ON THE UNIFORM CLASSIFICATION OF $L_p(\mu)$ SPACES

by Anthony Weston *

In this paper we survey results on the uniform classification of $L_p(\mu)$ spaces, we cite several open problems and we tie some loose ends in the existing theory (i.e., Theorem 12(a), (b)).

The topological classification of Banach spaces was initiated in Mazur [17] where he proved

Theorem 1: For $1 \le p, q < \infty$ the real Banach spaces $L_p(0,1), L_q(0,1)$ and ℓ_q are homeomorphic.

From Mazur's work it also followed that the unit balls $B(L_p(0,1))$, $B(L_q(0,1))$ and $B(\ell_q)$ are uniformly homeomorphic. We recall that a bijection $f: X \to Y$ between metric spaces is called a uniform homeomorphism if it is uniformly continuous in both directions.

For a thorough study of the topological structure of linear metric spaces we refer the reader to Bessaga and Pelczynski [8]. We would like to mention that [8] includes a proof of the

Anderson-Kadec Theorem: Every infinite dimensional, separable, locally convex, complete linear space is homeomorphic to the Hilbert space ℓ_2 .

The papers that led to this theorem are Kadec [13], [14], Anderson [4] and Bessaga and Pelczynski [6], [7]. Note also Torunczyk's generalization in [19]: two Banach spaces are homeomorphic if and only if they have the same density character.

In the present work our interest is in the uniform classification of $L_p(\mu)$ spaces. Combining results of Lindenstrauss [15] and Enflo [10] we get

Theorem 2: An infinite dimensional $L_{p_1}(\mu_1)$ is not uniformly homeomorphic to $L_{p_2}(\mu_2)$ if $p_1 \neq p_2$, $1 \leq p_i < \infty$.

¹⁹⁹¹ Mathematics Subject Classification. 46-02,46A16, 46B20

^{*}Partially supported by NSF grant #440702.

The following two theorems go somewhat in the other direction and, especially, Theorem 4 is of particular contrast to Theorem 2.

Theorem 3: (Aharoni [1]) For $1 \le p \le 2$, $L_p(0,1)$ (respectively ℓ_p) is uniformly homeomorphic to a bounded subset of itself.

Theorem 4: (Aharoni [1]) For $1 \le p \le 2$, $1 \le q < \infty$, $L_p(0,1)$ is uniformly homeomorphic to a bounded subset of ℓ_q (and therefore to a subset of $L_q(0,1)$).

Surprising, then, are the next two theorems. They are due to Aharoni, Maurey and Mityagin and are to be found in [2].

Theorem 5: For $2 , <math>L_p(0,1)$ (respectively ℓ_p) is not uniformly homeomorphic to a bounded subset of itself.

Theorem 6: For $2 , <math>1 \le q \le 2$, a $L_p(\mu)$ space is not uniformly homeomorphic to any subset of a $L_q(\mu)$ space.

The following question is still open.

Open Problem 1: For $2 , <math>2 < q < \infty$, is $L_p(0,1)$ uniformly homeomorphic to a bounded subset of ℓ_q ?

Questions of this genre may be found in Lindenstrauss [15] and Enflo [11].

The following theorem gives examples of uniformly homeomorphic Banach spaces which are not isomorphic.

Theorem 7: Let $1 \leq p, q, p_n < \infty$ be such that $p_n \rightarrow p$ then

 $(\sum \oplus \ell_{p_n})_q$ is uniformly homeomorphic to $\ell_p \oplus_q (\sum \oplus \ell_{p_n})_q$.

The case p = 1 is due to Ribe [18] and the generalization was obtained by Aharoni and Lindenstrauss [3]. Note that by taking p = 1, q > 1 and $p_n > 1$ (for all n) we obtain a reflexive Banach space which is uniformly homeomorphic to a non-reflexive Banach space.

The following result is due to Enflo (unpublished).

Theorem 8: $L_1(0,1)$ and ℓ_1 are not uniformly homeomorphic.

Enflo's proof used the following basic facts:

1. A uniformly continuous map T from a Banach space into a metric space satisfies a first order Lipschitz condition for large distances i.e., given $\delta > 0$, we can find a C so that

$$d(Tx, Ty) \le C \|x - y\| \text{ whenever } \|x - y\| \ge \delta.$$

2. If $x \neq y$ in $L_1(0,1)$ we can find a sequence of metric midpoints (x_n) such that $||x_j - x_k|| = \frac{1}{2}||x - y||$ whenever $j \neq k$.

Using these facts Enflo showed that a uniformly continuous bijection $T: L_1(0,1) \to \ell_1$ will map metric midpoints between (suitably chosen) x, y in $L_1(0,1)$ to "almost" metric midpoints between Tx, Ty in ℓ_1 and, further, deduced that T^{-1} cannot be uniformly continuous. Benyamini's survey [5] — on the uniform classification of Banach spaces includes a proof of Theorem 8.

Bourgain [9] generalizes Enflo's midpoint argument to obtain

Theorem 9: $L_p(0,1)$ and ℓ_p are not uniformly homeomorphic for $1 \le p < 2$.

We have the long standing

Open Problem 2: Are $L_p(0,1)$ and ℓ_p uniformly homeomorphic for p > 2?

So far we have been addressing the classical Banach spaces $L_p(\mu)$, $1 \le p < \infty$. We should also like to consider the *F*-spaces $L_p(\mu)$, 0 . The usual metric on such a space is given by

$$d(f,g) := \int |f-g|^p d\mu.$$

Theorem 6.2.1 in Enflo [12] says that: if a locally bounded linear space is uniformly homeomorphic to a Banach space with roundness > 1, then it is a normable space.

An immediate corollary, for example, is

Theorem 10: $L_p(0,1)$ is not uniformly homeomorphic to $L_q(0,1)$ if 0 .

For $0 the analysis of uniformly continuous maps out of <math>\ell_p$ is impaired if one uses the usual metric. In Weston [20], by the introduction of a uniformly equivalent metric on $\ell_p(0 , Enflo's midpoint strategy is again exploited to obtain$ **Theorem 11:** For $0 < p, q \leq 1$ the real F-spaces $L_p(0,1)$ and ℓ_q are not uniformly homeomorphic.

At this point it is relevant to note that Theorem 1 and the subsequent remark about unit balls is in fact true for all $0 < p, q < \infty$, the understanding being that for 0 < p, q < 1we are dealing with F-spaces. In [17] Mazur introduced the bijections

$$\begin{split} M_{p,q} &: L_p(0,1) \to L_q(0,1) : f \mapsto (\operatorname{sign} f) |f|^{p/q} \\ m_{p,q} &: \ell_p \to \ell_q : (a_j) \mapsto ((\operatorname{sign} a_j) |a_j|^{p/q}) \end{split}$$

and we have, for example,

Theorem 12: For $0 < p, q < \infty$ the unit balls $B(L_p(0,1))$, $B(L_q(0,1))$ and $B(\ell_q)$ are uniformly homeomorphic. Indeed, we have the following estimates,

(a) For 0

$$||M_{p,q}(f) - M_{p,q}(g)|| \le 2d(f,g)^{1/q} \text{ for all } f,g \in L_p(0,1)$$

whilst

$$d(M_{q,p}(f), M_{q,p}(g)) \le 2^{q-p} (\frac{q}{p})^p ||f-g||^p \text{ for all } f, g \in B(L_q(0,1)).$$

(b) For 0

$$d(M_{p,q}(f), M_{p,q}(g)) \leq 2^{q} d(f,g) \text{ for all } f,g \in L_{p}(0,1)$$

whilst

$$d(M_{q,p}(f), M_{q,p}(g)) \le 2^{\frac{q-p}{p}} (\frac{q}{p})^p d(f,g)^{p/q} \text{ for all } f,g \in B(L_q(0,1)).$$

(c) For $1 \le p \le q < \infty$

$$||(M_{p,q}(f) - M_{p,q}(g)|| \le 2||f - g||^{p/q}$$
 for all $f, g \in L_p(0,1)$.

whilst

$$\|(M_{q,p}(f) - M_{q,p}(g)\| \le (\frac{q}{p})2^{\frac{q}{p-1}} \|f - g\|$$
 for all $f, g \in B(L_q(0,1)).$

Note: The same estimates apply for $m_{p,q}$ (and its inverse $m_{q,p}$).

We should like to give a proof of (a) (the proof of (b) is similar) but first we need to recall three inequalities. The first two are from Mazur [17] and the third is standard.

1. For real numbers a and b and for $t \ge 1$ we have

$$|(\text{sign } a)|a|^{1/t} - (\text{sign } b)|b|^{1/t}|^t \le 2^t |a - b|.$$

2. For real numbers a and b and for $t \ge 1$ we have

$$|(\text{sign } a)|a|^t - (\text{sign } b)|b|^t| \le t|a-b|(|a|+|b|)^{t-1}$$

3. If $0 then, setting <math>\gamma_p = \max(1, 2^{p-1})$,

$$|\alpha - \beta|^p \le \gamma_p(|\alpha|^p + |\beta|^p)$$

for arbitrary (complex) numbers α and β .

Proof of Theorem 12(a): Suppose $0 . Set <math>t := \frac{q}{p} > 1$. Given $f, g \in L_p(0, 1)$ we see that

$$\begin{split} &\|M_{p,q}(f) - M_{p,q}(g)\|\\ &\coloneqq (\int_0^1 |(\text{sign } f)|f|^{p/q} - (\text{sign } g)|g|^{p/q}|^q dx)^{1/q}\\ &\le (\int_0^1 2^q |f - g|^p dx)^{1/q} \quad \text{by 3.}\\ &= 2d(f,g)^{1/q}. \end{split}$$

Given $f, g \in B(L_q(0, 1))$ we see that

$$\begin{aligned} &d(M_{q,p}(f), \ M_{q,p}(g)) \\ &:= \int_0^1 |(\text{sign } f)|f|^{q/p} - (\text{sign } g)|g|^{q/p}|^p dx \\ &\leq (\frac{q}{p})^p \int_0^1 |f - g|^p (|f| + |g|)^{q-p} dx \quad \text{by } 4. \\ &\leq (\frac{q}{p})^p (\int_0^1 |f - g|^q dx)^{p/q} (\int_0^1 (|f| + |g|)^q dx)^{\frac{q-q}{q}} \end{aligned}$$

by applying Hölder's inequality with exponent q/p. Hence

$$\begin{aligned} d(M_{q,p}(f), \, M_{q,p}(g)) &\leq (\frac{q}{p})^p \|f - g\|^p (\int_0^1 2^{q-1} (|f|^q + |g|^q) dx)^{\frac{q-p}{q}} \text{ by 5.} \\ &\leq 2^{q-p} (\frac{q}{p})^p \|f - g\|^p \text{ as } f, g \in B(L_q(0,1)). \quad \Box \end{aligned}$$

In [16] Lövblom studies uniform homeomorphisms between $B(L_p(0,1))$ and $B(\ell_q)$ for $1 \leq p,q < \infty$ and the next two theorems are from this paper. But first recall that if X and Y are metric linear spaces and $T: B(X) \to B(Y)$ is a uniform homeomorphism then the modulus of continuity δ_T is defined by

$$\delta_T(\epsilon) := \sup \{ d(Tx, Ty) | d(x, y) \le \epsilon \}.$$

Theorem 13: Let $1 \le p < q \le 2$ and let T be a uniform homeomorphism $B(L_p(0,1)) \rightarrow B(L_q(0,1)), B(L_p(0,1)) \rightarrow B(\ell_q)$ or $B(\ell_p) \rightarrow B(\ell_q)$. Then there is a constant K > 0 such that

$$\delta_{T^{-1}}(\delta_T(\epsilon)) \ge K \epsilon^{p/q} \text{ for all } \epsilon \le 1.$$

Lövblom's proof of Theorem 10 uses the fact that $L_p(\mu)$ has roundness p for $1 \le p \le 2$ and hence does not generalise to p > 2 or 0 .

Open Problem 3: Can Theorem 13 be established for all $0 < p, q < \infty$.

Theorem 14: Let $1 \le p < q < \infty$ and let T be $M_{p,q}$ or $m_{p,q}$ restricted to the appropriate unit ball. Then there exists a constant K > 0 such that

$$\delta_{T^{-1}}(\delta_T(\epsilon)) \leq K \epsilon^{p/q} \text{ for all } \epsilon \leq 1.$$

Note that from the estimates in Theorem 12 it is clear that Theorem 14 holds for all $0 . Note also that Theorem 13 is sharp in the case of uniform homeomorphisms <math>B(L_p(0,1)) \rightarrow B(L_q(0,1))$ or $B(\ell_p) \rightarrow B(\ell_q)$, $1 \le p < q \le 2$, as a result of the Theorem 12(c) estimates on the Mazur maps.

We conclude this paper with two more open problems.

Open Problem 4: Are ℓ_p and ℓ_q uniformly homeomorphic for 0 ?

Open Problem 5: Are $L_p(0,1)$ and $L_q(0,1)$ uniformly homeomorphic for 0 ?

References:

- I. Aharoni, Uniform embeddings of Banach spaces, Israel J. Math. 27 (1977), pp. 174-179.
- 2. I. Aharoni, B. Maurey and B.S. Mityagin, Uniform embeddings of metric spaces and of Banach spaces into Hilbert spaces, Israel J. Math. 52 (1985), pp. 251-265.
- 3. I. Aharoni and J. Lindenstrauss, An extension of a result of Ribe, Israel J. Math. 52 (1985), pp. 59-64.
- 4. R.D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), pp. 515-519.
- 5. Y. Benyamini, *The uniform classification of Banach spaces*, Longhorn Notes, University of Texas, Austin, 1984-85, pp. 15-39.
- C. Bessaga and A. Pelczynski, Some remarks on homeomorphisms of Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), pp. 757-760.
- C. Bessaga and A. Pelczynski, Some remarks on homeomorphisms of F-spaces, ibid. 10 (1962), pp. 265-270.

- 8. C. Bessaga and A. Pelczynski, *Selected topics in infinite-dimensional topology*, Monografie Matematyczne 58, PWN, Warszawa 1975.
- 9. J. Bourgain, Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms, Lecture Notes in Mathematics, 1267 (Israel Seminar 1985-86), pp. 157-167.
- P. Enflo, On the non-existence of uniform homeomorphisms between L_p-spaces, Ark. Math. 8 (1971), pp. 253-272.
- 11. P. Enflo, Uniform homeomorphisms between Banach spaces, Seminaire Maurey-Schwartz, 1975-1976, XVIII.
- P. Enflo, Uniform structures and square roots in topological groups, II, Israel J. Math. 8 (1970), pp. 253-272.
- M.I. Kadec, On the topological equivalence of separable Banach spaces, Dokl. Akad. Nauk SSSR 167 (1966), pp. 23-25; English translation: Soviet Math. Dokl. 7 (1966), pp. 319-322.
- 14. M.I. Kadec, A proof of the topological equivalence of all separable infinite dimensional Banach spaces, Funkcional. Anal. i Priložen. 1 (1967), pp. 53-62 (Russian).
- 15. J. Lindenstrauss, On non-linear projections in Banach spaces, Michigan Math. J. 11 (1964), pp. 263-287.
- 16. G.M. Lövblom, Uniform homeomorphisms between unit balls in L_p -spaces. To appear.
- 17. S. Mazur, Une Remarque Sur l'homéomorphismie des champs fonctionnels, Studia Math. 1 (1929), pp. 83-85.
- 18. M. Ribe, Existence of separable uniformly homeomorphic non-isomorphic Banach spaces, Israel J. Math. 48 (1984), pp. 1391-147.
- 19. H. Torunczyk, Characterizing Hilbert Space Topology, Fund. Math. 111 (1981), pp. 2471-262.
- 20. A. Weston, Some non-uniformly homeomorphic spaces of classical analysis. To appear.

Kent State University, Kent OH 44242, USA