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A GENERAL APPROACH FOR THE ANALYSIS OF 
REPEATED MEASURES EXPERIMENTS 

A. P. VERBYLA and B. R. CULLIS 

1. INTRODUCTION 

Over the past decade, there has been great interest in developing meth­
ods for analysis of repeated measures data. The major papers in the area 
promote statistical modelling to extract structure from the data which is 
often of prime interest to the researcher. The papers by LAIRD and WARE 
(9), DIGGLE (5), and CULLIS and MCGILCHRIST (3], as well as those by 
the authors are but a few examples. The reason for these developments is 
the desire to provide relevant, comprehensive and comprehensible analyses 
for complex situations. 

Our approach outlined below can be found in three papers, VER­
BYLA and CULLIS (15), CULLIS and VERBYLA [4] and VERBYLA and 
CULLIS [16). We feel the approach is comprehensive because it handles 

• complete or incomplete data 
• time-dependent covariates 
• between experimental unit dependence through blocking or spatial cor­

relation as well as temporal correlation 
• modelling of treatment contrasts using linear and nonlinear models 

and smoothing techniques 
Our approach is relevant and comprehensible because-we strive to elicit as 
much structure as possible from the data and hence to answer the questions 
of interest to the researcher. Our analyses in section 5 illustrate the value 
of the approach. 

We carry out our analysis as follows. 
• Treatment effects are examined at each time or a saturated linear 

model (full treatment structure) is fitted assuming independence. 
• Using the residuals from the preliminary fitting, we use one or more 

of the diagnostics 
• Residual sum of squares and products/correlation matrix 
• correlogram 
• empirical semi-variogram (DIGGLE, [5]) 

to determine a reasonable covariance structure. 
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e We use REML, Residual Maximum Likelihood to estimate the param­
eters in the mean and covariance structure. Diagnostics may again be 
used to check the fitted model. 

• Treatment contrasts are modelled if appropriate. 
• Tests of hypotheses are carried out as required. 

All the computation is carried out using a MATLAB program written by 
the second author. S and Splus versions will soon be available, a FOR­
TRAN version is available and a GENSTAT implementation is also likely 
in the near future. 

2. GENERAL MODEL 

Suppose we have complete data for n plots over p time points. We 
suppose the n x p data matrix Y has expectation 

E(Y) = D'T 

where D is a known n x r matrix which specifies the treatment design, and 
T is a matrix of unknown parameters, the treatment effects over time. In 
vector notation, using the vee() operator which stacks the columns of the 
matrix argument, we have 

E(y) = E{vec(Y)} = (Ip 0 D)vec(T) = Xr. (1) 

We denote vector versions of matrices by lower case equivalents. We assume 
that 

(2) 

so that the error structure is separable, as used in spatial analysis by MAR­
TIN [10] and CULLIS and GLEESON [2]. This structure is also appropri­
ate for variance components models or multistratum designs under certain 
assumptions concerning the block or random effects. The temporal correla­
tion structure is specified by 0 2 , while the spatial or between unit correla­
tion structure is specified by 0 1 . Restrictions must be placed on 0 1 and 0 2 

to ensure identifiability of parameters in the covariance structure. Both 0 2 

and 0 1 will usually be modelled parsimoniously; we denote the parameter 
vectors for 0 2 and 0 1 by 12 and 1 1 respectively, and let 1 = b~ ~~]'. 

Missing data are a common problem in many experiments, as observa­
tions are lost, not taken or experimental units inadvertently drop out. In 
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designed experiments it is often of interest to estimate the missing values. 
We follow HOUTMAN and SPEED [8) and write 

or 

where Y1 and y1 are the observed data with zeros in the positions where 
data were not observed and Y2 and y2 represent the unobserved data with 
zeros in the positions where data are observed. We estimate y2 as well as 
the unknown parameters r and "(. 

Suppose we have mi missing data at the ith time point and let m = 
m 1 + ... + mP. For j = 1, 2, ... , mi, let Fij be an x 1 vector consisting 
of (n- 1) zeros and a 'one' for the experimental unit with the jth missing 
value at the ith time point. Let Fi = [Fi1 ... FimJ and </>i be parameters 
defined by Y2 = [F1 </>1 . , . FP</>P] or 

0 

(3) 

0 

We incorporate the parameters</> into the linear model (1) by 

Y1 =DT-[F1 </>1 F2 ¢2 .•. Fp</>p]+E or y1 =Xr-F</>+e (4) 

and estimate r and ¢, thereby estimating the missing values. If any mi = 0, 
both the column size of F and the dimension of </> are reduced accordingly. 

In matrix form, apart from the minus sign, the incomplete data ad­
justment to the linear model ( 4) corresponds to time-dependent covariates 
as discussed by VERBYLA (12) and CULLIS and VERBYLA [4). In that 
case, the matrices Fi contain the values of the time-dependent covariates 
for the ith time point. 

We can avoid the unknown or missing data by simply transforming 
y or y1 to a vector which contains only the observed data. Let K be an 
np x ( np- m) matrix which indicates which of the np possible observations 
were observed. Each column has a single unit entry, the rest being zeros, 
K' F = 0 and the matrix [I< F] is a permuted identity matrix. We need only 
consider I<' y for estimation and this is the approach adopted in VERBYLA 
and CULLIS [15). Then 

E(K'y) = K'Xr, and var(K'y) = u2K'HK. (5) 

If only a few observations are missing or estimation of missing data is 
desirable, it may be preferable to use ( 4). If there is a good deal of missing 
data and estimation of the missing data is not of importance or is clearly 
questionable, (5) may be preferred. 
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3. REML ESTIMATION 

A discussion of REML estimation can be found in HARVILLE [7], 
COOPER and THOMPSON [1], CULLIS and MCGILCHRIST [3] and 
VERBYLA and CULLIS [15]; see also VERBYLA [13, 14]. Put simply, 
we use a two stage procedure. In the first stage we assume the variance 
parameters are known and estimate the mean parameters. At the second 
stage we use a restricted likelihood based on error contrasts to estimate 
the variance parameters as introduced by PATTERSON and THOMPSON 
[11]. The mean parameter estimates are then found by substituting the 
estimated variance parameters into the results of stage one. 

Estimation of T and ¢ for given H reduces to the generalised least 
squares criterion, and maximum likelihood for given H, to minimise 

(y- XT) 1H-1(y- XT) = (yl + Y2- XT)'H-1(yl + Y2- XT) 

= (yl + F¢- XT) 1H-1(yl + F¢- XT). 

An iterative procedure is required for estimation of a 2 and 1 and 
Fisher's method of scoring is one approach for solving the REML equations. 

4. RANDOM EFFECTS 

Suppose the experimental units are grouped into b blocks. For com­
plete data we have 

Y=DT+AB+E 

where as above D is the treatment design matrix and T is the matrix of 
unknown parameters corresponding to the treatment effects, A is an n x b 
indicator matrix of zeros and ones which defines the block structure for 
the experiment, and vec(E) and (3 = vec(B) have independent multivari­
ate normal distributions with zero mean vector and covariance matrices 
o-2 (02 ®In) and o-2 .A(02 ® Ib) = a 2r, say, respectively. The assumption is 
that the block effects have covariance structure proportional to that of the 
errors in a similar manner to that proposed in the univariate case. Clearly 
the block effects over time will be connected and our assumption leads to 
a separable covariance matrix. In vector form if Z = IP ®A we can specify 
the mixed model as 

E(yl/3) = XT + Z(3, 
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and so the unconditional distribution of y is normal with 

E(y) = Xr, 

as in Section 2, but we have a special form for 0 1 , namely 0 1 = In+ .AAA'. 
There is no problem with incomplete data, as we again write y = 

y 1 + F¢ and include¢ in the estimation procedure. 
The results can be extended to case of several blocking factors 

by replacing AB by A1 B 1 + ... A.kBk ·where we assume var(vec(Bi)) = 

a 2 (02 ®IbJ and the Bi are independent. Then 0 1 =I+ 2::::7=1 .AiAiA~ = 
I+ Ar A' where A= [A1 ... Ak] and r is a diagonal matrix with diagonal 
elements equal to >..Jb,, i = 1, 2, ... , k. 

5. EXAMPLES 

5.1 Data Set 3 

We analyse the difference in conductance, maximum minus onset. Ta­
ble 1 gives the differences. There are clearly difficulties as there were many 
zero differences and several values which appear to be 'outliers'; in partic­
ular note cases 3, 13 and perhaps 23. 

Clearly any analysis of these data is problematic. However, we il­
lustrate our approach using these data . because it does highlight the 
possible insights and simplifications that can be achieved. The influence of 
outliers on the process is also made clear. 

The data set has a simple treatment structure and we begin with a 
multivariate regression, using E(Y) = DT where D is a 24 x 2 matrix in­
dicating the treatment group for each subject. The matrix of means, Tis 
2 x 6. Two preliminary analyses are given in Table 2, where the full data 
are used, and observations 3 and 1:3 are removed. The changes in estimates 
of the mean responses over time leave one a little uneasy, but observations 
3 (time 1) and 13 are very different from the remainder. Vi/hat is more 
striking is the change in the correlation structure and the variances. The 
variances are much more stable once the outliers have been removed (not 
surprisingly). The correlation structure, however, highlights the importance 
of examining the data not only for outliers but for second order structure, 
that is patterns in the correlations. It appears that at time 1 we have a 
larger variance than at the other times, which are reasonably uniform, that 
time 1 is essentially uncorrelated with the other time points and that the 
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Table 1 

Differences in conductance 

Exposure 

Subject 1 2 3 4 5 6 

1 1.8 1.4 1.3 1.3 0.8 0.6 

2 0.0 0.0 0.0 0.0 0.0 0.0 

3 14.1 0.0 2.4 0.0 0.0 0.0 

4 0.0 0.7 0.7 0.9 0.0 1.6 

5 0.2 0.1 0.2 0.0 0.0 0.0 

6 1.8 0.0 1.6 0.0 0.0 0.0 

7 0.0 0.0 0.0 0.0 

8 0.3 0.0 0.0 0.0 0.0 

9 2.6 0.5 0.0 0.0 0.0 0.2 

10 0.9 0.3 0.0 0.0 0.0 0.0 

11 0.7 0.0 0.0 0.0 0.0 

12 0.5 0.3 1.2 0.9 0.3 0.0 

13 8.9 6.0 0.0 0.0 3.6 0.0 

14 0.0 0.0 0.0 0.0 0.0 0.0 

15 1.0 0.0 0.0 0.0 0.6 0.0 

16 0.1 0.0 0.0 0.0 0.0 0.0 

17 1.8 1.1 0.2 0.0 0.0 0.0 
. 18 0.6 0.0 0.0 0.6 0.4 

19 0.0 0.0 0.0 

20 3.2 1.8 1.9 2.0 3.3 

21 3.0 1.9 0.0 0.2 0.0 0.0 

22 1.5 3.3 1.9 2.5 1.8 2.0 

23 5.3 0.0 0.0 0.0 0.5 0.0 

24 0.7 0.5 0.0 0.3 0.0 0.0 

remaining time points exhibit equi-correlation (perhaps not surprising in 
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Table 2 

Multivariate regression analysis 

(a) All the data 

i' 
1.9083 0.2750 0.6167 0.2583 0.0917 0.2000 

1.9917 1.3917 0.3250 0.4083 0.7583 0.4750 

Sample correlations and variances 

11.2308 

0.3430 

0.4021 
f.-...--., 

-0.1262 0.4751 

0.6772 0.3579 0.9098 0.3433 

-0.1288 0.4401 0.5976 0.8451 0.42921 0.6738 

(b) Observations 3,13 omitted 

T 

0.8000 0.3000 0.4545 0.2818 0.1000 0.2182 

1.3636 0.9727 0.3545 0.4455 0.5000 0.5182 

Sample correlations and variances 

1.6433 

0.1485 

0.0880 

0.0048 

1.---., 

0.1075 0.7885 

-0.0710 0.8142 0.7266 

view of the number of zeros in the differenced data). This structure indi­
cates that perhaps the initial exposure in the experiment was very different 
from the remainder, which were more or less uniform. The means exhibit 
similar trends. These remarks relate to the question of acclimatisation and 
given the structure it seems appropriate to test hypotheses in groups. 
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For each treatment group we test equality of the means of the last 
five differences, and if retained we test the hypothesis that the first mean 
is greater than the common mean of the last five differences. Because of 
the simple nature of the covariance structure, the initial tests of equality 
are F-tests, while the tests concerning the first mean and the remainder 
are Behrens-Fisher type tests, that is involve testing means with unequal 
variances. If one was to assume equal variances for all six measurement 
differences, t-tests would be appropriate. In fact given the robustness of 
the t-test to unequal variances this is not a bad approach. 

TaSle 3 

Tests of hypotheses for Data Set 3 

Test of equality of last five meandifferences 

Group 

1 

2 

Time 

1 

2-6 

F -statistic 

0.32 

1.10 

Test first mean > common mean 

of last five exposures 

Group 

1 

2 

Behrens-statistic 

1.20 

1.83 

Test of equality of groups 

t-statistic 

-1.03 

-0.97 

d.f. 

4,18 

4,18 

d.f. 

20 

20 

The other question of interest concerns the difference in the groups. 
These tests can be conducted using t-tests. 

The results of these tests are given in Table 3. For both groups, the 
last five mean differences do not differ significantly. Testing that the mean 
difference at time 1 is greater than the common mean for the remaining 
times produces non-significant results for group 1 but for group 2 there is 
some evidence that there may be some acclimatisation. Testing for differ­
ences between groups is inconclusive. 
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5.2 Data Set 4 

We found little evidence of correlation between C02 expiration and 
anxiety score during phobic talk or overbreathing. 

The questions of interest to the ; researchers all relate to changes in 
C02 expiration and hence we analyse differences. The data then reflect the 
changes when subjects move from state to state, for example from rest to 
breathing; this is denoted by B-T in what follows, with similar notation for 
other movements. Because ofthe nature ofthe experiment, with treatments 
applied at various times, we expect both the mean differences and the 
variances and covariances to exhibit a good deal of structure. Our aim is 
to quantify that structure and provide a meaningful analysis of the data. 

We use repeated measures and differences interchangeably in what 
follows. In the notation of Section 2, we have n = 41 experimental units, 
p = 10 repeated measures, r = 2 treatments, and m = 21 missing values, 
made up of (0, 0, 0, 0, 0, 1, 3, 8, 8, 1) for the 10 repeated measures. Note that 
differencing increases the effective number of missing values. 

Our model is given by ( 4) with F a 410 x 21 matrix, 

X= I10 ®D 

and 0 1 = In, so that units are assumed independent. 
'We begin by assuming the differences on each individual are uncorre­

lated and have equal variance; that is we set 0 2 = IP. We fitted the linear 
model ( 4) and found a residual log-likelihood of -346.72. We used this fit 
to produce Table 4 which gives the estimated variances (down the diago­
nal) and correlations (in the lower triangular part), adjusted to take into 
account the missing data. Various attempts were made to model the struc­
ture. For example, independence with unequal variances and the split-plot 
form which is essentially the analysis of variance approach were two that 
we tried. The second is certainly questionable given Table 4 and using the 
analysis of variance may lead to misleading results. 

The margins of Table 4 are labelled by the differences in states and 
by + or 0. The latter two labels indicate whether or not the differenced 
data involves a change in state. For example, T-R is the difference between 
two different states, namely talk and rest, and so whenever T-R appears 
in a margin, it is also associated with +. Differences which involve the 
same state, for example T-T talk minus talk, have 0 in the margin. Both 



T-R + 
T-T 0 

T-T 0 

R-T + 
R-R 0 

B-R + 
B:B 0 

B-B 0 
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Table 4 

Variances/correlations for Data Set 4 

2.68 

0.15 

-0.66 -0.31 -0.41 
1..----, 

-0.34 -0.32 -0.49 0.44 

0.09 -0.13 -0.03.-0.23 -0.18 21.04 

0.05 0.06 -0.19 -0.12 

-0.06 -0.35 -0.42 0.34 

-0.21 0.32 0.06 -0.06 0.01 -0.28 6.94 

-0.05 0.11 0.28 0.07 -0.07 -0.50 -0.48 -0.48 -0.04 17.06 

+ 0 0 + 0 + 0 0 + 0 
T-R T-T T-T R-T R-R B-R B-B B-B R-B R-R 

margins, rows and columns, are labelled so that the correlation structure 
adopted can be discussed below. 

We progress in stages. Firstly we examine the estimated variances 
given in Table 4. The estimated variances appear stable until the B-R, 
breathing minus rest, period, where large variation is evident. The vari­
ation under breathing is stable until there is a change to rest where it 
increases again. We model the variances to reflect the fact that changes 
from one state to another do result in changes in variation. We model the 
variances to take these changes into account using 

(6) 

where the last two parameters conform with previous ones because of obvi­
ous reduction in model complexity. In the implementation of the estimation 
procedure, Ai = expBi to ensure non-negative estimates of variances. We 
fitted this structure for the variances, the differences again assumed un­
correlated, and the residual log-likelihood increased to -277.54. This is a 
substantial increase for the addition of two parameters. 
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The correlation structure appears more complex. Interesting subsets 
of correlations correspond to the pairs ( +, + ), (0, 0) and ( +, 0). These cor­
respond to correlations between two differences both of which are changes 
in state, both of which have no change in state and, one of each, respec­
tively. While the patterns are not entirely consistent, the ( +, +) group 
has a predominance of negative correlations with an average of -0.225, 
the (0, 0) group also has some large negative correlations, with an average 
correlation of -0.112, while the last group, ( +, 0) has a predominance of 
small correlations with an average of -0.018. The model we propose for 
the correlation structure is 

(7) 

where the matrices R++ and R00 are indicator matrices with unit elements 
for the (+,+)and (0, 0) positions respectively. Our full covariance structure 
is 

where L is a diagonal matrix of standard deviations, the square root of the 
variances modelled in (6). 

Fitting this correlation structure together with the variance model 
resulted in a residual log-likelihood of -267.5, a reasonable increase over 
the previous model: 

Table 5 

Residual log-likelihoods for covariance structure 

Model log-likelihood x2 df 

02 = 110 -346.72 

0 2 = L 2 -277.54 138.36 2 

0 2 = LRL -267.50 20.08 2 

0 2 = LR* L (03 = 04 ) -269.55 4.10 1 

Table 5 summarises the REML log-likelihoods, approximate chi-~quare 
statistics and degrees of freedom for testing the three models discussed 
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Table 6 

Difference between Panic and Control Groups 

Panic Group Control Group t-statistic 

T-R -0.58 -0.91 -0.52 T-R 

T-T -0.74 -1.41 -1.08 T-T 

T-T -0.58 -0.18 0.64 T-T 

R-T 0.68 0.68 0.00 R-T 

R-R 0.53 0.50 0.04 R-R 

B-R -15.68 -11.98 2.68 B-R 

B-B -2.82 -2.58 0.45 B-B 

B-B -1.63 -1.03 0.78 B-B 

R-B 8.19 5.04 -4.17 R-B 

R-R 7.21 5.57 -1.19 R-R 

above in turn and testing 03 = 84 . Using the approximate chi-square tests, 
we arrive at the model based on (6) and (7). 

Table 6 contains the estimated effects for each difference for each of 
the two treatment groups. An approximate t-statistic is provided for the 
test of no difference between the panic and control groups. We see that 
the only important changes occur when the subjects move from rest to 
breathing, and here the panic group exhibits a greater reduction in C02 

expiration, and from breathing to rest where the panic group has the larger 
increase in C02 expiration. These results mirror the changes in variance 
and we conclude that although variation increases at these event times, 
deep breathing helps the panic group in terms of reduction of C02 , but 
that a more rapid rise occurs when these subjects move from breathing to 
rest. 

5.3 Apple trees 

This experiment was carried out to obtain yield production curves for 
three varieties of apples grown under 4 training systems (pruning schemes). 
In particular, the question of which training scheme provided the best early 
yield was of interest. The factors in the experiment together with their 
levels are given in Table 7. The experiment was carried out in the field 



131 

exactly as shown in Table 8; there is little evidence of statistical advise with 
regard to randomization and replication. The additional complication is 
that there were three plantings, from 1969 to 1971. Thus we consider tree 
age rather than years as the time variable, but we allow for year effects in 
the modelling, as described below. 

Table 7 

Treatment structure for apple experiment 

Rootstock Variety Training System 

MM106 (106) Jonathan (J) Vase (V) 

Northern spy (NS) Delicious (D) Hawkes Bay (H) 

MM102 (102) Granny Smith (G) Palmette (P) 

Seedling ( S) Central Leader (C) 

The 'design' is a split plot with rows representing the whole plots, 
with whole plot treatments being the rootstock by variety combinations. 
The plots within each row were randomly allocated a training system. Plot 
yields were measured from 1972 to 1987. The variety delicious was incom­
patible with rootstock MM102 and all these trees died soon after planting. 
There was one other plot in which the trees died after 2 years and we have 
discarded these data. 

Many fruit trees are biennial bearing, that is one year on, one year 
off. We analyse two yearly totals. For trees planted in 1969 we have p = 8 
two-yearly yields, for trees planted in 1970 we have p = 7 two-yearly yields 
plus a single years yield and for the plots planted in 1971 we have p = 7 
two-yearly yields. 

There were large trends across the field (4.11 hectares). Because of this 
and the restricted randomisation, we imposed an additional blocking factor 
as indicated in Table 8. These blocks align essentially with the rootstock by 
replicate strata1 with the exception of blocks in rows 13 to 15. The division 
into two blocks was justified on the basis that the two sections of the same 
rows were planted in different years. It also simplifies the analysis. 

The full mean model, rootstock by variety by training scheme together 
with up to 8 repeated measures was examined at each time point. Based on 
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Table 8 

Field layout for apple experiment 
Plot 

Row Rootstock Variety 1 2 3 4 5 6 7 8 
2 106 G VPCHCPVH 
3 106 D CHVPVPHH 
4 106 J CPHVCHPV 
5 s G HVCP Planted 
6 s D HVPC 1969 
7 s J PHVC 
9 102 J VPCHVHCP 
10 102 D VHPCPHVC 
11 102 G _CPVHHVCP 
13 NS J PVHC[PCVH 
14 NS G HCVP IHVP c 
15 NS D VHP_C It: PH V 
16 106 G PHCV 
17 106 D HCVP 
18 106 J PCHV Planted 
19 s D VPCH 1970 
20 s G CVPH 
21 s J HCVP 
22 NS G PHCV Planted 
23 NS J HVCP 1971 
24 NS D CVPH 
25 s J PCHV 
26 s D VCHP 
27 s G CPHV Planted 
29 102 D CVHP 1970 
30 102 J VHPC 
31 102 G PCHV 
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preliminary analyses and information provided 
considered the reduced model of rootstock plus 

analysis proceeds by considering yield at 
the three plantings as cohorts, and including year 

the possibility of differences due to the year of 
conditions. is consistent with the aims of the munely to 
produce yield curves as a function of tree age. The model for each of 
three sets (j = 1, 2, 3) in :matrix form is 

Y" = D3.T + W;¢1; + A 3.B1· + E; 
J ol J ~' 

\Vhere DJ, Hl:i and Aj are design matrices for treatm.ents, years and blocks 
respectively and T, ¢ and Bj are the corresponding In vector 
form we have 

Y . = x.r + P,A- . .J_ z.j3. +e. 
J J :;'+':; ' J J J 

for j = 1, 2, 3 where r is the vector of common treatment e±Tects, q)j is the 
vector of year effects for set j, and j3 j is the vector of block effects for set 
j. The design matrices Xi, Fj and Zi are formed using the direct product 
as in Sections 2 and 4. The mean vector and covariance matrix are 

where 0 1i = Inj +.\AjAj, reflecting the blocking structure, 0 2j = Ki0 2Kj, 
the Kj being incidence matrices which extract the appropriate portion of 
n2. 

If y = (y~, y~, y~)', then 

y=X-r+F¢+Zf3+e 

where F = diag(Fj), Z = diag(Zj) and 

Furthermore 

E(y) = Xr +Pep, (8) 
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Having fixed the mean model we turn to the determination of the tem­
poral covariance structure. We initially assume 0 2 = I. Fitting (8) with 
the block structure in 0 2i we obtained the SSP/correlation matrix given 
in Table 9. The temporal error process is non-stationary and transforming 
the data by logarithms is too severe. Rather than transform we model the 
non-stationarity using a model proposed by GEARY [6]. The model allows 
for increasing variances and covariances. The GEARY model is 

where J is a matrix of ones, and Va is for example when p = 3 

The parameter p was very small in our application and so we fitted a model 
without the term involving p. REML estimates of the remaining parameters 
were ( = 0.548) t = -212 and the block variance to error variance ratio, 
,\ = 0.47. 

Table 9 

Variances/correlations for Apple Data Set 

90 

0.07 1 0.6il455l 

-0.29 0.10 0.03 0.07 0.29 12640 

0J=)4 0.23 0.13 0.47 0.64 0.26 13526 

0.08 0.39 0.2(} 0.61 0.6(} 0.23 0.75 9491 

Taking this covariance structure we proceed with modelling to estab­
lish which training scheme produces the best early yield. The variety by 
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Figure 1. Variety by training scheme effects and fitted yield curves 
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Table 10 

REML estimates of log-logistic curve 

Variety Training scheme n .. 
ZJ 0:·· tJ mij F statistic 

Jonathan Vase 818 4.01 2.30 2.2 

Hawkes 675 4.80 2.07 7.0 

Palmette 717 4.33 1.97 4.1 

Central Leader 695 3.88 2.03 6.1 

Delicious Vase 841 5.56 2.26 3.2 

Hawkes 936 6.09 2.13 6.9 

Palmette 811 7.14 1.95 2.3 

Central Leader 885 5.58 2.02 2.2 

Granny Smith Vase 987 6.18 2.33 8.0 

Hawkes 1143 5.25 2.22 1.3 

Palmette 933 5.13 2.11 3.4 

Central Leader 1079 5.40 2.15 3.2 

training scheme effects over time are given in Figure 1 together with the 
fitted profiles we now discuss. We consider mean yield curve 

where i indexes the variety and j indexes the training scheme. The pa­
rameters Dij are the asymptotes, aij are shape parameters and mij are 
log half-effect parameters. Table 10 gives the parameter estimates and ap­
proximate individual F statistics for testing the fit. There are some large 
F values indicating lack of fit. However some patterns are clear. 

111 The variety factor affects D, a and m, 
• the training scheme affects only m, and 
e there is no obvious interaction of variety and training scheme for the 

m parameters so that we have the additive model m;3· = m. + m. 
• ?. J' 

additive due to variety and to training scheme. 
Our reduced model is 

D. 
- t 

Tlijt - 1 + e-a;(log t-m; -mj) 



::2 
CD ·:;:. 

137 

Table 11 

REML estimates of reduced log-logistic curve 

0:'· z 

Jonathan Delicious Granny Smith 

697 (34) 853 (32) 1033 (34) 

4.39 (0.24) 6.27 (0.34) 5.53 (0.25) 

m-· =m-+m· ZJ Z J 

Jonathan Delicious Granny Smith 

Vase 2.21 (0.04) 2.23 (0.03) 2.35 (0.02) 

Hawkes Bay 2.10 (0.04) 2.11 (0.03) 2.23 (0.02) 

Palmette 1.98 {0.04) 1.99 (0.02) 2.11 (0.02) 

Central Leader 1.99 (0.04) 2.00 (0.02) 2.12 (0.02) 

0 
0 ...... 

0 
0 co 

0 
0 
LO 

0 
0 

""" 

0 
Vase 0 

C') 

Hawkes Bay 
0 

Palmette 0 
C\1 

Central Leader 
0 
0 .,.. 

0 

4 6 8 10 12 14 16 18 

Age 

Figure 2. Estimated yield curves for Jonathan apples 
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and an overall approximate F statistic is 4.50. This indicates that there 
is significant variation still present. This type of problem arises in many 
contexts and is the subject of current research. The estimates for the re­
duced model are given in Table 11 and plots of the fitted model are given in 
Figure L The unaccounted variation apparently occurs towards the end of 
the study. Nonetheless, the model does provide important information that 
can be used by the researcher. Figure 2 provides the typical information 
deduced, that palmette and central leader give the greatest initial yield 
with the traditional vase being the slowest in yield uptake. This applies to 
all variety types. 

6. DISCUSSION 

Specific discussion relating to the examples occurred both after our 
talk and during the talks on analysis of the supplied data sets. 

Data set 3 has many zero elements after differencing, and the normality 
assumption was questioned. 

The choice of the covariance structure for Data set 4 is to some extent 
controversial, but the aim of data analysis is to determine as much structure 
as possible and we feel that the structure chosen reflects where important 
changes are occurring. A question was asked regarding the calculation of 
the sample covariance matrix in Table 4 in view of the missing data. An 
approximate allowance was made for incompleteness in that the 
were the actual degrees of freedom at each 'time'. 

For the apple data set there was some reservation (by the speaker!) 
that the covariance structure was entirely appropriate. The biennial bear­
ing problem and two year totals was queried privately, and as a result the 
full data are to re-analysed. The main discussion point centred on the 
modelling of the variety by training scheme profiles. The model chosen 
did not fit the data well and the question was asked whether a parametric 
model was necessary. Given the aim of the experiment was to determine 
yield curves in particular to examine how the training scheme affected 
the rate at which yield increased in the early years of development, a para­
metric approach such as the one adopted was necessary. Furthermore, while 
the model is not entirely satisfactory, it does provide a simple summary of 
the main features of the data, for example as given in Figure 2. 
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