SIMILARITIES OF ω-ACCRETIVE OPERATORS

CHRISTIAN LE MERDY

Abstract

Given a number $0<\omega \leq \frac{\pi}{2}$, an ω-accretive operator is a sectorial operator A on Hilbert space whose numerical range lies in the closed sector of all $z \in \mathbb{C}$ such that $|\operatorname{Arg}(z)| \leq \omega$. It is easy to check that any such operator admits bounded imaginary powers, with $\left\|A^{i t}\right\| \leq e^{\omega|t|}$ for any $t \in \mathbb{R}$. We show that conversely, A is similar to an ω-accretive operator if $\left\|A^{i t}\right\| \leq e^{\omega|t|}$ for any $t \in \mathbb{R}$.

1. Introduction.

Let H be a Hilbert space and let A be a closed operator on H with dense domain $D(A)$. Given any $\omega \in(0, \pi)$, we let Σ_{ω} be the open sector of all complex numbers $z \in \mathbb{C}^{*}$ such that $|\operatorname{Arg}(z)|<\omega$, and we say that A is sectorial of type ω if its spectrum $\sigma(A)$ is included in the closure of Σ_{ω} and if for every $\theta \in(\omega, \pi)$, the set $\left\{z(z-A)^{-1}: z \notin \overline{\Sigma_{\theta}}\right\}$ is bounded.

Assume that $\omega \leq \frac{\pi}{2}$. We say that A is ω-accretive if it is sectorial of type ω and if

$$
\begin{equation*}
\langle A \xi, \xi\rangle \in \overline{\Sigma_{\omega}}, \quad \xi \in D(A) \tag{1.1}
\end{equation*}
$$

It is well-known that if the resolvent set $\rho(A)$ contains -1 , say, then (1.1) implies that A is sectorial of type ω. Thus A is ω-accretive if and only if $-1 \in \rho(A)$ and (1.1) holds true. Note that with this terminology, $\frac{\pi}{2}$-accretivity coincides with maximal accretivity. The aim of this note is to give a characterization of injective ω-accretive operators up to similarity in terms of their imaginary powers.

If A is an injective maximal accretive operator on H, then we can define its imaginary powers and we have $\left\|A^{i t}\right\| \leq e^{\frac{\pi}{2}|t|}$ for any real number $t \in \mathbb{R}$. Indeed this estimate is a consequence of von Neumann's inequality, see e.g. [1, Theorem G]. More generally, assume that A is an injective ω-accretive operator. Then $e^{i\left(\frac{\pi}{2}-\omega\right)} A$ and $e^{-i\left(\frac{\pi}{2}-\omega\right)} A$ are both maximal accretive hence for any $t \in \mathbb{R}$, we have $\left\|\left(e^{i\left(\frac{\pi}{2}-\omega\right)} A\right)^{i t}\right\| \leq e^{\frac{\pi}{2}|t|}$ and $\left\|\left(e^{-i\left(\frac{\pi}{2}-\omega\right) A}\right)^{i t}\right\| \leq e^{\frac{\pi}{2}|t|}$. We easily deduce that

$$
\begin{equation*}
\left\|A^{i t}\right\| \leq e_{84}^{\omega|t|}, \quad t \in \mathbb{R} . \tag{1.2}
\end{equation*}
$$

Our main result asserts that conversely, if A is an injective sectorial operator satisfying (1.2), then A is similar to an ω-accretive operator, that is, there exists a bounded and invertible operator $S: H \rightarrow H$ such that $S^{-1} A S$ is ω-accretive. We thus have the following characterization.

Theorem 1.1. Let $\omega \in\left(0, \frac{\pi}{2}\right]$ be a number and let A be an injective sectorial operator on H. Then A is similar to an ω-accretive operator if and only if there exists a bounded and invertible operator $S: H \rightarrow H$ such that $\left\|S^{-1} A^{i t} S\right\| \leq e^{\omega|t|}$ for any $t \in \mathbb{R}$.

We wish to make three comments concerning this theorem. First, it complements a previous result of ours ([7]) saying that if A is an injective sectorial operator of type $<\frac{\pi}{2}$, then A is similar to a maximal accretive operator if and only if it admits bounded imaginary powers. Second, Simard's recent work ([12]) shows that our result is essentially optimal. Indeed on the one hand, [12, Theorem 1] implies that for any $\omega \leq \frac{\pi}{2}$, one can find A not similar to an ω-accretive operator whose imaginary powers satisfy an estimate $\left\|A^{i t}\right\| \leq K e^{\omega|t|}$ for some $K>1$. On the other hand, [12, Theorem 4] shows that one can find A satisfying $\left\|A^{i t}\right\| \leq e^{\frac{\pi}{2}|t|}$ for any $t \in \mathbb{R}$ without being maximal accretive. The third comment is that our proof heavily relies on some recent work of Crouzeix and Delyon ([5]) who established some remarkable estimates for the analytic functional calculus associated to an operator whose numerical range lies in a band of the complex plane.

We now give a consequence of Theorem 1.1 concerning fractional powers of ω-accretive operators. Let $0<\omega \leq \frac{\pi}{2}$ and $\alpha \in(0,1]$ be two numbers. It is well-known that if A is an ω-accretive operator, then A^{α} is $\alpha \omega$-accretive. Although the converse does not hold true (see e.g. the discussion at the end of [12]), Theorem 1.1 implies the following.
Corollary 1.2. Let A be an ω-accretive operator for some $\omega \leq \frac{\pi}{2}$ and let $\alpha \geq \frac{2 \omega}{\pi}$ be a number. Then $A^{\frac{1}{\alpha}}$ is similar to an $\frac{\omega}{\alpha}$-accretive operator.
Proof. We may assume that A is injective and that $\alpha \leq 1$. Then our assumption of ω-accretivity implies (1.2). Since $\left(A^{\frac{1}{\alpha}}\right)^{i t}=A^{i \frac{t}{\alpha}}$, we thus have $\left\|\left(A^{\frac{1}{\alpha}}\right)^{i t}\right\| \leq e^{\frac{\omega}{\alpha}|t|}$ for any $t \in \mathbb{R}$. According to Theorem 1.1, this implies that $A^{\frac{1}{\alpha}}$ is similar to an $\frac{\omega}{\alpha}$-accretive operator, whence the result by taking α-th powers.

The proof of Theorem 1.1 is given in Section 3. It uses both H^{∞} functional calculus techniques (as introduced by McIntosh in [8]) and a theorem of Paulsen ([9]) reducing our proof to the study of the complete
boundedness of an appropriate functional calculus. In Section 2 below, we provide some background on Paulsen's Theorem for the convenience of the reader.

2. Background on complete boundedness and Paulsen's Theorem.

We only give a brief account on complete boundedness and its connections with similarity problems. More information and details, as well as important developments and applications can be found in [10].

Given a Hilbert space H, we let $B(H)$ denote the C^{*}-algebra of all bounded linear operators on H. If \mathcal{C} is a C^{*}-algebra and $n \geq 1$ is an integer, we let $M_{n}(\mathcal{C})$ denote the C^{*}-algebra of all $n \times n$ matrices with entries in \mathcal{C}. Let us describe the resulting norm in two important special cases. Assume first that $\mathcal{C}=B(H)$. Then the C^{*}-norm on $M_{n}(B(H))$ is obtained by regarding elements of $M_{n}(B(H))$ as operators on the Hilbertian direct sum $H \oplus \cdots \oplus H$ of n copies of H. Thus for any $\left[T_{j k}\right] \in M_{n}(B(H))$, we have

$$
\begin{equation*}
\left\|\left[T_{j k}\right]\right\|=\sup \left\{\left(\sum_{j=1}^{n}\left\|\sum_{k=1}^{n} T_{j k} \xi_{k}\right\|^{2}\right)^{\frac{1}{2}}: \xi_{k} \in H, \sum_{k=1}^{n}\left\|\xi_{k}\right\|^{2} \leq 1\right\} . \tag{2.1}
\end{equation*}
$$

Now consider the case when $\mathcal{C}=C_{b}(\Omega)$ is the space of all bounded and continuous functions $g: \Omega \rightarrow \mathbb{C}$ on some topological space Ω, equipped with its sup norm. Then the C^{*}-norm on $M_{n}\left(C_{b}(\Omega)\right)$ is obtained by identifying $M_{n}\left(C_{b}(\Omega)\right)$ with the space $C_{b}\left(\Omega ; M_{n}\right)$ of bounded and continuous functions from Ω into M_{n}. Thus for any $\left[g_{j k}\right] \in M_{n}\left(C_{b}(\Omega)\right)$, we have

$$
\begin{equation*}
\left\|\left[g_{j k}\right]\right\|=\sup \left\{\left\|\left[g_{j k}(\lambda)\right]\right\|_{M_{n}}: \lambda \in \Omega\right\} . \tag{2.2}
\end{equation*}
$$

Let H be a Hilbert space, let \mathcal{C} be a C^{*}-algebra and let $E \subset \mathcal{C}$ be a (not necessarily closed) subspace of \mathcal{C}. Then the space $M_{n}(E)$ of $n \times n$ matrices with entries in E may be obviously regarded as embedded in $M_{n}(\mathcal{C})$. By definition, a linear mapping $u: E \rightarrow B(H)$ is completely bounded if there exists a constant $K \geq 0$ such that

$$
\left\|\left[u\left(a_{j k}\right)\right]\right\|_{M_{n}(B(H))} \leq K\left\|\left[a_{j k}\right]\right\|_{M_{n}(E)}
$$

for any $n \geq 1$ and any $\left[a_{j k}\right] \in M_{n}(E)$. In that case, the least possible K is denoted by $\|u\|_{c b}$ and is called the completely bounded norm of u. If the latter is ≤ 1, then we say that u is completely contractive. Obviously any completely bounded mapping u is bounded, with $\|u\| \leq$ $\|u\|_{c b}$.

Paulsen's Theorem asserts that any completely bounded homomorphism on an operator algebra ($=$ subalgebra of a C^{*}-algebra) is similar to a completely contractive one. More precisely, we have the following statement (see [9]), that we will use in the situation when $\mathcal{C}=C_{b}(\Omega)$ for some Ω.

Theorem 2.1. (Paulsen) Let H be a Hilbert space, let \mathcal{C} be a C^{*} algebra, let $\mathcal{A} \subset \mathcal{C}$ be a subalgebra, and consider a linear homomorphism $u: \mathcal{A} \rightarrow B(H)$. If u is completely bounded, then there exists a bounded invertible operator $S: H \rightarrow H$ such that the linear homomorphism $u_{S}: \mathcal{A} \rightarrow B(H)$ defined by letting $u_{S}(a)=S^{-1} u(a) S$ for any $a \in \mathcal{A}$ is completely contractive. In particular, $\left\|S^{-1} u(a) S\right\| \leq\|a\|$ for any $a \in \mathcal{A}$.

We finally recall for further use that for any $\left[\alpha_{j k}\right] \in M_{n}$ and for any vectors ξ_{1}, \ldots, ξ_{n} and $\eta_{1}, \ldots, \eta_{n}$ in a Hilbert space H, we have

$$
\begin{equation*}
\left|\sum_{j, k=1}^{n} \alpha_{j k}\left\langle\xi_{k}, \eta_{j}\right\rangle\right| \leq\left\|\left[\alpha_{j k}\right]\right\|_{M_{n}}\left(\sum_{k=1}^{n}\left\|\xi_{k}\right\|^{2}\right)^{\frac{1}{2}}\left(\sum_{j=1}^{n}\left\|\eta_{j}\right\|^{2}\right)^{\frac{1}{2}} . \tag{2.3}
\end{equation*}
$$

3. Proof of Theorem 1.1.

We first introduce some notation concerning H^{∞} functional calculus associated to sectorial operators (in the sense of [8], [3]). For any $\theta \in(0, \pi)$, we recall that

$$
\Sigma_{\theta}=\{z \in \mathbb{C}:|\operatorname{Arg}(z)|<\theta\}
$$

and we let Γ_{θ} be the counterclockwise oriented boundary of Σ_{θ}. Then we let $H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ be the space of all bounded analytic functions $f: \Sigma_{\theta} \rightarrow$ \mathbb{C} for which there exist two positive numbers $c>0, s>0$, such that

$$
|f(z)| \leq c \frac{|z|^{s}}{1+|z|^{2 s}}, \quad z \in \Sigma_{\theta}
$$

We recall that if A is a sectorial operator of type $\omega \in(0, \pi)$ and if $f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ for some $\theta \in(\omega, \pi)$, then we may define $f(A) \in B(H)$ by letting

$$
f(A)=\frac{1}{2 \pi i} \int_{\Gamma_{\gamma}} f(z)(z-A)^{-1} d z
$$

where $\gamma \in(\omega, \theta)$ is an intermediate angle. (The definition of $f(A)$ does not depend on γ by Cauchy's Theorem.)

We let A be an injective sectorial operator satisfying (1.2) for some $\omega \in\left(0, \frac{\pi}{2}\right)$ and aim at proving that A is similar to an ω-accretive
operator. Recall from [11, Theorem 2] that A is necessarily sectorial of type ω. Changing A into $A^{\frac{\pi}{2 \omega}}$, we may assume that $\omega=\frac{\pi}{2}$. We fix some $\theta \in\left(\frac{\pi}{2}, \pi\right)$ and we let $\mathcal{A}_{0}=H_{0}^{\infty}\left(\Sigma_{\theta}\right)$ that we regard (by taking restrictions) as a subalgebra of $C_{b}\left(\Sigma_{\frac{\pi}{2}}\right)$. Then we let $\mathcal{A} \subset C_{b}\left(\Sigma_{\frac{\pi}{2}}\right)$ be the subalgebra linearly spanned by \mathcal{A}_{0}, the function $f_{0}(z)=\frac{1}{1+z}$, and the constant function 1 . We clearly define a homomorphism $u: \mathcal{A} \rightarrow B(H)$ by letting $u(f)=f(A)$ for $f \in \mathcal{A}_{0}, u\left(f_{0}\right)=(1+A)^{-1}, u(1)=1$, and then extending linearly. We will prove that

$$
\begin{equation*}
u: \mathcal{A} \longrightarrow B(H) \quad \text { is completely bounded. } \tag{3.1}
\end{equation*}
$$

Taking this for granted, the conclusion goes as follows. By Paulsen's Theorem, there exists an invertible $S \in B(H)$ such that $\left\|S^{-1} u(f) S\right\| \leq$ $\|f\|_{C_{b}\left(\Sigma_{\frac{\pi}{2}}\right)}$ for all $f \in \mathcal{A}$. Moreover the function $f(z)=\frac{1-z}{1+z}$ belongs to \mathcal{A} and $u(f)=(1-A)(1+A)^{-1}$. Since we have

$$
\|f\|_{C_{b}\left(\Sigma_{\frac{\pi}{2}}\right)}=\sup \left\{\left|\frac{1-z}{1+z}\right|: \operatorname{Re}(z)>0\right\}=1
$$

we conclude that
$S^{-1}(1-A)(1+A)^{-1} S=\left(1-S^{-1} A S\right)\left(1+S^{-1} A S\right)^{-1} \quad$ is a contraction.
This shows that $S^{-1} A S$ is maximal accretive.
To prove (3.1), we will change our sectorial functional calculus into a band sectorial functional calculus by means of the Log function. For any $\gamma>0$, let

$$
P_{\gamma}=\{\lambda \in \mathbb{C}:|\operatorname{Im}(\lambda)|<\gamma\}
$$

and let Δ_{γ} denote its counterclockwise oriented boundary. Let $i B$ be the generator of the c_{0}-group $\left(A^{i t}\right)_{t}$, so that B should be thought as being $\log (A)$. Our assumption that $\left\|A^{i t}\right\| \leq e^{\frac{\pi}{2}|t|}$ for any $t \in \mathbb{R}$ means that $i B-\frac{\pi}{2}$ and $-i B-\frac{\pi}{2}$ both generate contractive semigroups on H. Hence $\frac{\pi}{2}-i B$ and $\frac{\pi}{2}+i B$ are both maximal accretive, whence
$\operatorname{Re}\left\langle\left(\frac{\pi}{2}-i B\right) \xi, \xi\right\rangle \geq 0 \quad$ and $\quad \operatorname{Re}\left\langle\left(\frac{\pi}{2}+i B\right) \xi, \xi\right\rangle \geq 0, \quad \xi \in D(B)$.
In turn this is equivalent to say that the numerical range of B lies into the closure of $P_{\frac{\pi}{2}}$, that is,

$$
\begin{equation*}
\langle B \xi, \xi\rangle \in \overline{P_{\frac{\pi}{2}}}, \quad \xi \in D(B),\|\xi\| \leq 1 \tag{3.2}
\end{equation*}
$$

Let $H_{0}^{\infty}\left(P_{\theta}\right)$ be the space of all bounded analytic functions $g: P_{\theta} \rightarrow \mathbb{C}$ for which there exist a constant $c>0$ such that $|g(\lambda)| \leq \frac{c}{1+|\lambda|^{2}}$ for any $\lambda \in P_{\theta}$. Then let $\gamma \in\left(\frac{\pi}{2}, \theta\right)$ be an arbitrary number. Since $i B-\frac{\pi}{2}$ and $-i B-\frac{\pi}{2}$ both generate contractive semigroups, the function $\lambda \mapsto$
$(\lambda-B)^{-1}$ is well-defined and bounded on Δ_{γ} hence for any $g \in H_{0}^{\infty}\left(P_{\theta}\right)$ we may define $g(B) \in B(H)$ by letting

$$
g(B)=\frac{1}{2 \pi i} \int_{\Delta_{\gamma}} g(\lambda)(\lambda-B)^{-1} d \lambda .
$$

It is easy to check (using Cauchy's Theorem) that this definition does not depend on the choice of γ and that the mapping $v: g \mapsto g(B)$ is a linear homomorphism from $H_{0}^{\infty}\left(P_{\theta}\right)$ into $B(H)$. Moreover the sectorial and band functional calculi are compatible in the sense that for any $f \in H_{0}^{\infty}\left(\Sigma_{\theta}\right)$, the function $\lambda \mapsto f\left(e^{\lambda}\right)$ belongs to $H_{0}^{\infty}\left(P_{\theta}\right)$ and

$$
\begin{equation*}
g(B)=f(A) \quad \text { if } \quad g(\lambda)=f\left(e^{\lambda}\right) . \tag{3.3}
\end{equation*}
$$

We refer the reader to [2] for various relationships between sectorial and band functional calculi, from which a proof of (3.3) can be extracted. However we give a direct argument for the sake of completeness. Let φ be the function defined by $\varphi(z)=z(1+z)^{-2}$, so that $\varphi(A)=A(1+A)^{-2}$. It is well-known that $\varphi(A)$ has a dense range, so that we only need to prove that $g(B) \varphi(A)=f(A) \varphi(A)$. We fix two parameters $\frac{\pi}{2}<\gamma_{2}<$ $\gamma_{1}<\theta$. Let λ be a complex number with $\operatorname{Im}(\lambda)=\gamma_{1}$. Applying the Laplace formula to the semigroup $\left(A^{-i t}\right)_{t \geq 0}$, we have (in the strong sense)

$$
(\lambda-B)^{-1}=i(i \lambda-i B)^{-1}=-i \int_{0}^{\infty} e^{i \lambda t} A^{-i t} d t .
$$

Hence using Fubini's Theorem, we obtain

$$
\begin{aligned}
(\lambda-B)^{-1} \varphi(A) & =\frac{-1}{2 \pi} \int_{0}^{\infty} e^{i \lambda t} \int_{\Gamma_{\gamma_{2}}} z^{-i t} \varphi(z)(z-A)^{-1} d z d t \\
& =\frac{1}{2 \pi i} \int_{\Gamma_{\gamma_{2}}}\left(-i \int_{0}^{\infty} e^{i \lambda t} z^{-i t} d t\right) \varphi(z)(z-A)^{-1} d z
\end{aligned}
$$

whence

$$
(\lambda-B)^{-1} \varphi(A)=\frac{1}{2 \pi i} \int_{\Gamma_{\gamma_{2}}} \frac{1}{\lambda-\log (z)} \varphi(z)(z-A)^{-1} d z
$$

The latter idendity can be proved as well if $\operatorname{Im}(\lambda)=-\gamma_{1}$ hence holds true for any $\lambda \in \Delta_{\gamma_{1}}$. Using Fubini's Theorem again and Cauchy's

Theorem, we therefore deduce that

$$
\begin{aligned}
g(B) \varphi(A) & =\frac{1}{2 \pi i} \int_{\Delta_{\gamma_{1}}} g(\lambda)(\lambda-B)^{-1} \varphi(A) d \lambda \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \int_{\Delta_{\gamma_{1}}} g(\lambda) \int_{\Gamma_{\gamma_{2}}} \frac{1}{\lambda-\log (z)} \varphi(z)(z-A)^{-1} d z d \lambda \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \int_{\Gamma_{\gamma_{2}}}\left(\int_{\Delta_{\gamma_{1}}} g(\lambda) \frac{1}{\lambda-\log (z)} d \lambda\right) \varphi(z)(z-A)^{-1} d z \\
& =\frac{1}{2 \pi i} \int_{\Gamma_{\gamma_{2}}} g(\log (z)) \varphi(z)(z-A)^{-1} d z \\
& =f(A) \varphi(A)
\end{aligned}
$$

which concludes the proof of (3.3).
We let \mathcal{B} be equal to $H_{0}^{\infty}\left(P_{\theta}\right)$ regarded as a subalgebra of $C_{b}\left(P_{\frac{\pi}{2}}\right)$. To prove (3.1), it will suffice to show that

$$
\begin{equation*}
v: \mathcal{B} \longrightarrow B(H) \quad \text { is completely bounded. } \tag{3.4}
\end{equation*}
$$

Indeed since the exponential function is a holomorphic bijection from $P_{\frac{\pi}{2}}$ onto $\Sigma_{\frac{\pi}{2}}$, it follows from (3.3) and the definition of the matrix norms on \mathcal{A} and \mathcal{B} (see (2.2)) that if v is completely bounded, then $u_{\mathcal{A}_{0}}$ is completely bounded as well, with $\left\|u_{\mid \mathcal{A}_{0}}\right\|_{c b} \leq\|v\|_{c b}$. However \mathcal{A}_{0} has codimension 2 in \mathcal{A} hence the complete boundednes of $u_{\mid \mathcal{A}_{0}}$ implies that of u on \mathcal{A}.

We now come to the heart of the proof, which consists in showing that for an operator B whose spectrum is included in $\overline{P_{\frac{\pi}{2}}}$, the condition (3.2) implies (3.4). That (3.2) implies the boundedness of v is a recent result of Crouzeix and Delyon ([5]) and our proof of the complete boundedness of v will essentially be a repetition of their arguments, up to some adequate matrix norm manipulations. Before embarking into computations, we notice that (3.2) is equivalent to the following real/imaginary parts decomposition for B :

$$
\begin{equation*}
B=C+i D, \quad \text { with } \quad C=C^{*}, D=D^{*},\|D\| \leq \frac{\pi}{2} . \tag{3.5}
\end{equation*}
$$

In this decomposition, C is a possibly unbounded self-adjoint operator with $D(C)=D(B)$. Let $(E(s))_{s}$ be the resolution of the identity for C and for any integer $m \geq 1$, let

$$
C_{m}=\int_{(-m, m)} s d E(s) \quad \text { and } \quad B_{m}=C_{m}+i D
$$

Then C_{m} is a bounded self-adjoint operator hence B_{m} is a bounded operator whose numerical range lies in $\overline{P_{\frac{\pi}{2}}}$. Moreover for any $\lambda \notin \overline{P_{\frac{\pi}{2}}}$, we have

$$
\begin{equation*}
\left(\lambda-B_{m}\right)^{-1} \longrightarrow(\lambda-B)^{-1} \quad \text { strongly } . \tag{3.6}
\end{equation*}
$$

Indeed, $\left(\lambda-B_{m}\right)^{-1}-(\lambda-B)^{-1}=\left(\lambda-B_{m}\right)^{-1}\left(C_{m}-C\right)(\lambda-B)^{-1}$, we have $C_{m} \xi \rightarrow C \xi$ for any $\xi \in D(B)=D(C)$, and since the operators $\frac{\pi}{2} \pm i B_{m}$ are maximal accretive, we have a uniform estimate

$$
\begin{equation*}
\left\|\left(\lambda-B_{m}\right)^{-1}\right\| \leq d\left(\lambda, P_{\frac{\pi}{2}}\right), \quad m \geq 1 \tag{3.7}
\end{equation*}
$$

Next, by Lebesgue's Theorem, it follows from (3.6) and (3.7) that $g\left(B_{m}\right) \rightarrow g(B)$ strongly for any $g \in \mathcal{B}$. Thus for any $n \geq 1$ and any $\left[g_{j k}\right] \in M_{n}(\mathcal{B})$, we have

$$
\left\|\left[g_{j k}(B)\right]\right\| \leq \lim _{m} \sup \left\|\left[g_{j k}\left(B_{m}\right)\right]\right\|
$$

To prove the complete boundedness of v, it therefore suffices to prove that the mappings $g \mapsto g\left(B_{m}\right)$ are uniformly completely bounded. To achieve this goal we shall now assume that B is bounded and shall prove that

$$
\begin{equation*}
\|v\|_{c b} \leq \frac{2}{\sqrt{3}}+2 \tag{3.8}
\end{equation*}
$$

Let $\gamma \in\left(\frac{\pi}{2}, \theta\right)$ be an arbitrary intermediate angle. Then according to $[5,(5)]$ (and its proof), we may write

$$
v(g)=g(B)=v_{1}^{\gamma}(g)+v_{2}^{\gamma}(g)
$$

for any $g \in \mathcal{B}=H_{0}^{\infty}\left(P_{\theta}\right)$, with

$$
\begin{aligned}
& v_{1}^{\gamma}(g)=\frac{1}{2 \pi i} \int_{-\infty}^{+\infty} g(x)\left(\left(x+2 \gamma i-B^{*}\right)^{-1}-\left(x-2 \gamma i-B^{*}\right)^{-1}\right) d x \\
& v_{2}^{\gamma}(g)=\frac{1}{2 \pi i} \int_{\Delta_{\gamma}} g(\lambda)\left((\lambda-B)^{-1}-\left(\bar{\lambda}-B^{*}\right)^{-1}\right) d \lambda .
\end{aligned}
$$

Moreover it is easy to check that for any $x \in \mathbb{R}$, one has

$$
\begin{aligned}
\left(x+2 \gamma i-B^{*}\right)^{-1} & -\left(x-2 \gamma i-B^{*}\right)^{-1} \\
& =-4 \gamma i\left(x+2 \gamma i-B^{*}\right)^{-1}\left(x-2 \gamma i-B^{*}\right)^{-1} \\
& =-4 \gamma i(M(x)-i N(x))^{-1}
\end{aligned}
$$

where $M(x)$ and $N(x)$ are self-adjoint operators defined by

$$
M(x)=(x-C)^{2}-D^{2}+4 \gamma^{2} \quad \text { and } \quad N(x)=C D+D C-2 x D .
$$

(The boundedness of C allows this real/imaginary parts decomposition.) It follows from (3.5) that

$$
\begin{equation*}
M(x) \geq(x-C)^{2}+3\left(\frac{\pi}{2}\right)^{2} \tag{3.9}
\end{equation*}
$$

In particular, $M(x)$ is invertible and with $Q(x)=M(x)^{-\frac{1}{2}} N(x) M(x)^{-\frac{1}{2}}$, we may write

$$
\left(x+2 \gamma i-B^{*}\right)^{-1}-\left(x-2 \gamma i-B^{*}\right)^{-1}=-4 \gamma i M(x)^{-\frac{1}{2}}(1-i Q(x))^{-1} M(x)^{-\frac{1}{2}} .
$$

Let $n \geq 1$ be an integer and let $\left[g_{j k}\right]$ be an element of $M_{n}(\mathcal{B})$ with norm ≤ 1. According to (2.2), this simply means that

$$
\begin{equation*}
\left\|\left[g_{j k}(\lambda)\right]\right\|_{M_{n}} \leq 1, \quad \lambda \in P_{\frac{\pi}{2}} . \tag{3.10}
\end{equation*}
$$

We let $\xi_{1}, \ldots, \xi_{n}, \eta_{1}, \ldots, \eta_{n}$ be arbitrary elements of H. Then

$$
\begin{aligned}
& \sum_{j, k=1}^{n}\left\langle v_{1}^{\gamma}\left(g_{j k}\right) \xi_{k}, \eta_{j}\right\rangle \\
& =\sum_{j, k=1}^{n}\left(\frac{-2 \gamma}{\pi}\right) \int_{-\infty}^{+\infty} g_{j k}(x)\left\langle M(x)^{-\frac{1}{2}}(1-i Q(x))^{-1} M(x)^{-\frac{1}{2}} \xi_{k}, \eta_{j}\right\rangle d x \\
& =\left(\frac{-2 \gamma}{\pi}\right) \int_{-\infty}^{+\infty} \sum_{j, k=1}^{n} g_{j k}(x)\left\langle(1-i Q(x))^{-1} M(x)^{-\frac{1}{2}} \xi_{k}, M(x)^{-\frac{1}{2}} \eta_{j}\right\rangle d x .
\end{aligned}
$$

Applying (2.3) and (3.10), we obtain that

$$
\begin{aligned}
& \left|\sum_{j, k=1}^{n}\left\langle v_{1}^{\gamma}\left(g_{j k}\right) \xi_{k}, \eta_{j}\right\rangle\right| \\
& \leq \frac{2 \gamma}{\pi} \int_{-\infty}^{+\infty}\left(\sum_{k}\left\|(1-i Q(x))^{-1} M(x)^{-\frac{1}{2}} \xi_{k}\right\|^{2}\right)^{\frac{1}{2}}\left(\sum_{j}\left\|M(x)^{-\frac{1}{2}} \eta_{j}\right\|^{2}\right)^{\frac{1}{2}} d x .
\end{aligned}
$$

Since $Q(x)$ is self-adjoint, the operator $(1-i Q(x))^{-1}$ is a contraction for any $x \in \mathbb{R}$ hence applying Cauchy-Schwarz, we finally obtain that

$$
\begin{aligned}
& \left|\sum_{j, k=1}^{n}\left\langle v_{1}^{\gamma}\left(g_{j k}\right) \xi_{k}, \eta_{j}\right\rangle\right| \\
& \leq \frac{2 \gamma}{\pi}\left(\sum_{k} \int_{-\infty}^{+\infty}\left\|M(x)^{-\frac{1}{2}} \xi_{k}\right\|^{2} d x\right)^{\frac{1}{2}}\left(\sum_{j} \int_{-\infty}^{+\infty}\left\|M(x)^{-\frac{1}{2}} \eta_{j}\right\|^{2} d x\right)^{\frac{1}{2}}
\end{aligned}
$$

Now observe that for any $\xi \in H$, we have

$$
\begin{aligned}
\int_{-\infty}^{+\infty}\left\|M(x)^{-\frac{1}{2}} \xi\right\|^{2} d x & =\int_{-\infty}^{+\infty}\left\langle M(x)^{-1} \xi, \xi\right\rangle d x \\
& \leq \int_{-\infty}^{+\infty}\left\langle\left((x-C)^{2}+3\left(\frac{\pi}{2}\right)^{2}\right)^{-1} \xi, \xi\right\rangle d x
\end{aligned}
$$

by (3.9). Moreover using the spectral representation of C we see that the latter integral is equal to

$$
\int_{-\infty}^{+\infty} \frac{\|\xi\|^{2}}{x^{2}+3\left(\frac{\pi}{2}\right)^{2}} d x=\frac{2}{\sqrt{3}}\|\xi\|^{2}
$$

Combining with the previous estimate, this yields

$$
\left|\sum_{j, k=1}^{n}\left\langle v_{1}^{\gamma}\left(g_{j k}\right) \xi_{k}, \eta_{j}\right\rangle\right| \leq \frac{4 \gamma}{\pi \sqrt{3}}\left(\sum_{k}\left\|\xi_{k}\right\|^{2}\right)^{\frac{1}{2}}\left(\sum_{j}\left\|\eta_{j}\right\|^{2}\right)^{\frac{1}{2}} .
$$

In view of the definition of matrix norms on $B(H)$ (see (2.1)), we deduce

$$
\begin{equation*}
\left\|\left[v_{1}^{\gamma}\left(g_{j k}\right)\right]\right\| \leq \frac{4 \gamma}{\pi \sqrt{3}} \tag{3.11}
\end{equation*}
$$

We now turn to an estimate for v_{2}^{γ}. We rewrite the definition of the latter mapping as

$$
v_{2}^{\gamma}(g)=\int_{\Delta_{\gamma}} g(\lambda) T(\lambda)|d \lambda|,
$$

where $T(\lambda)$ is equal to $\frac{1}{2 \pi i}\left((\lambda-B)^{-1}-\left(\bar{\lambda}-B^{*}\right)^{-1}\right)$ if $\operatorname{Im}(\lambda)=-\gamma$ and is equal to its opposite if $\operatorname{Im}(\lambda)=\gamma$. The key point is that $T(\lambda)$ is a nonnegative operator for any $\lambda \in \Delta_{\gamma}$. Indeed assume for example that $\operatorname{Im}(\lambda)=-\gamma$. Then

$$
\begin{aligned}
& \frac{1}{2 \pi i}\left((\lambda-B)^{-1}-\left(\bar{\lambda}-B^{*}\right)^{-1}\right) \\
&=\frac{1}{2 \pi i}(\lambda-B)^{-1}\left(2 i \gamma+B-B^{*}\right)\left(\bar{\lambda}-B^{*}\right)^{-1} \\
&=\frac{1}{\pi}(\lambda-B)^{-1}(\gamma+D)\left(\bar{\lambda}-B^{*}\right)^{-1},
\end{aligned}
$$

which is nonnegative by (3.5). Then arguing as above, we obtain that for any vectors ξ_{1}, \ldots, ξ_{n}, and $\eta_{1}, \ldots, \eta_{n} \in H$, we have

$$
\begin{aligned}
\left|\sum_{j, k=1}^{n}\left\langle v_{2}^{\gamma}\left(g_{j k}\right) \xi_{k}, \eta_{j}\right\rangle\right| \leq \sup _{\lambda \in P_{\gamma}}\{ & \left.\left\|\left[g_{j k}(\lambda)\right]\right\|\right\}\left(\sum_{k} \int_{\Delta_{\gamma}}\left\|T(\lambda) \xi_{k}\right\|^{2}|d \lambda|\right)^{\frac{1}{2}} \\
& \times\left(\sum_{j} \int_{\Delta_{\gamma}}\left\|T(\lambda) \eta_{j}\right\|^{2}|d \lambda|\right)^{\frac{1}{2}}
\end{aligned}
$$

Now observe that since B is bounded, the function $\lambda \mapsto(\lambda-B)^{-1}-(\bar{\lambda}-$ $\left.B^{*}\right)^{-1}$ is integrable on Δ_{γ} and that $\frac{1}{2 \pi i} \int_{\Delta_{\gamma}}(\lambda-B)^{-1}-\left(\bar{\lambda}-B^{*}\right)^{-1} d \lambda=2$ by Cauchy's Theorem. Hence for any $\xi \in H$, we have

$$
\int_{\Delta_{\gamma}}\|T(\lambda) \xi\|^{2}|d \lambda|=\frac{1}{2 \pi i} \int_{\Delta_{\gamma}}\left\langle\left((\lambda-B)^{-1}-\left(\bar{\lambda}-B^{*}\right)^{-1}\right) \xi, \xi\right\rangle d \lambda=2\|\xi\|^{2}
$$

Combining with the above estimate, we obtain that

$$
\left\|\left[v_{2}^{\gamma}\left(g_{j k}\right)\right]\right\| \leq 2 \sup _{\lambda \in P_{\gamma}}\left\{\left\|\left[g_{j k}(\lambda)\right]\right\|\right\} .
$$

Since

$$
\lim _{\gamma \rightarrow \frac{\pi}{2}}\left(\sup _{\lambda \in P_{\gamma}}\left\{\left\|\left[g_{j k}(\lambda)\right]\right\|\right\}\right)=\sup _{\lambda \in P_{\frac{\pi}{2}}}\left\{\left\|\left[g_{j k}(\lambda)\right]\right\|\right\} \leq 1,
$$

we finally deduce that

$$
\left\|\left[v\left(g_{j k}\right)\right]\right\| \leq \inf _{\gamma>\frac{\pi}{2}}\left\{\left\|\left[v_{1}^{\gamma}\left(g_{j k}\right)\right]\right\|+\left\|\left[v_{2}^{\gamma}\left(g_{j k}\right)\right]\right\|\right\} \leq \frac{2}{\sqrt{3}}+2,
$$

which concludes our proof of (3.8).
Remark 3.1. Two results analogous to the one in [5] appear in [6] and [4]. On the one hand, it is shown in [6] that if $\Omega \subset \mathbb{C}$ is bounded and convex and if B is a bounded operator on H whose numerical range lies in Ω, then the analytic functional calculus associated to B is bounded with respect to the norm induced by $C_{b}(\Omega)$. On the other hand, it is shown in [4] that if A is an ω-accretive operator on H, then its analytic functional calculus is bounded with respect to the norm induced by $C_{b}\left(\Sigma_{\omega}\right)$. In the two cases, it it actually possible to show that these bounded functional calculi are completely bounded. If we apply Paulsen's Theorem to the functional calculus considered in [4] (sectorial case), we recover Corollary 1.2.

Acknowledgements. This research was carried out while I was visiting the Centre for Mathematics and its Applications at the Australian National University in Canberra. It is a pleasure to thank the CMA for
its warm hospitality. I am also grateful to Alan M ${ }^{c}$ Intosh for pointing out to me the paper [5].

References

[1] D. Albrecht, X. Duong, and A. McIntosh, Operator theory and harmonic analysis, Proc. of CMA, Canberra 34 (1996), 77-136.
[2] K. Boyadzhiev, and R. deLaubenfels, Spectral theorem for unbounded strongly continuous groups on a Hilbert space, Proc. Amer. Math. Soc. 120 (1994), 127-136.
[3] M. Cowling, I. Doust, A. M ${ }^{c}$ Intosh, and A. Yagi, Banach space operators with a bounded H^{∞} functional calculus, J. Austr. Math. Soc. (Series A) 60 (1996), 51-89.
[4] M. Crouzeix, Une majoration du type von Neumann pour les fractions rationnelles d'opérateurs sectoriels, C. R. Acad. Sci. Paris 330, Série I (2000), 513-516.
[5] M. Crouzeix, B. Delyon, Some estimates for analytic functions of band or sectorial operators, Preprint (2001).
[6] B. Delyon, and F. Delyon, Generalization of von Neumann's spectral sets and integral representations of operators, Bull. Soc. Math. France 127 (1999), 25-42.
[7] C. Le Merdy, The similarity problem for bounded analytic semigroups on Hilbert space, Semigroup Forum 56 (1998), 205-224.
[8] A. M'Intosh, Operators which have an H^{∞} functional calculus, Proc. of CMA, Canberra 14 (1986), 210-231.
[9] V. Paulsen, Completely bounded homomorphisms of operator algebras, Proc. Amer. Math. Soc. 02 (1984), 225-228.
[10] G. Pisier, Similarity problems and completely bounded maps, Lecture Notes 1618, Springer Verlag, 1996.
[11] J. Prüss, and H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), 429-452.
[12] A. Simard, Counterexamples concerning powers of sectorial operators on a Hilbert space, Bull. Austr. Math. Soc. 60 (1999), 459-458.

Département de Mathématiques, Université de Franche-Comté, 25030
Besançon Cedex, France
E-mail address: lemerdy@math.univ-fcomte.fr

