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RESULT 3.5. Suppose v > 1, p is in D, and (D4) holds. If h is in P, and obeys (H3),

then
lim £ [T(p + th) — T(p)] = / h(2) W, (r)dz (3.15)
R
where Wp(r)=/ s735%(m,(s))ds, (3.16)

and T is convex on D, and D.

Proof: Assume p,h obey these conditions, then p+thisin D, for 0 <t <1 and
R

Lo+ th) = T()] = 57 [mh()L) + miy () (Ler) = Lol 2dr - (3.17)
é

where Ly(r) = j2(mp4en(r)) and we have used (3.14).

The first integral on this right hand side converges, as t goes to 0, to

M / - / ) (2. (3.18)
Also
zE.rgl+ Lt—(r):t—L—O(T) = 25 (m,(r))3' (mp(r))ma(r)

as j is continuously differentiable and this function is continuous on [§, R]. Thus the

dominated convergence theorem implies

R
i L [0
im —
t—0+ 2t

5

p()

[Le(r) = Lo(r)ldr = / 3(mp(r))i' (mp(r))ma(r)dr.  (3.19)
&

Combining (3.17) - (3.19), one obtains

Jim, 2o+ th) = T(p)] = M [ mp(r)s2(mp(r))r =S
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or

DT(p)h = /th(r)dz

where W, is defined by (3.16). W, is the centrifugal potential in this problem.

If p1,p2 are in D, then T is convex on D provided
é(t) = T((1 = t)p1 + tp2) < (1~ t)T(p1) + tT(p2) = (1 — t)(0) + 26(1)

If p; and/or pz is in D — D,, then this holds automatically, so we can assume p; and p;

are in D,.

Assume m;(r) = mz(r) for 0 < 7 < §, then from above one has
#(0) = DT(px)(p2 = pr) = [ WW,(r)de
where h = p; — p1, and W, = W,,.
Also,

R
$O -0 =M f (P W(r) — Wlr)ldr

) -

——M / ma(rS2 () = S22 ()l (3.20)

upon itegrating by parts. Here Wy(r) = W(1_g),, 440, (7)-
Also %Wi('r) = 2er s735(me(s))j' (me(s))mn(s)ds, from (3.16) so

Wi(r) — Wo(r) = 2/ / ~35(m(s))5' (m+(s))yman(s)ds dr.

Differentiating this with respect to r and substituting in (3.20)

R 1
#(t) - ¢(0) = 2M f5 =S ma(r)( f §me() (o (7)) dr)dr.
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Divide both sides by t, let t go to zero, then the dominated convergence theorem yields
R
8'0) =2M [+ (malr))f (malr))dr
5 .

From (D4), j'(m) > 0 for all m, so ¢" > 0 and thus ¢ is convex. Hence T will be
convex for all such py,p2. Letting é go to zero and approximating if necessary, T' will be

convex on D,.

4. Extremality Conditions.

In this section we shall show that the local minimizers of £ on D actually do provide
axisymmetric equilibrium models of rotating self-gravitating fluids obeying the polytropic
equation of state (2.1) whenever v > g. That is, they obey Euler’s equation for the
uniformly rotating motion of an inviscid, self-gravitating compressible fluid obeying (2.1).

A function p'in D, is said to be a local minimizer of £ on D if, for each h in P—;, /there

is a 6 > 0 such that
E(p+1th) > E(p) for0<t<é. (4.1)

THEOREM 1. Assume f is a local minimizer of £ on Do,y > € and (D4) holds. Then there
is a real number A such that p obeys

R
vKop(z)7™t +/s_3j2(mp(s))ds —Vp(z)> XA ae onBpg (4.2)

T

with equality holding here on any open set where p(z) > 0 and r(z) > 0.

Proof. Choose k in P; and assume it obeys (H3). Let ¢(t) = £(5 + th) — £(p), then from
results 3.2, 3.3 and 3.5, one obtains #'(0) = [[yKop(z)"™ + W,(r) — Vp(z)]h(z) dz.
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Since p is a local minimizer this must be non-negative. There are sufficiently many

allowable h’s obeying (H1)-(H3), that this implies there is a real A such that
vK.p(z)" ! + W(r) - Vp(z) =2 >0 aeforr(z)>6

with equality holding here on any open subset of {z : p(z) > 0}. § is an arbitrary positive
number so (4.2) follows as claimed. O

When a function p in' D obeys (4.2), then
YKop(z)"™! = max (0, + Vp(z) — W,(r)) (4.3)

where A is chosen so that the solution of this obeys (2.2). Note that the last term in (4.3)

is a strictly monotone increasing function of A, for fixed p.

LEMMA. If p in D obeys (4.3) and v > £, then p is a continuous function on Bp. If
G, = {z € Br: |z| < R and p(z) > 0}, then G, is open and p is continuously differentiable

on G,.

Proof. First consider the case v > -;— When p is in L7(Bg) with v > ;, then the Sobolev
imbedding of theorem guarantees that Vp is continuous on Bg.

From the definition (3.16) of W,(r), one sees that W, is an absolutely continuous
non-increasing and non-negative function on (0, R).

Thus A + Vp(z) — W,(r) will be continuous on [0 R]. If lim,_,o+ W,(r) = w, is finite,
then this combination is continuous and bounded on Bgr. When w, = + o0, then there

exists a § > 0 such that |r| < § =

A+ Vp(z) — Wy(r) <0
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as A+ Vp is bounded on Bgr. Hence the right hand side of (4.3) is again bounded and
continuous on B, so p will be.

Since p is continuous, it is bounded on Bg and G, is open.

When p is continuous and bounded, then V p will be continuously differentiable on Bp
and W, will be continuously differentiable on (0, R). Thus the right side of (4.3) will be
continuously differentiable on G, or on any open subset of Br on which p(z) = 0. Hence
the lemma is proved.

When % <7< %, then a bootstrapping argument as in the proof of theorem A in
section 4 of [1], shows that a solution of (4.3) will be in LY for some v > -;—, and then the
preceding argument applies. : 0O

This result shows that (4.2) may be interpreted pointwise in the usual manner. On

Go,
R

TKop(z)"™ = Vp(z) — / ];2-(——":3@‘15 + A

Taking the gradient of both sides here,

2
7K, grad plz)' = grad Vp(a) + L ey, (4.4)

where 2, is the unit vector in the cylindrical radial direction. Multiplying both sides by p,
one obtains Euler’s equation for a rotating, compressible, self-graviting fluid obeying the

equation of state (2.1)
grad Kp(z)" = p(z)[grad Vp(z) + r~35%(m,(r))ix]. (4.5)

This holds as K = K,(y — 1) from (2.6). It shows that the local minimizers of £ on D

actually are classical solutions of the Euler equation (4.5) on the set G,.
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5. Existence of Minima.
Here we shall look at the question of minimizing £ on D and finding
= inf . 5.1
a=if  £(p) (5.1)

We shall first show that when v > ‘5’, « is finite and there is a minimizer of £ on D.

THEOREM 2. Suppose~y > % and (D4) holds, then for any M > 0, the infimum o of £ on
D is finite and there is a p in D such that

£(p) = inf £(p). (5.2)

Proof. From (2.4), (3.9) and the fact that T'(p) > 0,
E(p) 2 Ko llell} — C1 M*7P ||p|}§ (5.3)

with 8 = 14'. Thus v > 3 provided v > % so in this case £(p) — co in D as || p ||, — co.

Choose p, in D,, then from (5.3) with v > 3, there is a C; such that £(p) < &(p,)
and p in D implies || p ||y < Ca. The subset Dy of D obeying || p ||y < Cz is a weakly
compact, convex set as X and L7(Bpg) are reflexive.

E; and T are weakly l.s.c. on D from results 3.2 and 3.4, while V is weakly continﬁous
on D from 3.3. Thus & will be weakly l.s.c. on D and hence on D;. Since D; is weakly
compact, £ attains its infinum on D5 and thus on D. So the theorem follows. O

The minimizer p here will depend on R — when R is small. In [1], however, it was
shown that for R large enough, the minimizer of £ on D will not change. In other words,
even when R = co there is a minimizer of £ on D and this minimizer has compact support.

In [4], section 8, some lower bounds on this radius were described.
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When % <7< % and j(m) = 0, then by a simple scaling argument, one can construct
a sequence of densities in D with lim &(pn) = —00 so @ = —oo in this case.
n—oo
The critical value v = % is a classical stability criterion for non-rotating models and is

discussed in Chandrasekhar [5], Section 2.10.

6. Relaxed Variational Principles.

The original variational principle (P) for these models is to minimize the non-convex

functional

E(p) = Ei1(p) + T(p) — V(p) (6.1)

on the closed convex subset D of X. From the results of section 3, we know that each of
E,, T and V, individually, is convex so that £ is the difference of two convex functionals.
This enables the application of non-convex duality theory as described in [2] and [3].

Let V* : X* — [0,00] be the conjugate convex functional of V. That is

V(u) = ‘5725 /p(u - %Vp)da: (6.2)

(6.3)

__{ %<u,V"1u> if u € V(X)

0 otherwise.
As will be seen the explicit form of V* will not be needed. It is sufficient that V* is a
convex and weakly [.s.c. functional on X* (see Zeidler [8], Section 51.3).

More generally one may regularize this problem by defining V¢ : X — [0, 00] by
) :
Ve(p) = /[glp['y + §pr] dz with € >0. (6.4)

Then V7 (u) will be a well-defined convex, continuous and weakly I.s.c. functional.
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Consider the relaxed Lagrangean functional £, : D x X - [~00, 00] defined by

Lo (o) = Bx) + T(0)+ [(S57 = pu)da + Vi (a) (6.5)

with € > 0, and the associated variational principle (Q) of minimizing £, on D x X*.

The basic facts about this functional may be summarized as follows.

THEOREM 3. Suppose L, is defined by (6.5), ¥ > & and (D4) holds. Then
(i) Le(.,u) is strictly convex and weakly l.s.c. on D {ér eachu in X*,

(i) Le {p,.) is convex and weakly l.s.c. on X* for each p in D, and

(iii) €(p) = infyex+ Le (pyu) for each p in D.

Proof. (i) E1, T and [ p" dz are convex and weakly l.s.c. on D from results 3.2, 3.4, and
3.5. Also [ pu is linear and weakly continuous for each u in X*, so (i) holds.
(i) V7 is convex and weakly l.s.c. from the properties of dual functionals while [ pu is

linear and weakly continuous on X* when p is fixed, so (ii) follows.
B Le (o) = Ba(o) + T()+ = [ 17 do+ ing 020) = [ ow)
=)+ T(0)+ 2 [ 17 de=Vi(e)

as V;* =V, when V, is a proper l.s.c. convex function (see [8], Theorem 51.6). Using (6.4)
“this right hand side is, in fact, £(p). O

From (5.1) and (iii) of this theorem
o= ;?Ii; ulzr}é L:(p,u) (6.6)

so the value « of the variational principle (Q) equals that of the original problem (P). The

next result relates the minimizers of (P) and (Q).
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THEOREM 4. Let L, be defined by (6.5) with-e > 0, and assume v > § and (D4) holds.
Then there exists p in D,4 in X* such that L. (p,%) = a as defined by (6.6). Moreover
(p,1) obey

u(z) = ep?"? (z) + Vp(z) ,and (6.7)

(Ko +¢) p @)+ W,(r) 2 A+ u(z) (63)
a.e. on Br with equality holding in (6.8) on any open set where p(z) is positive.

Proof. Choose p to be the minimizer of £ on D; from theorem 2 this exists when ¥ > %.
Define & : X* — (—o0, o] by » .
o) = Vi) - [ pu.

From (6.4) and (3.9), Ve(p) < _-E; [lol|2+ Collpl|2 where C, is a constant depending

on R. Let ¢(s) = £s7 + C,s?, then its convex conjugate function is
¢* (t) =sup (st — A C,s?).
>0 n i
¢* is a non-negative, monotone increasing function'a,nd, when € > 0,
¢ ()

tl_l‘r& 5 = v >0 where p=mm(7

y 52). (6.9)

Moreover from [3], Lemma 2.2, it follows that

&(u) 2 ¢" (llulls) = 1Al [lelle-

Thus & is coercive so the problem of minimizing ® on X* has a solution. Hence there

exists 4 in X* such that

Le (py0) = uigf‘ Le(pyu). ’



36

But a = £(p) = infyex» Lc(p,u) from (iii) of theorem 3. Therefore a = L.(p,1) so
there are minimizers of the problem Q.
When & = 0, this result still holds with p = 2 in (6.9).

At a minimizer (3,4) of £, on' D X X* one must have
0€8,L. (py2) and 0€8, L. (p,d).

where 8, and 8, denote the partial subdifferentials of £, with respect to p,u respectively.
From (6.6), w € 8, L(p,u) if and only if w € {—p+v:v € 8V (u) }.
Sin;:e V. is convex, and weakly l.s;c.,;) € 8V!(u) if and only if u € 8 V.(v), see-[8],
theorems 51.2 and 51.6. Thus 0 € 8, L(p,u) if p€ 8 V}(u) or u € 8 V. (p). |
That is u=c¢lp|""%2 p+Vp frc;)m the definition (6.4) of V.(p). Since p(z) > 0 a.e.
for p in D, (6.7) follows. Using the same argument as in theorem 1, (6.8) follows as the

extremality condition for minimizing £ (p,%) over p in D. 0

7. A Descent Algorithm. -

The minimization of £ on D was shown in the last section to be equivalent to minimizing
L, on D x X*. The two problems have related minimizers and the same values.

Computationally however it is advantageous to work with £, instead of £. The original
problem (P) a requires the minimization of the non-convex function £ over the closed,
convex set D. To solve (Q), however, one minimizes the function £, which is convex in
each of p and u, over the convex domain D x X*. This can be regarded as a sequence of
convex programming problems and leads to the following algorithm.

Given p® in D, for k > 0

(1) compute ul®) =¢(p®)1=1 4 V(p*), (7.1)
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(2) find p**1 in D obeying
Le (P(k+1)’ “(k)) = ,i:?lf; Le(p, 'U-(k)) (7.2)

(3) if pt+1) = p(*)  stop, else go to-1.

Step 1 chooses u(*) to be a minimizer of the convex function £, (p("), .) on X*. From

the expression (6.5) for L., this minimizer obeys
p® e 8 Vvr (u®).

Since V, is proper, weakly l.s.c. and X is reflexive, this holds if and only if
v® e 8, (p™*))

which is (7.1) as V. is differentiable. Thus (7.1) is the explicit formula for the solution of
this minimization problem, and is the iterative version of (6.7).

Similarly step 2 specifies p(*+1) to be the minimizer of a strictly convex, coercive
function on the closed, convex set D. This minimizer exists, is unique and there is a

constant Ar4; such that p**1) obeys
(VKo +€) p(=)7F + Wy(r) 2 Xia +ul (2) (7.3)

a.e. on Bp with equality on any open set where p(*+1) is positive. This is proven just as
in theorems 1 and 4.

If p:+D) = p() then (p), u(*)) is a solution of the system (6.7) — (6.8) so p*) will
be a solution of (4.2).. The analysis of section 4 shows that any solution of (4.2) defines a

classical solution of our problem so the stopping criteria in step 3 is justified.
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When p(+1) o£ p(*) | then since £, (.,u(®) is strictly convex on D, it follows that
L. (p(k+l) ,u(k)) < [;‘_(p(k), u(k)) <L (p(k)’ u(k—l)) (7.4)

so {(p™), wM): k> 0} is a strict descent sequence for L,.

Using (iii) of theorem 3, and (7.1), one has
£ (p*) = L. (p(k)’ u(k))

as ) minimizes £, (p(*),.) on X*. Thus the sequence {p(*) :k > 0} generated by this

algorithm is a strict descent sequence for £.

These results may be summarized as follows.

THEOREM 5. Suppose (D4) holds and {p®) : k > 0} is defined by this algorithm. If
Pt £ o) then £ (p*+1)) < £(p*) while if p*+1) = p(*¥) then p® is a solution of

4.2). If~4 > % this sequence is bounded in X and has at least one weak limit point.
3

Proof. The descent results were proven above. When ~ > %, since £ (P} < £(p) for
all k > 0, (5.3) implies that ||p(*)]|,, is uniformly bounded.
Since X is reflexive, this implies that {p®) : & > 0} is a subset of a weakly compact
set, so it has a weak limit point. O
One would like to prove that this weak limit point is at least a local minimizer of £ on

D. This remains an open question but the following holds.

THEOREM 6. Suppose v > 2, (D4) holds and {p(¥) : k > 0} is defined by (7.1) - (7.2). If

this sequence converges strongly to a p in D, then p is a solution of (4.2).
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Proof. From (7.1) and (7.3), upon multiplying both sides by p(**1) | one has

(Ko +¢) (p*TD (2))7 +p*FD [Wigs (r) = Aeyar — (o™ ()" - Vpg:;] =0

where Wiyr (r) = Wp(k+1) (r). (7.5)

Since p(*) converges strongly to 5 in X, then m(*) converges uniformly to 7 on [0, R] and
so W41 converges uniformly to W on [6, R] for each § > 0.

Choose A = {z € Bg : r(z) > r1} where ry is chosen so that [  dz = . Then
71 > 0. Integrate (7.5) over A and let k go to co, then g

im [ {7Ko (o4 (@)1 4 Wis (r) = Vo® (@)} (2)de
A

— o0

- / Ko(p(@)™ + W (r) - Vi(@)s(a)de = Jim Aess / P&+ (g)da,
A - 00
A

Thus there is a ) in R such that A converges to X as k — oo since this last integral
converges to 1 M.
Multiply both sides of (7.3) by a non-negative function k in X obeying (H3), and

integrate over Bpg, then
/ (YKo +&)(p* )1 4+ Wi = Vp®) —e(p™)7™1 ] h(z)dz > Aega / h dz
Let k go to infinity here, then
/ [WKop™™* + W = Vp] h(z)dz > ) / h dz
There are sufficiently many such k that

YKo(p(z))"™! +W(r)—Vp(z) > A a.e. on Bg
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upon letting § decrease to 0.

Let A be an open set in B such that g(z) > p3 > 0 on A and choose h in X to obey
(H3) and have support in A. Choose a subsequence {p(*s) : j > 0} if necessary, such that
plki) () converges to j(z) a.e. on Br. Then multiplying (7.3) by h and integrating over

Bp, one finds
/ hl(vKo +€) (pH)=1 + W = Ay — Vplki0) — (ol =D)7 Jdg = §;
where §; is the integral of this left hand side over
E; ={z € supph : p(k")(m) = 0}

The measure of E; may be made arbitrarily small using Egoroff’s theorem and this inte-

grand is integrable so §; — 0 as j — oo. Taking this limit
/h WEop"™ =W —Vp)dz =} / h de

There are enough such h to conclude that equality holds in (4.2) a.e. on any open set where
A(x) is positive and r{z) > . Thus § is a solution of (4.2) as claimed. O

The theorems in section 6 of [3] show that an iteration of this type will converge if
one can guarantee sufficient descent at each step of the algorithm. That is, one has a
good descent estimate for these iterates. It would be interesting to know whether such
estimates hold for this algorithm, or if there are other methods of proving convergence of

this algorithm directly.
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