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HYPERGROUPS AND HARMONIC ANALYSIS 

N.J. Wildberger 

0. INTRODUCTION 

The modern approach to harmonic analysis on a Lie group treats the representations 

of the group as the central objects of study, while characters are treated as important 

but auxiliary objects associated to representations. This is in direct contrast to the 

modern approach to harmonic analysis on a finite group, which treats the determina­

tion and study of the characters of the group as the primary problem, and considers 

representations as important but auxiliary objects associated to characters. 

For finite groups, the reason for this is three fold; 1) the determination of the irre­

ducible characters is a vastly simpler problem than the determination of the irreducible 

representations 2) almost all of the standard problems of harmonic analysis may be 

answered solely by means of the character theory and 3) historically, the theory of 

characters has preceded that of the theory of representations. 

This suggests the following interesting question - might it be possible to develop 

harmonic analysis on a Lie group as essentially a theory of characters, and thereby 

finesse the present difficulties and technicalities in modern representation theory? [This 

is not an entirely new idea- in fact Harish Chandra's pivotal work on the existence of 

discrete series for non-compact semi-simple groups (see for example Varadarajan [8]) 
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takes this view.] 

In this paper we show how such an approach may be initiated, and applied to various 

classes of groups. The first problem is of course - how does one define a character of 

a group if one does not know what a representation is? Our answer to this question is 

a variant of the one Ftobenius would have given- the characters of a finite group, say, 

are exactly those functions on the set of conjugacy ·classes of the group which respect 

the natural algebraic structure of this set. This algebraic structure has a probabilistic 

nature and is called an abelian hypergroup (see [3], [5], [7]). We therefore replace the 

problem of non-commutative harmonic analysis on the group G with the problem of 

abelian harmonic analysis on the hypergroup of conjugacy classes, which we call the 

class hypergroup of G. This allows us to sketch a straight forward algorithm for the 

construction of the character table of any given finite group. 

It also provides a general framework for the study of harmonic analysis on an 

arbitrary group. 

When G is a Lie group, we show that one may expect an intimate relationship be­

tween the class hypergroup of G and the hypergroup of adjoint orbits. This provides an 

explanation for the general effectiveness of Kirillov theory (see Kirillov [6]) in harmonic 

analysis since, formally at least, the dual object of the hypergroup of adjoint orbits is 

the hypergroup of co-adjoint orbits, although we also see that in general Kirillov theory 

will provide at best a 'linear approximation' to the unitary dual of G on account of the 

global difference between the class hypergroup and the hypergroup of adjoint orbits. 

We therefore propose a program for the determination and study of the unitary 

dual of a Lie group G which both incorporates and extends Kirillov theory. 
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1. DEFINITIONS AND BASIC STRATEGY 

A finite abelian hypergroup (F .A.H.) is a set C = { C0 , C1 , ... , Cn} together with 

an associative abelian algebra structure on RC 

(1.1) C;Cj = L n~jck 
k 

and an involution *: C -+ C such that 

1) nk. > 0 
•J-

2) L:;n~j=l 
k 

3) C0 is the identity 

4) n?i > 0 if and only if c; = Ci. 

Such an object has a pleasing physical interpretation as a collection of interacting 

particles with ( 1.1) defining the transition probabilities. C0 acts like a photon in that it 

is absorbed in any collision and c; represents the anti-particle of C;- the only particle 

for which collision with C; has a non-zero probability of creating a photon. Particle 

interactions are independent of their order in time and space, and are symmetrical with 

respect to replacing particles with anti-particles. 

We define the mass m(C;) of C; to be (n?i)- 1 , where Ci = c1, and the total mass 

of C to be m( C) = L:; m( C k). A character of C is a function X : C -+ C satisfying 
k 

(1.2) X(C;)X(Cj) = L n7jX(Ck) 
k 

and 

(1.3) X(Ci) = X(C;). 

c/\ will denote the set of characters of c. 

The characters of C do not necessarily form a F.A.H. under pointwise multiplication 

but the only axiom that may fail is 1) and this allows us also to define the notions of 

mass and characters for C". One then has the following (see Wildberger [10]) 
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THEOREM 1.1. i) ICI = ICAI 

iii) m(C) = m(CA). • 
There are two important F.A.H.'s associated to any finite group G. 

The first consists of the set of conjugacy class .under convolution. More specifically, 

we will identify a conjugacy class C; with the uniform probability distribution on it 

(regarded as an element in the group algebra). The involution* sends a conjugacy class 

C; to the class of inverse elements of C;, and the multiplication is given by convolution. 

We call this F.A.H. the class hypergroup of G, and denote it by C(G). 

The second is perhaps more familiar and consists of the representations under tensor 

products. More specifically, let x; and Xi be two irreducible characters and 

XiXj = L M;~Xk 
k 

the decomposition of XiXi into irreducibles. If dt = Xt(e) is the dimension of the 

corresponding representation and we set Xt = xd dt then 

X;Xj = L mfjXk 
k 

where mf; = M;~dk/d;d;. Under this multiplication, and involution Xi =X;, the set 

{X;} forms a F.A.H. which we call the representation hypergroup of G and denote 

The main fact about these two F.A.H.s associated toG is the following. 
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THEOREM 1.2. C( G) A ~ C( GA ). • 
This theorem is a reformulation into our language of a classical property of the 

irreducible characters of a finite group. Theorem 1.2 states that the characters of G 

are exactly those functions on conjugacy classes which preserve their natural algebraic 

structure. Representations are not needed in order to define and study characters- an 

observation which Frobenius would have considered obvious since he (and other pioneers 

of group theory) studied characters before representations had been defined. 

This motivates us to suggest a new approach to the definition and study of GA, 

where G is an arbitrary group (although we are particularly interested in the case G a 

real Lie group.) This program involves the following steps. 

1. Determine C(G), the abelian hypergroup of (invariant) probability distributions on 

the conjugacy classes of G. 

2. Determine C(G)A, the dual hypergroup of C(G). 

3. Establish a version of Theorem 1.2 to determine C(GA). 

There are of course a number of serious obstacles to be overcome before this program 

can be applied to large families of groups. We will investigate some of these problems 

and possible ways to overcome them in this article. 

We must first however discuss a third family of F.A.H.s, which occurs in a number 

of different contexts. 

Let H be a finite abelian group and G a subgroup of Aut(H). Then the orbits 

of G on H (identified as above with the corresponding probability distributions in the 

group algebra) form a F.A.H. which we denote by C( G; H). To determine the characters 

of C( G; H), consider the dual action of G on HA, the dual group of H, and form the 

hypergroup C(G; HA) of orbits. 
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THEOREM 1.3. C(G;H)" '::!.C(G;H"). 

To see this, consider an orbit U E C( G; H" ). We can associate to U a function Xu 

on C(G; H) by 

(1.4) 
1 

Xu(O) = IUIIOI L L ¢(x) 
</>EU xEO 

0 E C(G;H) 

which is easily checked to be a character of mass m(U) = lUI. Since m(C(G;H")) = 

m(C(G; H))= IHI, Theorem 1 iii) shows that the characters Xu, U E C(G; H") exhaust 

C(G; H)". 

Let us note that any representation of a finite group G on a finite-dimensional 

vector space V over a finite field yields such a F.A.H. 

§2. FINITE GROUPS 

Given the multiplication table of a finite group G, it is a routine matter to compute 

(or to write a program to compute) the structure equations of C(G). For C;, let adC; 

denote the operator on CC given by multiplication by C;. The eigenvalues of this operator 

are the character values X( C;), X E C". The determination of the characters of C( G) 

(and thus of G) thus reduces to the simultaneous diagonalization of the set {ad C;} of 

commuting operators. 

Let us illustrate this procedure in the simplest possible case, that of G = S3 . If C1 

denotes the conjugacy class of transpositions and c2 the class of order 3 cycles, then it 

is easy to calculate the equations ofC(G) = {C0 ,C1>C2} to be 

c1c2 = c1 

2 1 1 
C2 = 2co + 2c2 
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Then with respect to the basis {Co,C1,C2}, 

0 1 0 0 0 1 
3 2 

ad cl = 1 0 1 ad Cz = 0 1 0 
0 2 0 1 0 I 

3 2 

By simultaneously diagonalizing these operators (or in this case by a simple examination 

of the structural equations) one finds the characters to have values 

Xo XI Xz 

Co 1 1 1 

c1 1 -1 0 

c2 1 1 1 -2 

This is the hypergroup character table and differs from the group character 

table only by some normalizations which make it more symmetricaL To complete the 

analysis we must describe the structure of C( G") as a hypergroup. This is given by 

Xi =Xo 

2 1 1 1 
X =-X0 +-Xt+-X2. 

2 4 4 2 

In practice, however, this method has the difficulty that for many interesting finite 

groups for which one wishes to calculate a character table, the multiplication table is 

far from 'known', so even the determination of the group's conjugacy classes can be a 

difficult problem. 

Let us also mention at this point an interesting question - what exactly are the 

class hypergroup structure constants for the symmetric group Sn? 
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3. COMPACT GROUPS 

Let G be a compact connected Lie group. Each conjugacy class C ~ G is closed 

and carries a unique G-invariant probability measure. It follows that the set C( G) of 

conjugacy classes has the structure of a (continuous) abelian hypergroup under group 

convolution. Similarly C( G") forms an infinite discrete abelian hypergroup and Theorem 

1.2 holds, so that 

C(G)" ~ C(G"). 

Let us see how the above general considerations allow us to recover the usual de­

scription of G" in terms of highest weights (or integral co-adjoint orbits in the geometric 

quantization picture). The key is to compare C( G) with the hypergroup of adjoint orbits 

0 ~ g, which we denote C(g). The hypergroup C(g) is an infinite continuous version of 

the hypergroup C(G, H) discussed in §1, where g plays the role of H. Some Euclidean 

harmonic analysis on g shows that the analog of Theorem 1.3 holds, namely that 

(3.1) C(g)" ~ C(g*), 

where C(g*) denotes the hypergroup of co-adjoint orbits U ~ g*. Furthermore the cor­

respondence is given by the natural analog of (1.4), namely for each U ~ g* and 0 ~ g 

Xu(O) = i l ei1>(x)dfJo(x)dt-tu(¢>) 

with dt-to and dfJu the G-invariant probability measures on 0 and U respectively. By 

G-invariance, this can be rewritten as 

where Xo is any point in a, which we recognize as a Kirillov-type character formula. 

One expects C(g) and C( G) to be closely related, at least on a neighborhood of 0 E g 

on which exp : g -> G is a diffeomorphism. Somewhat surprisingly, the true relationship 
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between C(g) and C( G) is only revealed when the entire exponential map is taken into 

consideration. 

This has been described in recent work by Dooley and Wildberger [1] and we here 

describe the main result. Let j be an analytic square root of the determinant of the 

exponential map - this is a G-invariant function on g. For f E c=(G), let ](X) = 

f(expX) denote its lift to g, and for a compactly supported distribution p on g, let 

<P(p) be the distribution on G given by <P(p )(f) = p(j ]) V f E c=( G). 

THEOREM 3.1. (Dooley, Wildberger {1}) Let 0 1 ,02 ~ g be adjoint orbits with 

G-invariant probability measures dJ-L 1 and dJ-L2 respectively. Then 

where the convolution on the left is on G and the convolution on the right is on g. 

Theorem 3.1 shows that <P : C(g) ---> C( G) is a hypergroup homomorphism, which 

is clearly surjective since exp is surjective. Now suppose that X E C( G)'\ so that X is 

by Theorem 1.2 a (normalized) irreducible character of G. Then X o <P is a hypergroup 

character of C(g) which by (3.1) must necessarily be of the form Xu for some co-adjoint 

orbit U ~ g*. Conversely a character Xu of C(g) will factor through <P to give a character 

of C( G) precisely when U satisfies the obvious integrality condition with respect to the 

exponential map. It follows that C( G)" is in 1-1 correspondence with the integral co­

adjoint orbits. We have therefore recovered the classical classification of G" without 

any resort to the specific structure of G (maximal tori, root spaces etc). 

In fact we have done more, we have also established the Kirillov character formula 

in global form for the character X. 

Theorem 3.1 shows how to transfer problems concerning central convolution on G 

to central convolution on g. The explicit structure of the hypergroup C(g) has been 
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recently determined in Dooley, Repka and Wildberger (2]. 

We shall shortly see that in some sense Theorem 3.1 holds formally for any Lie 

group, so there is at least some hope that this entire line of reasoning has an analog 

even for non-compact groups. 

4. NILPOTENT GROUPS 

If G is a connected, simply-connected nilpotent Lie group, then the exponential 

map is a diffeomorphism from g to G. This suggests there should be a strong connection 

between C(G) and C(g), if these objects really exist; in fact Kirillov theory leads us to 

predict that C(G) ~ C(g). The typical conjugacy class is non-compact however, so while 

it does carry a G-invariant measure, such a measure will not generally be a probability 

measure. FUrthermore the convolution of two such measures may easily not exist, at 

least in the usual sense. Nevertheless we have the following result. 

THEOREM 4.1. (Wildberger {9]) Let 0; s;;; g, i = 1, 2, 3 be adjoint orbits and 

C; s;;; G the corresponding conjugacy class exp 0; = C;. Then 0 3 s;;; 01 + 02 if and only 

ifCa s;;; C1C2. 

Since the proof is pertinent here, we recall the main idea. Working in the free Lie 

algebra generated by X and Y (and the corresponding algebra of formal power series) 

and letting X· Y = [X, Y], X* Y = ln(expX exp Y) and XY = exp(Y) ·X, one can 

show that there exists formal power series A( X, Y) and B(X, Y) such that 

x * y = xA<x,Y> + yB<x,Y)_ 

FUrthermore the assignment Z =X A( X,¥), W = yB(X,Y) is invertible in the sense that 

one can write X and Y as similar formal power series in Z and W. These considerations 

prove that exp( 0 x + Oy) = exp 0 x exp Oy but they actually prove more, namely that 
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if we define A: Ox x Oy ......_. g by A(X',Y') =X'+ Y' and M: Ox x Oy ......_. g by 

M(X', Y') =X'* Y', then we can find a bijection 77 : Ox X Oy ......_. Ox x Oy such that 

M=Aory. 

This is nothing but a formal proof of our conjecture C(G) ~ C(g). If G was a finite 

nilpotent group with a Lie algebra g and an exponential map exp : g ......_. G which was 

both a bijection and satisfied the Baker-Campbell-Hausdorff formula, then the above 

argument would allow us immediately to deduce that C( G) ~ C(g). Are there such 

groups? Yes there are- if G is a finite (p-.1) step nilpotent p-group (for some prime p) 

then Howe [4] has shown that there is an abelian group g with the structure of a (p-1) 

step nilpotent Lie algebra and a bijection exp : g-;. G satisfying the Campbell-Hausdorff 

formula. We have thus proved 

THEOREM 4.2. IfG is as above, then C(G) ~ C(g). Ill 

From this we may deduce the following result of Howe [4]. 

COROLLARY 4.3. IfG is as above, then C(G") ~ C(g") so that the characters of 

G are in 1:1 correspondence with the co-adjoint orbits ofG in g". In fact the character 

corresponding to any U ~ g"' is the push down under exp of the Fourier transform of 

the unique G-invariant probability distribution on U. 

Note that our proof of this result has largely ignored the specific structure of the 

group G. 

Let us now turn to the case of G a real nilpotent Lie group, where the above 

reasoning is only a hopeful guide. Can we make any sense out of C( G) or C(g) and use 

them to obtain the Kirillov theory for G? 

Consider the case of G the Heisenberg group with Lie algebra g with basis {X, Y, Z} 

satisfying the canonical commutation relations X · Y = Z. The adjoint orbits can be 
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described as follows: 

1) For (x,y) =/= (0,0), O(x,y) = {(x,y,z) I z E R} 

2) For any z, Oz = {(O,O,z)}. 

The orbits O(x,y)' carry a G-invariant measure which is just Lebesgue measure 

dz. One way of defining a convolution structure on these orbits is to use the space :F 

of continuous almost-periodic functions on g. Note that :F is closed under Euclidean 

translations and that any f E :F when restricted to O(x,y) is G-almost-periodic in the 

sense of Von Neumann (that is, the set of its translates under G is conditionally compact 

in the sup norm.) 

For any orbit O(x,y)' let lvf(x,y) : :F-+ C be the G-invariant mean associated to 0; 

because G acts on O(x,y) by translations we have 

1 la+N 
M(x,y)(f) = J!.Too 2N a-N f(x,y,z)dz 

the integral existingindependent of a E R. Let us use this formula to also define M(o,o)· 

Furthermore, 

Mz(f) = f(O, 0, z ), 

and we note that 

(4.1) 

independently of a E R. 

iNe may now convolve two means A1 and lvf' by the formula 

lv! * M'(f) = Af(x)(M'(y)f(x + y)) V.f E :F 

where M(x) means to take the mean A1 in the variable x etc. \Ve obtain the following 

structural equations 
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3) Nfz * Mz' = Mz+z'. 

Some remarks ought to be made about this structure, which we call C(g). First of all 

1) in the case (x 1,y1) = -(x,y) yields M(o,o) on the right side which is to be interpreted 

as a mean of the Mz's by (4.1). The structure is abelian and associative, and has a 

topology since the set of orbits { 0} inherits the quotient topology from g. 

One may consider the corresponding structure on the conjugacy classes of G; a 

moments thought shows that this structure, C( G), is identical to C(g), more specifically 

exp : C(g;) ----+ C( G) is an isomorphism. Thus to determine C( G)", we look for the 

characters of C(g). In analogy with the theory of hypergroups, a character will mean a 

continuous, bounded function X : C(g) -> C which respects the structural equations. 

Now 2) shows that either X(M(x,y)) = 0 or X(Mz) = 1. In the former case 3) shows 

that X(Mz) = ei>.z for some ), E R, with A= 0 excluded since 

N 

X(M(o,o)) = lim Nl 1 X(Mz)dz 
N~oo 2 -N 

must be 0. In the latter case 1) shows that X(M(x,y)) = ei(ax+by) for some (a, b) E R2 . 

We get then the following description of C(g)". 

THEOREM 4.4. C(g;)" ={X;.. I A E R, ..\ =J 0} U {X(a,b) I a, bE R} 

where X;.. : M(x,y) ~---+ 0 

and X . M ~---+ ei(ax+by) 
a,b · (x,y) 

: Mz 1-+ 1. 
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The reader will recognize the usual description of the irreducible characters of the 

Heisenberg group, and will hopefully appreciate the fact that we have finessed entirely 

the Stone-Von Neumann theorem on which this description usually depends. 

It seems an interesting challenge to try to extend this approach to more general 

nilpotent groups. 

5. FURTHER DIRECTIONS 

The main problem in extending our considerations to more general groups, such as 

non-compact semi-simple groups, is the difficulty in defining an analog of a G-invariant 

probability measure on a general conjugacy class. What is really needed is a more 

general theory of generalized functions or distributions on a Lie group. 

If one is willing to abandon probability measures and simply work with the usual 

G-invariant measures on conjugacy classes, the question of the existence of convolutions 

of two such measures becomes a rather subtle problem involving the relative geometry 

of the classes. Let us show, in a simple but instructive example, how such convolutions 

may be studied and contribute to the determination of the characters of a group. 

Let G = SL(2, R) and consider the non-zero adjoint orbits in g = sl(2, R). These 

are of three types; there are two nilpotent cones (whose union with the origin forms the 

'light cone'), hyperboloids of one sheet outside the light cone and the individual sheets 

of the hyperboloids of two sheets inside the light cone. 

Lett= {zt = ( ~t ~) It E A} with 4 = {zt It> 0}. Let Ot denote the G-orbit 

of Zt. Then C = U Ot is an open cone so the convolution of any two orbital measures 
t>O 

inC is a well-defined measure. Thus C forms a natural 'semi-hypergroup' of C(g). The 

easiest way to calculate the structure constants in C is perhaps to use the following 

fact. 
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LEMMA 5.1. Let J.L>. denote a G-invariant measure on 0>., >. > 0 and p : g -> t the 

orthogonal projection with respect to the Killing form. Then the push down p*(p.;,.) is 

a multiple of Lebesgue measure on [.\, oo ), where we identify t with R using the variable 

t. 

This is a direct analog of the familiar (but remarkable) fact that the surface area on 

a sphere between two parallel planes depends only on the distance between the planes 

and is proportional to it. 

We may thus normalize our measures J-!>. so that p*(p.;,.) = dt on [>.., oo ). From the 

fact that convolution and projection commute, it follows that for >., >..' > 0, 

This algebraic structure on C is abelian and associative, and essentially controls the 

possibilities for the values of the characters of G on the elliptic set. 

REFERENCES 

[1] Dooley, A.H. and Wildberger, N.J., On the global nature of the Kirillov and 
Kashiwara- Vergne formulae, Preprint, University of New South Wales (1991). 

[2] Dooley, A.H., Repka, J., and Wildberger, N.J., Sums of adjoint orbits, Preprint, 
University of New South Wales (1991). 

[3] Dunkl, C.F., The measure algebra of a locally compact bypergroup, Trans. Amer. 
Math. Soc. 179 (1973) 331-348. 

[4] Howe, R., On representations of discrete, finitely-generated, torsion-free nilpotent 
groups, Pacific J. of Math. 73 (2) (1977) 281-305 .. 

[5] Jewitt, R.L, Spaces with an abstract convolution of measures, Advances in Math, 
18 (1975) 1-101. 

[6] Kirillov, A.A., Unitary Representations of Nilpotent Lie Groups, Russian Math. 
Surveys, 17 ( 4) (1962) 53-103. 

[7] Spector, R., Measures invariants sur les bypergroups, Trans. Amer. Math. Soc. 
239 (1978) 147-165. 

[8] Varadarajan, V., Harmonic Analysis on Real Reductive Groups, LNM 576 Springer­
Verlag, Berlin 1977. 



253 

(9] Wildberger, N.J., On a relationship between adjoint orbits and conjugacy classes 
of a Lie group, Canad. Math. Bull. 33 (3) (1990) 297-304. 

(10] Wildberger, N.J., Duality and Entropy for :B.nite abelian hypergroups, Preprint, 
University of New South Wales, (1991). 

School of Mathematics 
University of New South Wales 
Kensington, NSW, 2033 
Australia. 




