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MULTILEVEL ANALYSIS OF LONGITUDINAL DATA: 
ANALYSIS OF WORKSHOP DATA SET 1 

M. MOK and R. P. McDONALD 

1. INTRODUCTION 
Traditional analyses of longitudinal data have typically ignored the 

subject effect and have assumed that the rate of change of the response 
variable with respect to time is constant for all subjects in the study. 
The models resulting from making these assumptions tend to be too 
rigid and interesting individual differences are neglected. Goldstein [2] 
provided a methodology for the use of mixed generalized linear models 
in handling longitudinal and repeated measures whereby growth is 
taken as one level of a two-level model: the within-subject model takes 
care of changes within individuals across occasions as a result of time 
and/ or other explanatory factors, and the between-subject model 
allows for different growth rates across subjects. Raudenbush [7] 
further elaborated the theory and provided examples of its applications 
in studying school effectiveness. This paper tries to give an illustration 
of the use of Goldstein's mixed generalized linear model on 
longitudinal and repeated measures arising from a randomized group 
experimental design. 

Goldstein [2] viewed longitudinal data as a two-level hierarchy, with 
subjects as the higher level (level-2) and occasions within subjects as the 
lower level (level-1). Goldstein suggested using a two-level polynomial 
growth curve model decomposing the variance into between-subjects 
and within-subject-between-occasion components. In this way, the 
response, yit' of subjection occasion t can be represented by the basic 

model as: 

v. =L. B .. x . + Lk Qk z. k + e. 
- It J lJ t] _ It It 

(1) 

where x .'s are some measures of time at occasion t; :B..'s are usually 
~ ~ 

considered as random; z. k's are explanatory variables defined at level­
It 

2; nk can be random or fixed effects; B .. = B.+ v .. ; e. are independently 
IJ J l) It 
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distributed with variance cr 2 and'(} .. has zero mean and cov('\'} .. ,1'} .. ,) 
e IJ IJ IJ 

equals to cr .. ,. 
JJ 

By introducing dummy variables to the second term of equation (1), 
i.e. z. k takes the value of one if the individual is in the kth experimental 

rt ' 
group, and zero otherwise, and by considering the corresponding 
coefficients Qk to be having fixed effects only, model (1) can be used to 

analyse longitudinal data from randomized block designs using 
hierarchical modelling. 

All the analyses in this paper are carried out using the ML3 package 
(Version 2.2; Prosser, Rasbash, Goldstein [6]). The package provides a 
choice of either the iterative generalized least squares (IGLS; 
Goldstein, [3] or the restricted iterative generalized least squares 
(RIGLS; Goldstein [5]) procedures in the estimation of parameters. The 
analyses presented in this paper have used the default option of IGLS. 

2. EXAMPLE: VITAMIN E THERAPY 

The data set comes from a study which tried to investigate the effect 
of a Vitamin E diet supplement on the growth of guinea pigs. The body 
weights (gm) were taken at the end of the 1st, 3rd, 4th, 5th, 6th, and 7th 
weeks. At the beginning of the study, all animals were given a growth 
inhibiting substance and Vitamin E therapy was started at the beginning 
of week 5 (Hand, [1]). There were three treatment groups according to 
the amount of Vitamin E given. These were (1) the CONTROL group 
with no Vitamin E therapy; (2) the LOW group with a low dosage of 
Vitamin E given, and (3) the HIGH group with a high dosage of Vitamin 
E. There were 5 guinea pigs within each treatment group. As such, the 
data has a hierarchical structure (i) the animal level (level-2), and (ii) 
the occasion level (level-1) of repeated measurements of each animal 
at the 6 fixed time points. 

At level-1, the 6 measurements yield a random effect across 
occasions within animals (within-animal effect). This within-animal 
effect may be a result of growth with respect to time (after the growth 
inhibiting drug), before- and after-treatment effects, and other random 
effects. At level-2, the variations can be categorised into two major 
types: the between animals within treatment group differences, and 
that between animals across treatment groups. Within each treatment 
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group, there were 5 guinea pigs whose weight variation may be the 
result of idiosyncracies of each animal including differences in initial 
weight, growth rate, interaction between initial weight and treatment, 
and other random effects. On the other hand, across different 
treatment groups, there is the fixed effect of treatment, and the possible 
effect of interaction between treatment and time such as a delayed 
effect of a particular treatment. 

3. FITTING MODELS TO GROWTII DATA 

Figure 1 shows the variations of body weight between the 15 animals. 
There is wide variation in the average as well as in the range of weights 
within each treatment group. Two mixed generalized linear models are 
proposed to analyse the data. For each model, the weight, Ykit' of 

observation t of the i group k, is regressed on time, xt, and 

treatment. two r.nodels in the between-animal specifications. 
The first model a simple decomposition of variance between the 
two levels animal All the animals within the same 
treatment group are to have the same gro\,vth rate in this 
modeL The second considers an additional effect on the 
developmental path, differences in growth rates for individual 
animals within the same treatment group. 

MODEL 1: VARIANCE COMPONENTS l'/IODEL 
In this first model, within-animal between occasions differences 

come from gro~vvth as a consequence of the mere passage of time (after 
the inhibiting drug at beginning week 1), the effect of treatment at the 
end week random fluctuations from occasion to 
occasion. The between-animal vvithin oo-rouD effect consists of random - '-

initial weight differences. The between group effect is the fixed 
treatment effect operational at the beginning of week 4. 

The within-animal part of the model is given by the following 
equation: 

(2) 

where Ykit=weight of ith animal in group k on occasion t 
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Fig 1.BODY WEIGHT VARIATION • 15 ANIMALS 
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xt=time(week) on occasion t 

{ 
1 i£4 ~t~6 

qt= 
0 if 1~t~3 
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BOi = initial weight of animal i 

Bu =growth rate of animal i 

B2ki = change in growth rate of animal i in group k 

after treatment 
ekit = random effect of animal i in group k 

on occasion t 

and eldt ~ N(O, cre 2) , 

In the between-animal part of the model, the initial weight of each 
animal varies around the average initial weight of all animals in the 
study. As the animals are randomly allocated to treatment groups, 
before treatment there is no difference between groups and the growth 
rate is assumed constant across all animals. After treatment, growth is 
assumed to be constant within each group. The between-animal part of 
the model is given by the equations below: 

and, 

i=1, ... 5; j=1,. .. ,3; k=l,. .. ,3 
where dtl (if j=k) or =0 (if j:;<:k), 

noo = expected initial weight all animals 

nol = expected growth rate (linear) of animal 

(3.a) 

(3.b) 

(3.c) 

prior to treatment 
change in (linear) growth rate of animal in 

Var (uOi) = a02 

Cov (ekit' uOi) = 0. 

group j (j=l,. .. 13) 
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Combining equations (2) and (3), the full variance components model 
can be written as: 

The terms within the first square bracket on the right of equation (4) are 
referred to as the fixed part of the model and the terms within the 
second square bracket are called the random part of the model. It can be 
easily seen that the variance matrix of the response variable Ykit 

conditional on the explanatory variables is block diagonal in form, and 
is given by 

where In is the identity matrix of order n, and Jm is an mxm matrix of 

ones. 

RESULTS 
The estimated mean growth trajectories are displayed in Table 1. 

TABLE 1. RESULTS FROM A VARIANCE COMPONENTS MODEL 
Parameter Estimate SE 

(Fixed part of the combined model) 
n00, average initial weight . 

n10, average growth rate before treatment 

n21, average change in growth rate 

after treatment for the control group 
n22, average change in growth rate after 

treatment for the low dosage group 
n23, average change in growth rate after 

treatment for the high dosage group 

(Random part of the combined model) 

459.63 11.99 

25.84 2.68 

-22.36 5.47 

-4.54 5.47 

-10.68 5.47 

a e 2, variance of weight within animal 572.66 93.52 

between occasions 
a0 2, variance of initial weight between animals 1127.4 446.7 
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The average initial weight is estimated to be 459.63 (SE = 11.99). The 
estimated average growth rate before treatment is 25.844 gm per week 
(SE = 2.675). It can be seen that after treatment, the changes of growth 
rate are all negative in sign, indicating a delayed effect of the growth 
inhibiting drug and that the rate of growth is slower after week 4. The 
decrease in growth is smallest in the low dosage group, followed by the 
high dosage group, and the no treatment control group slows down 
dramatically in growth after week 4, indicating that Vitamin E therapy 
might be effective in reducing the delayed growth inhibition. 

It is possible to perform hypothesis testing and to compute confidence 
intervals for the parameters (Goldstein [4]), although it should be 
cautioned that with such a small sample, the asymptotic Chi-squared 
distribution which is used to compute the simultaneous confidence 
intervals might not have been attained. Tests on the hypotheses of the 
three slope changes being different from zero, ie 

Ho1= 0 21=0 

Ho2: 0 22=0 

H03: n23=o 

give Chi-squared values of 16.72, 0.69, 3.81 respectively, each with 1 
degree of freedom. Hence only the first hypothesis can be rejected at 
0.1% level, which means that only the control group showed a 
significant decrease in growth rate after week 4; both the low dosage of 
Vitamin E treatment group and the high dosage group managed to 
counteract the effect of the growth inhibiting drug. Simultaneous 95% 
confidence intervals for the differences between the change in growth 
rate coefficients are (-28.01,-7.63) for (n21 - n 22), (-4.05, 16.33) for 

(Q22- n23), and (-21.87, -1.49) for (Q21- n23) indicating that while the 

two Vitamin E groups are not different from one another in treatment 
effect, the control group is different from each of them. 

From Table 1, it can be seen that of the 1699.7 units of variation, 
33.7% comes from between occasion within animal level, and 66.3% 
comes from the between animal level. The intra-animal correlation is 
0.663, which is an indication that the multilevel approach is essentiaL 
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Figure 2 illustrates the growth path of each individual animal with 
the assumption that there is no variation in growth rate within groups. 
This is a strong assumption which might not be realistic. The next 
model considers the case where each animal has its own growth rate. 

MODEL 2: RANDOM EFFECTS MODEL 

In the random effects model, the effect of time on growth is taken to 
be random. The within-animal component of the model is given by the 
same equation (2) as in Model 1. The random effect on initial weight 
(Equation 3.a) and the fixed effect of treatment (Equation 3.c) are the 
same as before. However, an additional random effect is included in 
the between-animal part of the model. The between-animal part of the 
model is represented by the equations below: 

Bm = 0 oo + um 
151i = 0 10 + uli 

1S2ki = :Ej n2j dj 
i=1, ... ,5; j=l, ... ,3; k=l, ... ,3 

(5.a) 

(5.b) 

(5.c) 

where d(l (if j=k), or =0 (if j:;tk), and n 00,n10,n2j and u0i are defined 

as in equation (3) before, and 

var(uli) 

cov(uOi, uu) 

Coefficient uli is the random fluctuation in growth rate of animal i 

about the mean rate. The random effects model is given by equation (5) 
below: 

Ykit=[0 oo + 0 1oxt+ :Ej( P2j ~ <~- 4> qt )] 
+ [uOi + ulixt + ekit] · 

RESULTS 

(5) 

The results of the analysis are given in Table 2 and Figure 3. The 
estimates of the coefficients of the fixed part of the model are very 
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similar to those of Model 1. The growth rate (linear) of all the groups 
decreased after week 4. The decrease is especially drastic in the no 
treatment control group (Chi-squared = 9.31, df=1, p < 0.5%), resulting 
in almost zero growth in this group. There is no significant decrease in 
growth rate for the low dose group (Chi-squared= 1.05, df = 1, p > 1 %) 
and for the high dose group (Chi-squared = 4.1, df = 1, p > 1 %). 
Simultaneous 95% confidence intervals for the difference in changes in 
growth rate between the groups are (-31.74,-6.92) for (n21-n22), 

(-5.91, 18.91) for cn22 - n23 ), and (-25.24, -0.42) for <n21 -n23 ) 

respectively. 
Intra-animal correlation can be calculated as before, and is 0.507. On 

the other hand, the correlation between initial weight and growth rate 
can be found by taking the ratio of the covariance term (9.236, SE 56.91) 
to the product of the square root of the respective variance estimates 
(>1376.6 * >136.77), which gives a value of 0.0785. The correlation is too 
small to justify the introduction of an interaction term between initial 
weight and growth rate as the potential next model. 

It can be seen from Figure 3 that under the assumption of an 
individual growth rate for each animal, the between-treatment-group 
variations in the growth rates are larger than the within-treatment­
group variations. 

4. COMPARISON OF MODELS 

It is possible to compare the variance components model (Model 1) 
with the random effects model (Model 2) by computing the values of the 
respective -2 times loglikelihood (-2*lnL) for each. The difference is 
distributed with a Chi-squared distribution with 2 degrees of freedom. 
The results show that the difference in -2*lnL is given by 17.94 (-2*lnL 
of Model 1 + 2*lnL of Model2 = 865.19- 847.255) which indicates that 
the random effects model is significantly better than the variance 
components model. 
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TABLE 2. RESULTS FROM A RANDOM EFFECTS MODEL 
Parameter Estimate SE 

(Fixed part of the combined model) 
n00, average initial weight 

n10, average growth rate before treatment 

n21, average change in growth rate after 

treatment for the control group 
n22, average change in growth rate after 

treatment for the low dosage group 
n23, average change in growth rate after 

treatment for the high dosage group 

(Random part of the combined model) 

459.63 

25.84 

-23.24 

-3.92 

-10.41 

cre2' variance of weight within animal between 402.55 

occasions 
cr0 2, variance of initial weight between animals 376.60 

cr12, variance of growth rate between animals 36.77 

cr01, covariance between initial weight and 9.24 

growth rate 

5. CONCLUSIONS 

8.56 

2.74 

530 

5.30 

5.30 

73.49 

289.30 

19.98 

56.91 

The advantage of employing multilevel models for longitudinal and 
repeated measures is that the effect of characteristics specific to 
individual subjects can be separated from that of time. With the 
availability of easy-to-use packages such as ML3, such models should 
be used whenever appropriate to incorporate interesting features into 
the model. 
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DISCUSSION 

This paper is valuable in that it brings to our attention the 
components of variation that are due to subject differences. By 
accounting for this source of variation, the model has the potential for 
describing the changes with time more accurately. 

However, the models here have ignored the serial correlation of 
the errors due to repeated measures on each subject. These correlations 
are a feature of data set 1 and revealed empirically by the correlogram. 
The variance component due to this source may dominate the modelling 
process. 

By ignoring the serial dependence of the errors (ie by assuming {e} 
are independent), the authors have presented a random coefficients 
model that assumes equal correlation amongst the measurements 
(sphericity). The effect is to underestimate the variance and so overstate 
the significance. 

The extension of the random coefficient model to incorporate the 
dependence of the error term is explained by DIGGLE and DONNELLY 
[1]. 

[1] DIGGLE, Peter J. and DONNELLY, John B. (1989). A selected 
bibliography on the analysis of repeated measurements and 
related areas. Australian Journal of Statistics 31, 183-193. 
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