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3. l\1ULTILEVEL LINEAR MODELS 

Multilevel linear models for hierarchically structured educational sys
tems were discussed in a British context by AITKIN, ANDERSON and 
HINDE [1], AITKIN, BENNETT and HESKETH [2] and AITKIN and 
LONGFORD {3]. A short booklength treatment of these models is given 
by GOLDSTEIN [4]. A recent conference proceedings volume (WILLMS 
and RAUDENBUSH [5]) gives an extensive discussion of applications ofthe 
model in many educational contexts, and references to software. 

The essential feature of these models is the representation of random 
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variation at each level ofthe hierarchy. For example, for a three-level model 
of county /school/pupil results on an achievement test, the simplest possible 
model represents the achievement test score Ycsp of pupil p in school s of 
county c by 

Ycsp = J.L + ac + bcs + ecsp, 

where fL is an overall (population) mean score for all pupils, ac is a "county 
deviation", the deviation of the mean score for county c from the population 
mean, bcs is a "school deviation", the deviation of the mean score for school 
s in county c from the mean for this county, and ecsp is a "pupil deviation", 
the deviation of the score for pupil p in school s in county c from the mean 
for•this school. 

In conventional regression or linear models, the pupil-level deviations 
ecsp would be modelled as independent and normally distributed N(O, a;). 
In the multilevel model, we model in addition the bcs as N(O, a;) and the ac 

as N(O, a~), with additional assumptions of independence of ac,bcs and ecsp

The variance of a score Ycsp is then a} = a~ + a; + a;; the variances a~, 
a; and a; are called variance components. A consequence of these model 
assumptions is that the achievement scores Ycsp are in general correlated, 
rather than independent. Scores Ycsp and Ycsp' of two pupils in the same 
school are correlated 

and scores Ycsp and Yes' p' of two pupils in different schools in the same 
county are correlated 

Scores Ycsp and Yc's'p' of two pupils in different counties are independent. 
Thus this model represents analytically the varying homogeneity which we 
observe in practice in educational systems: pupils in closely related "units" 
(same school) are more homogeneous (have higher correlation between their 
results) than those in more distantly related units (different schools in the 
same county). 

This model is specified by the values of the four parameters J.L, a~, a;, a;. 
From the available data for a random sample or a.complete enumeration of 
the population, we can estimate efficiently (by maximum likelihood, ML, or 
restricted maximum likelihood, REML) the values of the parameters, giving 
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esthrmtes jl, 6-~, a-;, a-;. Several packages are available for this purpose; the 
VARCL program of LONGFORD [6] is particularly useful as it can handle 
both large regression models with many variables (up to 300 in one imple
mentation) and also large data sets (with no constraint on the number of 
lmver-level units) with up to three levels in the hierarchy. 

From these estin1.ates, we can determine the relative (estimated) vari
ability of test scores among counties, among schools within counties and 
arnong pupils within schools. If, for example, 6-~ = 0 then counties are 
homogeneous, and all the variability in test score outcomes can be assigned 
to schools and pupils. If 6-~ is large but o-; = 0 then counties differ con
siderably but schools within counties are homogeneous. In general, pupil 
(individual) variability o-; will be a large proportion of the total variability 
A? A? A? 
(]"~ + (]"; + (]";. 

This simplest possible "null" model will not in general be of much 
interest, except to provide estimates of the variance parameters, because it 
contains no policy or other "explanatory" variables related to outcome. In 
general we will have a set (vector) of county level variables x c, a set of school 
level variables Xs and a set of pupil level variables Xp which may be related 
to the test score or other outcome variable, and the aim of the analysis is 
to identify the important variables in each set. Recall that Xc may contain 
county level aggregate or composite variables from x 8 and Xp, and x 8 may 
contain school level aggregate or composite variables from Xp. The variables 
in each set may themselves be powers or products (interactions) of other 
variables in the set, or products of variables in the set and in sets at higher 
levels in the hierarchy. 

The model is then extended by replacing the simple mean score f-l for 
the p-th pupil in the s-th school in the c-th county by 

where (3, ~~ and 15 are vectors of regression coefficients for the county, school 
and pupil variables. Fitting the model gives ML or REML estimates for (3, 1 
and 15 and the variance components O"~, O"; and O";. A large (and statisti
cally significant) coefficient for a variable shows an association between this 
variable and the outcome variable, after allowing for variations clue to other 
variables included in the model. Whether particular variables are needed in 
the model is assessed by standard statistical methods of hypothesis testing, 
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using the likelihood ratio test. Elimination of redundant variables gives a 
final reduced ("parsimonious") model which contains only those variables 
necessary to describe the sys-tematic variation present in the data. 

A critical issue in correct specification of the model is the careful mod
elling of variation in mean outcome at the individual level: considerable 
information is available at this "bottom" level of the hierarchy, and mis
specification of the model at this level may substantially bias parameter 
estimates of variables at higher levels. 

A further extension of the model allows the regression coefficient vector 
for school level variables to be different in different counties, and that for 
pupil level variables to be different in both different schools and different 
counties. The most general model would have 

where the random coefficient vectors gc and des are themselves modelled as 
N(O, :Ec) and N(O, :Ecs)· This model is formally equivalent to an interaction 
n:wdel, since for example the term g~xs means that the "effect" of school 
variables in X 8 interacts with county through the multiplier gc: sonJ.e school 
variables have a larger effect in some counties than in others. 

4. INTERPRETATIONS OF THE lVIODEL, AND THEIR 
LIMITATIONS 

Vve give below a set of questions which can be answered from the model. 
i) How much variability is there in outcome score across the levels of 

the hierarchy? 
The estinmted variance components 3-~, a-; and a-; from the "null" 

model with constant mean give the breakdown of the total variance 3-~ 
across the levels. 

ii) 'Which variables at. each level are important, in being strongly related 
to individual student outcomes? 

The standardized regression coefficients for the model (i.e. /!Jjj S.E.(fij )) 
give the importance of the corresponding variables; if a standardized regres
sion coefficient is zero, or close to zero, the corresponding variable does not 
contribute to the variation in student outcomes beyond the other variables 
in the rnoclel and can be omitted from the model. Interpretation of the 
model is assisted by model reduction procedures: starting from the most 
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complex plausible model, we progressively simplify the model by the omis
sion of variables which do not contribute to the variation in outcome. This 
produces one or more final parsimonious models which retain a "minimal 
set" of important variables; only these need to be interpreted. 

iii) Does the importance of school level variables differ from county 
to county, or the importance of pupil level variables differ from school to 
school, or from county to county? 

The interaction components in :Ec and :Ecs provide this information. 
Zero or very small ML estimates for the variance components (the variances 
of the slope distributions) show that no important variation in the regression 
model occurs across schools or counties; a large variance component for 
one or more slopes shows systematic variation across schools or counties .' 
in the importance of the corresponding variables. In practice we do not 
fit simultaneously large numbers of random slopes in the model, because 
there is generally little information to support the estimation of multiple 
random parameters, and the convergence of the ML algorithm may become 
extremely slow. If a large slope variance component is found for a variable, 
we would usually look for interactions of this variable with other variables 
at the higher level to explain this slope variation. 

iv) Which schools are "doing well", and which are "doing badly"? 

This question can be approached in two different ways. On the one 
hand, if, for example, per-pupil spending in the school and average years of 
experience of the teacher are important variables, with large positive stan
dardized regression coefficients for outcome, then schools with high values 
of these variables are "doing well", and those with low values are "doing 
badly?'. 

On the other hand we might argue that such schools would be expected 
to do well, given their values of these variables, and the real question is 
whether the schools are doing better or worse than expected, given the values 
of the variables. If the (residual) school variance component is still large 
after fitting these explanatory variables, then there are large variations in 
outcome across schools which are not related to these variables, and we may 
try to identify these through large positive and negative values of the school 
"random effects" bcs· For technical reasons we identify these values through 
their "posterior means"; these give more appropriate and stable estimates 
than simple school means. 
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A serious difficulty with the second approach is that we are unable, in 
a one-off cross-sectional study, to say whether the "unexplained " variation 
at the school level represents real and stable differences between schools due 
to relevant but unmeasured variables, or whether they are simply random 
variation which might be completely different in another study. To assess 
this question a longitudinal study is necessary. If the estimated school 
variance component a-; is zero, then there is no unexplained variation at 
this level, and any attempt to rank schools based on school deviations or 
school means is meaningless. 

v) How are "standards" changing over time? 
·when assessment or testing is carried out repeatedly (say yearly), an 

additional hierarchical level of "time" is added to the model. How this 
level appears in the model and in the analysis depends on the level of the 
hierarchy at which units are repeatedly assessed. 

At one extreme, the same students n1.ight be assessed at each time 
period. In a three-level model of county/ school/ pupil with two time points, 

this \vould give the following hierarchy. 

Sc\.oo Is 

... 

At the bottom level of times, we have one explanatory variable, an 
identifier for time 1 or time 2. The greater homogeneity of repeated mea
sures within the same pupil is again represented in an extended variance 
component model: 

Y~spt = llcspt + ac + hcs + ecsp + fcspt 

where the "time deviation" fcspt is N(O, a;), that is the deviation of the 
score at time t for pupil p in school s in county c from the mean for this 
pupil. One model for the mean would be 
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-vvhere Bt is a "fixed effect" parameter representing the overall change of 
mean score ("standard") with time; the model lTlight also contain inter
actions of the county, school, or pupil variables with time, representing 
changes of the importance of these variables with time, and therefore dif
ferentially changing "standards" in different counties and schools. 

More commonly, repeated testing would be carried out in the same 
schools, but with different students, for exam_ple in successive years. The 
hierarchy would then be as follows. 

Co \MA-tt~ 

(A ~ C~\..-...oo\.'1 

T\"11\.eS 

PLI..f·tls 

Now pupils are nested in times rather than times in pupils, and the 
model would be 

Ycstp = f--lcstp + ac + bcs + fest + ecstp· 

In a national longitudinal survey of counties in which different schools 
were sam. pled in each wave of the survey, the hierarchy would be that shown 
below. 
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The model would now be 

Yctsp = 1-lctsp + ac + fct + bets + ectsp· 

In each case, time appears as an explicit variable in the 1-l-model, with its 
possible interactions with higher-level variables, and the formal analysis of 

the model in each case is the same, though the estimated variance com

ponents for time may be very different since they refer to time changes at 
different levels of the hierarchy. 

In addition to assessing the direct changes over time in mean outcome, 

we can assess the stability of county or school deviations over time, by 
examining the need for (random) interactions of these deviations with the 
time indicator, that is for random slopes ofthe time indicator over schools or 
counties. Large estimated variance components for time-by-school or time

by-county interactions mean that the random school or county deviations 
are "unstable", and changing from time to time. Atten1.pts to rank schools 

or counties on the basis of their posterior mean random effects will have 

little point or value if these posterior means change substantially from year 

to year. 

5. CAUSAL INFERENCE AND POLICY EVALUATION 
FROM MULTILEVEL MODELS 

Policy makers at all levels are concerned to evaluate the effects of edu

cational policy changes on outcomes. Models, including multilevel models, 
have an important role in the analysis of the effects of policy changes, but. 

they are not a substitute for the proper design of studies to assess these 
changes. Model-based inference about policy changes has been applied in 
the following design circumstances, Virith decreasing validity from i) to iii). 

i) The policy change is evaluated in a randomized experiment, in which 

a randornly selected experimental group of areas is assigned the new policy, 

and a control group of areas is assigned the present or an alternative policy; 
randomization and careful design of the study allow unequivocal analysis of 

the data and assessment of the effect of the new policy compared with the 
present one. Such effects may become evident only over a period of several 
years, requiring longitudinal studies for their evaluation. 

ii) The policy change is carried out in some areas but not in others, 
with no randomization in the choice of areas, and a comparison of new and 
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present policy areas is made, with an attempt to "adjust" the difference in 
outcome for other variables which differ systematically between new and 
present policy areas and which might themselves have caused any change 
in mean outcome. 

Since no randomization of policies to areas is used, we cannot be certain 
that any covariance adjustment of the outcome difference by regression on 
other variables will remove all differences between areas. Careful matching 
of areas on relevant variables can help, but the inference that the policy 
difference caused the outcome difference is always suspect. 

iii) The new policy is already in use in some areas, and the present pol
icy in other areas. The fitted model has a large coefficient for the (dummy) 
policy variable, after regression on all other variables thought relevant. The 
coefficient is often interpreted as the change in mean outcome that would 
be produced if the present policy were to be changed to the new policy in 
those areas using the present policy. 

Inferences of this kind are completely speculative since no actual change 
of policy has occurred in any area, and there is no way of knowing whether 
the same model, with the same coefficient values, would apply in a random

ized experiment. 
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DISCUSSION 

In the presentation I described an analysis of the 1984 lEA Science 
Study in Israel to illustrate the importance of careful modelling of the 
individual-level model and the effect on interpretations of ignoring inter
actions between pupil-level variables. The 1984 survey is being replicated 

in the same schools in 1992 with the support of the Israel Research Founda
tion (the Ford Foundation in Israel), and a longitudinal analysis of the two 
surveys will allow the separate identification of class- and school-level vari
ance components, which are not identifiable from the 1984 survey because 
only one class was sampled from each school. Support for further waves 
of the survey is being sought, to establish and validate a simple indicator 
system based on the multilevel model. 

In the discussion questions were raised about the relative merits of 
ML and REML, the latter being thought theoretically preferable. In my re
sponse I noted that ML is computationally easier to implement than R.EML 
and for the large-scale studies typical in educational research the differences 
in regression parameter estimates from the two approaches were generally 
negligible, though differences in variance component estimates could be 
larger. 
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