lorentz" gauge. The resulting free boundary data 
are unconstrained. 
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Consider the problem of constructing a simple parameterisation of the 
space of solutions of Maxwell's equations. A natural attempt is to use a class 
of "well-posed" boundary conditions, with the success of such an endeavour 
providing our definition of the meaning of "well-posed". What conditions 
should such a class of boundary data fulfill? 

Firstly, the boundary data and conditions should determine a solution1 

uniquely: if two solutions have the same boundary data then they should 
agree. Secondly, for every boundary datum in the class, there should exist 
a solution of Maxwell's equations; and thirdly, every solution of Maxwell's 
equations should be constructible from some datum in the class of boundary 
data. 

A final requirement, arising from the gauge degeneracy of Maxwell's equa
tions, 'is that the boundary data should be unconstrained. By this we mean 

1 For the purposes of this paper, "solution" means coo, with C 00 boundary values. It 
should not be difficult to extend our results to more general regularity conditions. 
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that the boundary data should not be required to satisfy any constraint dif
ferential equations. This condition leads to a transparent parameterisation 
of the space of admissible boundary data. 

However, such constraints seem to be an inevitable feature of formulations 
of Maxwell's equations based on a Cauchy problem. Maxwell's equations 
may be expressed either as dF = 0, d * F = 0 where F = ~F1wdx~' 1\ dxv is 
a spacetime 2-form, or in terms of the electric field Ei = Foi and magnetic 
field Bi = ~f.ijkFjk, as 

![~] 
divE 

div B 

[ 0 -1 J [ curl E ] 
1 0 curlB 

0 

0 

In particular, this shows that any 3+ 1 formulation must have boundary data 
satisfying the constraint divE= 0 (note that div B = 0 is satisfied automat
ically once the parameterisation 

Ei BtAi- 8i¢ 

Bi EijkajAk 

of the curvature (E, B) in terms of the Maxwell potentials (AI')=(¢, Ai) is 
adopted). For example, if we impose the temporal gauge ¢ = A0 = 0, then 
the potential 3-vector Ai satisfies (a; - t;. )Ai = 0 together with the initial 
value constraints 

divA= 0, div(8tA) = 0. 

In particular the Cauchy data for A; cannot be arbitrarily chosen functions, 
since these differential conditions must also be satisfied. Other gauge choices 
lead to similar constraints, and we note also that imposing a constraint like 
divE = 0 typically involves solving an elliptic boundary value problem, 
with consequent nonlocal complications arising if the domain is non-compact 
(decay conditions) or has unspecified boundary conditions. 

We have established [3) a simple classification satisfying all four of these 
conditions, for solutions of Maxwell's equations in an exterior domain 

f! = {(t,x) E R_+ X R.3 1 t 2:: r- ro, r 2:: ro} 

where r = lxl and r 0 E R_+, with boundary consisting of a timelike tube 

'T = {(t,x) E R_+ X R.3 1 r = ro,t 2:: 0} 
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and a characteristic truncated null cone 

C = { ( t, x) E ~+ x ~3 I t - T +To = 0, T 2': To}. 

Rather surprisingly, our formulation of the null-timelike boundary value 
problem involves arbitrary fields without any constraints, neither algebraic 
nor differential. Moreover, decay conditions are not needed- the total en
ergy may be unbounded. Central to our constructions is a careful choice of 
boundary conditions, starting with the LoTentz gauge: 

(1) L(A) := \7~-' A~'= 0 

Introducing the null-polar coordinates ( z, p, 13, r.p ), 

Z = t- T +To, p=T 

with the usual polar coordinates (13, r.p) on S 2 , we may decompose the Maxwell 
potential A by 

whereupon the Lorentz gauge equation becomes 

( ;) ) 

Here A2 := k 8 d13 + Acp sin 13 dr.p is the angular component of A, and 

is the spherical divergence. 
Our Lorentz bounda1·y conditions are now 

(4) 
(5) 

(6) 

0 

0 

0 

where S = C n T = {t = 0, r =To} is the corner sphere. 
Note that in order to express Maxwell's equations globally in n in terms 

of the potentiall-form A, it is necessary (and sufficient) to assume that the 
magnetic charge vanishes: 
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Applying the Lorentz gauge and boundary conditions along the corner sphere 
S shows that the radial electric fieldEr = For= r- 1xi F0; satisfies 

Er := ozAp- opAz = p- 1 div2 A2 on S. 

Thus we must also require that the electric charge also vanish, 

e = _2-__ J *F = _2-__ J Er = 0. 
411" Is 411" Is 

This consequence of the Lorentz gauge and boundary conditions proves to 
play an important role in the uniqueness and. existence theorems. 

If A E C'x'(f!) then A and A+dA are gauge equivalent potentials, and we 
eliminate this gauge freedom by requiring the Lorentz gauge and boundary 
conditions: 

Theorem 1 Let B be any gauge 1-form in n having vanishing electric charge 
on S. Then there exists a unique gauge-equivalent potential A = B + dA 
satisfying the Lorentz gauge (3) and boundary conditions (4-6). 

The proof comes down to constructing A as a solution of the wave equation 
DA =finn with Dirichlet boundary conditions on an= CUT Suitable ex
istence results for this wave equation BVP were established in [1, 2), together 
with existence results for the Neumann boundary conditions on T for the 
wave equation and the modified wave operator Du = 20p0zU- a;·u- p- 2 .6.2u. 

This gauge-fixing result provides a slice of the gauge-equivalence classes 
in the space of all potentials on n, and we now consider the effect of imposing 
Maxwell's equations. As mentioned, we seek boundary conditions which are 
sufficiently stringent as to ensure uniqueness, but not so restrictive that some 
genuine solutions of Maxwell's equations are excluded. Naturally enough, we 
start with the Lorentz conditions ( 4-6). 

Theorem 2 If A, B are potentials satisfying Maxwell's equations with the 
Lorentz gauge and boundar·y conditions (4-6), and if 

(7) 

then A = B in n. 

Outline of proof: By considering A- B, it will suffice to show that if A 
satisfies the Lorentz gauge and boundary conditions, then A2 1cuT = 0 implies 
that A = 0. From the general identity 

op(pop(pAz)) = to;(p2 Ap)- t.6.2Ap + op(p div2 A52) 

-p (tpDAz + tx;OA;- op(pL(A))) 
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and the boundary conditions, we find 

Op(pfJp(pAz)) = 0 on C. 

Since = 0 on S, it follows that Az = 0 on CUT and thus (since DAz = 0 
by Maxwell's equations and the Lorentz gauge condition), Az = 0 in n. A 
similar argument working through the Neumann problem for D(p2 Ap) shows 
that = 0 in n. 

Now introducing the Hodge-Helmholtz representation of A2 in terms of 
functions v, w, 

(ie. A19 = 819 v + esc 1'J810w, A10 = -819w +esc 1'J810v, with v, w normalised to 
have vanishing spherical averages J~2 v = §52 w = 0), we find that 

Dv = 0, Ow= 0 

since AP = 0 = Az. Since A2 lcuT = 0, the boundary relations ( 4-6) show that 
v = w = 0 on C U /, and uniqueness for the wave equation gives v = w = 0 
in D and thus A= 0 as required. QED. 

The boundary condition implicit in Theorem 2 also appears in our ex
istence theorem. Let roo ( C, T* S2 ) denote the space of coo sections of the 
bundle T* S2 X JR.+ over c = S2 X JR.+ (that is, the space of angular 1-forms 
over C), and similarly define roo(/, T* S2 ), roo(n, A2T*S2 ) etc. 

Theorem 3 Let He E roo(C,T*S2 ), HT E roo(/,T*S2 ) satisfy the corner 
continuity condition 

Hels = HTis-

Then there exists A E rco(n, T*st), a smooth solution of Maxwell's equations 
in the Lorentz gauge with boundary conditions (4-6), such that 

(8) A2le =He, A2IT = HT 

and the electric and magnetic charges of A both vanish. 

The proof is by explicit construction of the null-polar components Az, Ap 
and the Hodge-Helmholtz potentials v, w, using a decomposition of the cou
pled tensorial Maxwell equations into a sequence of partially decoupled linear 
wave equations with reconstructible sources and boundary data. An im
portant final step establishes that the constructed potential A satisfies the 
Lorentz gauge condition, since the Lorentz field L = L(A) can be shown to 
satisfy a linear wave equation with zero boundary data. Full details of this 
argument are given in [3]. 

Hence we obtain the classification theorem 
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Theorem 4 There is a one to one correspondence between the sets 

M = {FE roo(O,A2T*!1): dF = O,d *F = 0} 

D = {(e,k,He,Hr): e E IR.,k E JR., 

He E roo(C,T*S2),H, E roo('T,T*S2),Hels = H,ls} 

Proof: IfF E roo(n, A2T*!1) is a 2-form satisfying Maxwell's equations, then 
there are e, k E JR. such that Fo = F- F:lec - F!:'ag satisfies Maxwell and has 
vanishing electric and magnetic charges, where 

F!:'ag :~ k sin{) d{) 1\ dcp. 

Since F0 has vanishing magnetic charge, it admits a representation in terms 
of a potential1-form A; since the electric charge also vanishes, by Theorem 1 
we may assume that A satisfies the Lorentz gauge and boundary conditions; 
then the boundary restrictions of the angular part A2 give the boundary 
functions He = A2le, H, = A2l1 and uniquely determine a "point" in 'D. 

Conversely, given (e,k,He,HT) E D we construct F0 from (He,HT) 
via Theorem 3, and Theorem 2 ensures that this is the unique solution of 
Maxwell's equations satisfying the conditions of Theorem 3 with boundary 
fields (He, H,). We finally define F = F0 + F:lec + F!:'ag, the required element 
of M. QED. 

Remarks: 
(i) If we wish F to represent the curvature of a U(1) line bundle, then the 
magnetic charge must satisfy the Dirac quantisation condition k E 27rZ. 
(ii) The requirement that the electric and magnetic charges vanish means 
that our constructions admit a duality invariance: if F satisfies Maxwell's 
equations and has zero charges, then F>. := cos A F + sin A * F also satisfies 
Maxwell's equations, for any constant A E JR. By Theorem 4 there must 
be a corresponding action on the space of classifying boundary data, H = 
(He, H,) t-7 H>., but it seems not to be a simple matter to explicitly describe 
this transformation of boundary data. 
(iii) The boundary data and conditions determine some components of the 
Maxwell 2-form F, namely 

on C, and similarly (Fz1J, Fzcp, F-ocp) on 7. These curvature components cannot 
be arbitrarily specified, but must satisfy the constraint relations 

(9) 
(10) 

8pF-ocp - 8-aFpcp + 8cpFp-o 

8zF-ocp- 8-aFzcp + 8cpFz-o 
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Even so, the boundary curvatures do not determine the boundary data 
uniquely - more information is required: 

Theorem 5 ({3, Proposition 6.1}) Given the fields (Fp{J, FP'P> F{J'P) on C and 
(Fz{}, FZ'Pl F{J<p) on T satisfying (9), (10), and given f E coo(S) with fs .f = 0, 
there e:rists a unique potential A 2 E roo (CUT, T* S 2) satisfying div2 A 2 ls = f 
and determining the given boundary curvatures. Nforeover, there is a unique 
extension of A 2 to a smooth solution of Maxwell's equations in n in the 
Lorentz gauge with boundary conditions (4~6), such that the given function 
f represents the mdial electric field Er along S. 
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