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DESIGNeADJUSTED ESTIMATION WITH REPEATED 
SURVEY DATA 

R. L. CHAMBERS 

1. THE BASIC PROBLEM 
Consider a sequence of sample surveys of the same target population. 

The primary aim of these surveys is to provide 'snapshot' information on the 
status of this population at regular intervals (e.g. annual, quarterly, monthly). 
For example, the Australian Bureau of Statistics carries out monthly surveys 
of the Australian population to determine labour force participation rates, and 
quarterly surveys of Australian businesses to determine investment and 
expenditure patterns, while the Australian Bureau of Agricultural and 
Resource Economics carries out annual surveys of Australian farms to 
measure their economic performance. 

A characteristic of all of these surveys is that they employ complex, 
highly stratified sample designs, along with partial sample rotation, both as a 
means of controlling sample response burden, as well as a means of 
increasing both efficiency of estimation at each time period as well as 
estimation of movement between time periods. Another characteristic of 
these surveys is that they are, to a greater or lesser extent, affected by 
sample non-response at each time period. Assuming a fixed underlying 
population over the time period of interest, the typical data structure 
generated by these repeated surveys can be set out as in Figure 1. Here x 
denotes an observed sample datum, e denotes a missing sample datum and o 
denotes an unobserved (non-sample) datum: 

However, the most important characteristic of these repeated surveys is 
that they provide researchers with the opportunity to analyse a longitudinal 
data set for the target population, inasmuch as information on the same set of 
variables is obtained from each population unit surveyed at each point in 
time. 

There are two basic types of modelling approaches that are usually 
considered when repeated survey data (also known as time series/cross­
sectional data) are available. 
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Figure 1. A window on the typical data structure collected in repeated 
surveys. Vertical axis indicates time, horizontal axis indicates different 
population units. 
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Different models are needed to explain systematic 
changes in the population distribution of the survey 
variables over time. 

The same model for the population distribution of the 
survey variables holds at each time point. 

Both approaches emphasise that the aim is to model the underlying 
survey population, and not the survey sample. Given the complex sampling 
procedures underlying these surveys, and the presence of nonresponse, there 
is no guarantee that an analysis which is based on the sample data alone, and 
does not take into account available covariate information about relationships 
between the responding and nonresponding sample units, and between the 
sample and the population, will be adequate. A key requirement in any 
analysis of data obtained from these surveys therefore is that the inference 
be adjusted for possible biases induced by sample design, selection and non­
response effects at each time point for which data are available. 

The purpose of this paper is to indicate a strategy for carrying out this 
adjustment with repeated survey data. Following BRECKLING et al. [1] and 
CHAMBERS [2], the adjustment involves linking known population 
covariates (auxiliary information) to the observed sample data in order to 
explain systematic differences between the observed (respondent) sample 
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and the population. Although the actual problem considered will be that of 
fitting a linear regression model to these data on the basis of ignorable 
sampling and nonresponse, it should be noted that the strategy generalises to 
other types of models that are often considered with repeated survey data. 
For example, the method easily extends to the case where the variables of 
interest are categorical (for example, labour force status) and the interest is 
in fitting an appropriate nonlinear regression model, like a logistic regression 
model, to the repeated survey data. The approach also generalises to the 
case where either the sampling procedure or the nonresponse (or both) is 
non-ignorable. However, in such cases, the necessity to include models for 
these non-ignorable effects makes the development fairly complex. 

2. LINEAR MODELLING OF REPEATED SURVEY DATA 
To minimise notational complexity, the following assumptions are made: 
The underlying population is fixed, with units indexed by I= 1, 2, ... , N, 
and the survey is carried out at time points t = 1, 2, ... , T. 

® The population level covariate information that is available consists of 
the values of a scalar variable Z. These values detem1ine the sample 
design of the survey, and they remain unchanged throughout the time 
period of interest (that is, there is no change in sample design over this 
period). 

Probability (that is, ignorable given Z) methods are used to select the 
sample at each time point, and the sample nonresponse at each time 
period is also ignorable. 

0 The aim is to model the linear regression over the population of a 
(univariate) survey variable Yon another (univariate) survey variable X. 
Typically, the population distributions of both Y and X are related to that 
of the sample design covariate Z. For example, Y could be the quantity 
of a particular manufactured good produced by a manufacturing 
business, X could be the current (depreciated) value of the 
manufacturing plant and machinery of the business, and Z could be the 
work force of the business. 
Under a type A approach, it is assumed that the regression of Y on X 

varies with time in some systematic way: 

E(YitiXIt) = at+ f3tX!t 

var(YitiXIt) = a;. (1) 
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The aim is then to 'explain' changes in the regression parameters over time, 
by reference to corresponding changes in a 'global' variable G, say by a 
model of the form: 

l!..f3t = f(!!..Gt;~ ). 
Here !!.. is the first order differencing operator, f is a given functional form and 
~ is a vector of parameters to be estimated. Typically, ~ is estimated by 
minimising the squared deviations between the estimated values of !!..f3t and 
the corresponding values of f. 

Under a type B approach, however, the same regression model is 
assumed to hold for all NT population data values: 

E(YIX) =a+ {3X 

(2) 
In this case, the aim is to use the survey data collected over the entire time 
period of interest to estimate the parameters of (2). 

In order to fit either (1) or (2), we develop two basic identities for the 
regression coefficients in these models. Put 

. J.lr = E(Y) ; Px = E(X) 
and 

O"yy = var(Y) ; O"xx = var(X) ; O"YX = cov(Y,X). 
Then 

/3 = axlaYX ; a= J.ly- /3 J1 X· 

Let a subscript of Z denote expectation conditional on the known 
population Z-values. It follows 

and 

f3 = E(covz(Y,X)) +cov(Ez(Y),Ez(X)) 
E( varz(X)) + var( Ez(X)) 

a= E(Ez(Y))- f3E(Ez(X)). 

(3a) 

(3b) 

The identities (3a) and (3b) hold generally, but their interpretation differs 
somewhat between type A and type B approaches. Under a type A 
approach the expectations in these identities are with respect to the 
distribution of Y and X across spatial units (/). That is, we effectively add a 
time index to all quantities in (3a) and (3b). Under a type B approach, 
however, these expectations are across both spatial units (/) and time units 
(t), so (3a) and (3b) hold as they stand. 
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It can readily be seen that the real problem in analysis of longitudinal 
survey data is therefore one of fitting an appropriate model for behaviour 
conditional on Z. Estimates of the parameters of the linear model linking Y 
and X follow on substitution of the estimated parameters of this conditional 
model in (3a) and (3b). 

The simplest specification for this conditional behaviour (perhaps after 
appropriate transformation of the survey data) is where different population 
units are-uncorrelated, given Z, and where the conditional expectations of Y 
and X given Z vary linearly with Z, but their corresponding second order 
conditional moments are constant. If one also allows this behaviour to vary 
across time, this implies a model of the form 

and 

Ez(YJr) = ay(t) +by(t)ZI (4a) 

(4b) 

covz(Y1r.Yis) = Xyy(t,s) ; covz(X1r,X1s) = Xxx(t,s) (4c) 

covz(Yir•XIs) = Xrx(t,s) ; covz(XIt•Yis) = XXY(t,s). (4d) 

Fitting the type A model (1) under this setup is direct. Design-adjusted 
estimates of f3t and at are computed by substituting appropriate estimates of 
the parameters of ( 4) into (3) at each time point and then averaging over the 
population Z-values. Thus (3a) implies an estimate for f3t in (2) of the form 

fi _irx(t,t)+by(t)bx(t)var(Z) 

t- ixx(t,t) + Si(t)var(Z) (5) 

Under joint normality of Y, X and Z, (5) is the 'Pearson adjusted' 
maximum likelihood estimate of f3 (SKINNER, HOLT and SMITH [3]). In 
general, however, if N is large (as it usually is) and if sample-based estimates 
of ali time specific Z-conditiomtl quantities are also maximum likelihood, then 
the simple moment estimators for f3t and at generated under the above 
approach will closely approximate the corresponding maximum likelihood 
estimates for these parameters under a much broader class of distributions 
for Y, X and Z. 

The parameters of the type B model (2) do not vary with t, while the 
opposite is true of the parameters of (4). In order to use (4) to fit (2), 
therefore, one needs to use ( 4) to define a corresponding set of time invariant 
conditional moments for Y and X. Since the target population does not change 
over time, these time invariant conditional moments are obtained by 
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averaging over corresponding t-specific moments (defined by setting s = t for 
second order moments) in (4). For example 

while 

T 

Ez(Y) = ay + byZ = T-1Iay(t) + by(t)Z 
t=l 

T 

varz(X) = xxx(Z) = y-r~:xxx(t,t) 
t=l 

T 

+T-12:, {(ax(t) ~ax) +(bx(t)- bx)Z}2 

(6a) 

t=l (6b) 

and 
T 

covz(Y,X) = Xrx(Z) = T~1 LXrx(t,t) 
t=l 

+ y-rf .. {[ ( ay(t)- ay) + ( by(t)- by )z] }· 
t=l x [(ax(t)-ax)+(bx(t)-bx)Z] (6c) 

Given sample-based estimates of the time specific quantities in ( 4 ), their 
·time invariant counterparts are easily estimated by substitution in (6), and 
design-adjusted estimates of f3 and a in (2) then obtained by substitution in 
(3) and averaging over the population Z-values. Thus 

J3 = XYX(Z)+ bybxvar(Z) 
ixx(Z) + Sivar(Z) (7) 

where a 'hat' denotes an estimate, and a 'bar' denotes averaging over the 
population Z-values. That is 

N 

irx(Z) = N-1LiYX(zi) 
/=1 

while 
. N 

var(Z) = N-1L(z1 - 2)2. 

/=1 
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3. GLS ESTIMATION -OF THE PARAMETER~ OF (4) 
The development in the previous section indicates that the real problem 

in fitting either (1) or (2) is in using the longitudinal survey data to compute 
efficient estimates of the parameters of the conditional model (4). In this 
section a method of estimating these parameters based on a generalised least 
squares (GLS) approach is briefly outlined. Without loss of generality, it will 
be assumed that units that have ever appeared in sample over the period of 
interest are indexed by I = 1, 2, ... , n . The set of time points when unit I 
actually appears in sample will be denoted TJ. Thus T1 = {tl, t2, ... , tk(J)}, 
where k(I) denotes the number of times unit I appears in sample over the 
period of interest. The sample data D s can then be expressed in vector form 
as 

It follows from ( 4) that 

Ez( Ds) = {rbind( (1 Z1) ® I2T[ blk _select(2T, 2, T1 J,J)}(a) 
l~I~n b 

(8) 
where I2T denotes the identity matrix of order 2T, rbind denotes the function 
that 'stacks' row vectors (indexed by I) to form a matrix, blk_select(M, n, p) 
is another function that divides the integers between 1 and M into MIn 
labelled blocks each of size n and returns the integers corresponding to 
blocks with labels in the setp. For example, blk_select(6, 2, {1, 3}) = {1, 2, 5, 
6}, and 

and 

a'= (ay(1) ax(1) ay(2) ax(2) ···ay(T) ax(T)) 

b' = (by(1) bx(1) by(2) bx(2) ... by(T) bx(T)). 
Similarly, put 

[Xyy(t,s) XYX(t,s)] 
covz(DJt.DJs) = X(t,s) = ( ) ( ) 

Xxy t,s xxx t,s 
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1 
X(l.l) x(1,2) x(l,T) 

x(2,1) x(2,2) x(2,T) 
x= : 

Lx(T,l) x(T,2) x(T,T) 

Then 

covz(DI) =Xi= X[blk_select(2T,2,TJ),blk_select(2T,2,TI)] 

and, since different population units are uncorrelated under (4), 

covz(Ds) = Xs = blk_diag{XJ,l = l, ... ,n} (9) 

where blk_diag denotes a function whose value is a square matrix with block 
diagonal structure defined by the matrices provided as arguments to this 
function. 

The GLS estimator of the parameters a and b in (8) is therefore 

(10) 

Note that (10) depends on knowledge of x, and, in tum, this requires 
that X be modelled. Given such a model, the estimation procedure is iterative, 
cycling between the GLS estimates of a and b defined by (10) and the 

estimate of X· 
Choice of an appropriate model for X will depend on the particular 

population being surveyed and the nature of the survey design. Under the 
model (4), different population units are uncorrelated given their values of Z. 
In this case a simple autoregressive structure for X should suffice to capture 
the time dependence in the survey data. For example 

r(JJ !t-sl lt-sll · YYPyy mrxPrx 
X(t,s) = It-s! lt-sl · 

L Wyx.p XY (J) XXP XX (11) 

Standard moment estimates for the parameters of (11) are straightforward to 
specify. 

4. SUMMARY 
Tne main contribution of this paper has been to describe a strategy for 

the analysis of repeated survey data which incorporates adjustments 
compensating for the effect of the complex sample design that is 
characteristic of such surveys. For the purpose of exposition, the strategy 
has been developed in the context of a standard linear regression analysis of 
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these data, and has assumed ignorable sampling and nonresponse. It is 
technically feasible, though notationally complex, to relax these assumptions. 

A key feature of the approach is that incorporation of sample design 
effects inevitably requires modelling of the relationship between the survey 
variables of interest and the sample design information. Since the paper is 
expository, it has assumed a simple linear regression structure for this 
relationship. The basic approach, however, can easily be extended to cover 
more complex relationships, including those where the underlying population 
and sample structures are clustered, so that variance component models are 
appropriate for describing the relationship between the survey variables and 
the sample design information. 
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