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WAITING-TIME BEHAVIOUR FOR A FOURTH-ORDER 

NONLINEAR DIFFUSION EQUATION 

N. F. Smyth 

ABSTRACI' 

The fourth order nonlinear diffusion equation u1 + (unu.,.,.,)., = 0 (n > 0) governs- a number of 

important physical processes, such as the flow of a surface tension dominated thin liquid film and the 
diffusion of dopant in semiconductors. This equation will be analysed using a perturbation scheme in 
the limit of small n (ie 0 < n < < 1). In this limit, the solution is determined_ by a system. of nonlinear 
hyperbolic equations. An analysis of the solution shows that if the initial condition is of compact support, 

the solution does not move outside of its initial domain. Shocks, corresponding to jumps in u.,, can form 

in the solution. An examination of the shock jump condition shows that a shock cannot propagate 
outside of the domain of the initial condition. It is concluded that all solutions of u1 + ( un u.,.,., ), = 0 for 

0 < n < < 1 are waiting-time solutions. 
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1. INTRODUCTION 

The fourth order nonlinear diffusion equation 

au ~ ( n83 u) _ 
ot + ox u 8x3 - 0 (1.1) 

models a number of physical processes, such as the flow of a surface tension dominated thin liquid film, 
for which n = 3 (see Greenspan, 1978; Greenspan and McCay, 1981; Hocking, 1981 and Lacey, 1982) 
and the diffusion of dopant in a semiconductor (see King, 1986 and Tayler, 1987). The analysis of this 
equation is difficult due to the nonlinearity and the high order. The solutions of (1.1) which have been 
found are all similarity solutions, either of the source-type or so-called blow-up solutions which become 

infinite in finite time (see Smyth and Hill, 1988). Equation (1.1) also possesses waiting-time solutions. 
These are solutions for which the initial condition is of compact support and which take a finite time 
to move outside of their initial domain. It is the analysis of these waiting-time solutions which forms a 
major concern of the present work. 

Rather than seek exact solutions of (1.1), asymptotic solutions for 0 < n << 1 will be found in the 
present work. The analysis of (1.1) for 0 < n << 1 is similar to that of Kath and Cohen (1982) for the 
equivalent second order nonlinear diffusion equation 

(1.2) 

Their asymptotic analysis showed that the solution of (1.2) for 0 < n < < 1 is governed by a system 
of nonlinear hyperbolic equations. In general, shocks, corresponding to jumps in u,, can occur in the 
perturbation solution. It was found by Kath and Cohen that if the initial condition has 

u ~ k(x- x 0 )", (1.3) 

where a > 0, at u'le front x 0 , then the solution exhibits waiting-time behaviour for na 2: 2. For 0 < na < 2, 
the front moves immediately, agreeing with the results of Knerr (1977) and references therein. This 

immediate movement of the front for 0 < na < 2 was shown to be due to the immediate formation of 
an outward propagating shock at the front. In the present work, it will be shown that for equation (1.1) 

shocks are inward propagating and so all solutions of (1.1) are waiting-time solutions for 0 < n << l. 

2. ASYMPTOTIC SOLUTIONS 

An asymptotic solution of (1.1) for 0 < n << 1 will be found in the present section. In this limit, 
the diffusion coefficient un in (1.1) is near 1 for u away from zero and drops rapidly to zero as u _, 0. 
The limit n _, 0 is then singular since un cannot be expanded uniformly as a series in n uniformly valid 
for all u. To overcome this, we perform the change of variable 

v(x,r) = u"F (2.1) 
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We note that v depends on the fast time T. 

Equation (1.1) becomes, in terms of the variables z, T and v 

(2.2) 

This equation can be solved using the perturbation series 

(2.3) 

The solution for u is then found by inverting (2.1) to give 

~ !!!. [ (va vf ) ] u = v0 e •o 1 + 3n vo - 2va + .. . . (2.4) 

It can be seen from (2.4) that to determine the solution for u to 0(1), the solution for v must be found to 
O(n). 

Substituting the series (2.3) into (2.2), we find at 0(1 ), 

(2.5) 

and at O(n) 

(2.6) 

These equations may be solved by the method of characteristics (see Whitham, 1974) to give 

(2.7) 

3 '4 1 [ / 2 (() ]' vl = 4/ (()T- 12. I(()- 4/"(() X (2.8) 

log(1 + 12/2(()/"(()T) + l1(() 

:1! = 4/3(()T + (, (2.9) 

where Vo = f((), v1 = ft((), x = ( when T = 0. 

The initial value of vci, f, will in general be some positive function of compact support with I'# 0 

at the fronts. If I' # 0 at the fronts, then we see from (2.9) that there will be a gap between the inward 

sloping characteristics at the fronts and the characteristics of zero slope outside of the domain in which 

f is non-zero. This gap is filled with centred simple waves originating at the fronts. For convenience, 

let us denote by lr and 1: the values of I and f' at the right hand front z, and by l1 and I{ the values 
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off and f' at the left hand front x1• Then from (2.5) and (2.6), it can be found that the solutions in the 
centred simple wave at the right hand front are 

( x -x)!} vo=3r T • 
3 (Xr-X)3 

VJ = -T --
4 4r 

! ,3 <X- Xr < O 
r - 4r -

and the solutions in the centred simple wave at the left hand front are 

(X-XI)~} vo=3r ~ 

_ 3 (X- Xi' t 
VJ-4T ~) 

(2.10) 

(2.11) 

It can be seenthat the solution given by (2.7) to (2.11) does not move outside its initial domain, and 
thus constitutes a waiting-time solution with infinite waiting-time. However, since (2.5) is a nonlinear 
hyperbolic equation, shocks can form and these shocks could modify the waiting-time behaviour, as 
was the case for the second order equation (1.2)(see Kath and Cohen, 1982). For this second order 
equation, outward propagating shocks could form immediately at the fronts (see (1.3)), so that waiting­
time behaviour will not occur in this case. The occurrence and effect of shocks will be discussed in the 
next section. 

3. SHOCKS 

The family of characteristics (2.9) have an envelope given by 

(3.1) 

Since r :;:: 0, shocks will thus form in the solution iff"(() < 0 for some (. To determine the jump 
condition for a shock, we express (2.5) in conservation form 

:T (vox)+ :X (v6x) = 0. (3.2) 

The conserved density is Vox and so shocks will occur as jumps in Vox with v0 continuous at a shock. It 
is expected that shocks will occur in the derivative rather than the function as the original equation (1.1) 

is parabolic. From (3.2), the jump condition is 

[v6,] 3 2 2 3 
U = -[ - 1 =Vox! +Vox! Vox2 + VoxJ Vox2 + Vox2• 

Vox 
(3.3) 

where [ ] denotes a jump in a quantity, U is the shock velocity and 1 and 2 indicate values allead of and 
behind the shock respectively. Since (1.1) is a parabolic equation, solutions which have discontinuous 
derivatives are unacceptable. To overcome this, the shocks in vox could be smoothed out using a comer 
layer, as was done by Kath and Cohen (1982) for (1.2). The evaluation of this comer layer solution will 
not be attempted here as it has no major effect on the solution. 
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To investigate the effect of a shock on waiting-time behaviour, let us assume that .a shock forms at 

the right hand front of the initial distribution of v0 , f. Then v0.:~ = 0 and v0, 2 < 0, SQ that U < 0 and the 
shock propagates into the domain of f. Similarly, it can be found from (3.3) that if a shock forms at the 

left hand front of I, it propagates inwards. Hence in contrast to the behaviour of the solutions of (1.2), 

the solutions of (1.1) for 0 < n << 1 exhibit waiting-time behaviour even if a shock forms immediately 

at a front of f. 

It was found in section 2 that if a shock does not form in the solution for vo, then the solution exhibits 
infinite waiting-time behaviour. This solution shows furthermore that if there is no shock at the front of 
the solution, then it has infinite waiting-time as no characteristics propagate outside of the initial domain 

of f (see (2.9)). Let us now suppose that the solution for v0 has a shock at its right hand front. Then 

vo,J = 0 and vo,2 < 0, so that U < 0. In a similar manner, a shock at the left hand front has U > 0. Taken 
together, we thus have that a shock cannot propagate outside of the initial domain of f. Our analysis 

then shows that the solutions of (1.1) have infinite waiting-time when 0 < n << 1. This is a surprising 
result as it is expected that all solutions which initially have compact support will approach the similarity 

source solution of (1.1) as t--oo, as was proved for (1.2) by Kamenomostskaya (1973). Smyth and Hill 
(1988) found an exact similarity source solution of (1.1) for n = 1 and, using a Frobe11ius expansion, 

found the behaviour of the front of the similarity source solution for ~ < n < 3. The existence of a 
similarity source solution of (1.1) with outward propagating fronts for small n is then an open question. 
Presumably the nature of the singularity at the fronts of the similarity source solution of (1.1) for small 
n is more complicated than the algebraic behaviour assumed by Smyth and Hill. A possible reason why 

the asymptotic solution of section. 2 does not match into the similarity source solution as t __, oo is that 
the expansion (2.3) is not valid for large time, as was found by Kath and Cohen (1982) for (1.2). It is 

thus expected that all solutions of (1.1) will exhibit waiting-time behaviour for 0 < n << 1, but not the 
infinite waiting-time behaviour predicted by the asymptotic solution. 
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