SIMILARITIES OF ω -ACCRETIVE OPERATORS

CHRISTIAN LE MERDY

ABSTRACT. Given a number $0 < \omega \leq \frac{\pi}{2}$, an ω -accretive operator is a sectorial operator A on Hilbert space whose numerical range lies in the closed sector of all $z \in \mathbb{C}$ such that $|\operatorname{Arg}(z)| \leq \omega$. It is easy to check that any such operator admits bounded imaginary powers, with $||A^{it}|| \leq e^{\omega|t|}$ for any $t \in \mathbb{R}$. We show that conversely, A is similar to an ω -accretive operator if $||A^{it}|| \leq e^{\omega|t|}$ for any $t \in \mathbb{R}$.

1. INTRODUCTION.

Let H be a Hilbert space and let A be a closed operator on H with dense domain D(A). Given any $\omega \in (0, \pi)$, we let Σ_{ω} be the open sector of all complex numbers $z \in \mathbb{C}^*$ such that $|\operatorname{Arg}(z)| < \omega$, and we say that A is sectorial of type ω if its spectrum $\sigma(A)$ is included in the closure of Σ_{ω} and if for every $\theta \in (\omega, \pi)$, the set $\{z(z-A)^{-1} : z \notin \overline{\Sigma_{\theta}}\}$ is bounded.

Assume that $\omega \leq \frac{\pi}{2}$. We say that A is ω -accretive if it is sectorial of type ω and if

(1.1)
$$\langle A\xi,\xi\rangle\in\overline{\Sigma_{\omega}},\qquad \xi\in D(A).$$

It is well-known that if the resolvent set $\rho(A)$ contains -1, say, then (1.1) implies that A is sectorial of type ω . Thus A is ω -accretive if and only if $-1 \in \rho(A)$ and (1.1) holds true. Note that with this terminology, $\frac{\pi}{2}$ -accretivity coincides with maximal accretivity. The aim of this note is to give a characterization of injective ω -accretive operators up to similarity in terms of their imaginary powers.

If A is an injective maximal accretive operator on H, then we can define its imaginary powers and we have $||A^{it}|| \leq e^{\frac{\pi}{2}|t|}$ for any real number $t \in \mathbb{R}$. Indeed this estimate is a consequence of von Neumann's inequality, see e.g. [1, Theorem G]. More generally, assume that A is an injective ω -accretive operator. Then $e^{i(\frac{\pi}{2}-\omega)}A$ and $e^{-i(\frac{\pi}{2}-\omega)}A$ are both maximal accretive hence for any $t \in \mathbb{R}$, we have $||(e^{i(\frac{\pi}{2}-\omega)}A)^{it}|| \leq e^{\frac{\pi}{2}|t|}$ and $||(e^{-i(\frac{\pi}{2}-\omega)A})^{it}|| \leq e^{\frac{\pi}{2}|t|}$. We easily deduce that

(1.2)
$$||A^{it}|| \le e^{\omega|t|}, \quad t \in \mathbb{R}.$$

Our main result asserts that conversely, if A is an injective sectorial operator satisfying (1.2), then A is similar to an ω -accretive operator, that is, there exists a bounded and invertible operator $S: H \to H$ such that $S^{-1}AS$ is ω -accretive. We thus have the following characterization.

Theorem 1.1. Let $\omega \in (0, \frac{\pi}{2}]$ be a number and let A be an injective sectorial operator on H. Then A is similar to an ω -accretive operator if and only if there exists a bounded and invertible operator $S: H \to H$ such that $\|S^{-1}A^{it}S\| \leq e^{\omega|t|}$ for any $t \in \mathbb{R}$.

We wish to make three comments concerning this theorem. First, it complements a previous result of ours ([7]) saying that if A is an injective sectorial operator of type $< \frac{\pi}{2}$, then A is similar to a maximal accretive operator if and only if it admits bounded imaginary powers. Second, Simard's recent work ([12]) shows that our result is essentially optimal. Indeed on the one hand, [12, Theorem 1] implies that for any $\omega \leq \frac{\pi}{2}$, one can find A not similar to an ω -accretive operator whose imaginary powers satisfy an estimate $||A^{it}|| \leq Ke^{\omega|t|}$ for some K > 1. On the other hand, [12, Theorem 4] shows that one can find Asatisfying $||A^{it}|| \leq e^{\frac{\pi}{2}|t|}$ for any $t \in \mathbb{R}$ without being maximal accretive. The third comment is that our proof heavily relies on some recent work of Crouzeix and Delyon ([5]) who established some remarkable estimates for the analytic functional calculus associated to an operator whose numerical range lies in a band of the complex plane.

We now give a consequence of Theorem 1.1 concerning fractional powers of ω -accretive operators. Let $0 < \omega \leq \frac{\pi}{2}$ and $\alpha \in (0, 1]$ be two numbers. It is well-known that if A is an ω -accretive operator, then A^{α} is $\alpha \omega$ -accretive. Although the converse does not hold true (see e.g. the discussion at the end of [12]), Theorem 1.1 implies the following.

Corollary 1.2. Let A be an ω -accretive operator for some $\omega \leq \frac{\pi}{2}$ and let $\alpha \geq \frac{2\omega}{\pi}$ be a number. Then $A^{\frac{1}{\alpha}}$ is similar to an $\frac{\omega}{\alpha}$ -accretive operator.

Proof. We may assume that A is injective and that $\alpha \leq 1$. Then our assumption of ω -accretivity implies (1.2). Since $(A^{\frac{1}{\alpha}})^{it} = A^{i\frac{t}{\alpha}}$, we thus have $\|(A^{\frac{1}{\alpha}})^{it}\| \leq e^{\frac{\omega}{\alpha}|t|}$ for any $t \in \mathbb{R}$. According to Theorem 1.1, this implies that $A^{\frac{1}{\alpha}}$ is similar to an $\frac{\omega}{\alpha}$ -accretive operator, whence the result by taking α -th powers.

The proof of Theorem 1.1 is given in Section 3. It uses both H^{∞} functional calculus techniques (as introduced by M^cIntosh in [8]) and a theorem of Paulsen ([9]) reducing our proof to the study of the complete

CHRISTIAN LE MERDY

boundedness of an appropriate functional calculus. In Section 2 below, we provide some background on Paulsen's Theorem for the convenience of the reader.

2. Background on complete boundedness and Paulsen's Theorem.

We only give a brief account on complete boundedness and its connections with similarity problems. More information and details, as well as important developments and applications can be found in [10].

Given a Hilbert space H, we let B(H) denote the C^* -algebra of all bounded linear operators on H. If \mathcal{C} is a C^* -algebra and $n \geq 1$ is an integer, we let $M_n(\mathcal{C})$ denote the C^* -algebra of all $n \times n$ matrices with entries in \mathcal{C} . Let us describe the resulting norm in two important special cases. Assume first that $\mathcal{C} = B(H)$. Then the C^* -norm on $M_n(B(H))$ is obtained by regarding elements of $M_n(B(H))$ as operators on the Hilbertian direct sum $H \oplus \cdots \oplus H$ of n copies of H. Thus for any $[T_{jk}] \in M_n(B(H))$, we have

(2.1)
$$||[T_{jk}]|| = \sup\left\{\left(\sum_{j=1}^{n} \left\|\sum_{k=1}^{n} T_{jk}\xi_{k}\right\|^{2}\right)^{\frac{1}{2}} : \xi_{k} \in H, \sum_{k=1}^{n} ||\xi_{k}||^{2} \le 1\right\}.$$

Now consider the case when $\mathcal{C} = C_b(\Omega)$ is the space of all bounded and continuous functions $g: \Omega \to \mathbb{C}$ on some topological space Ω , equipped with its sup norm. Then the C^* -norm on $M_n(C_b(\Omega))$ is obtained by identifying $M_n(C_b(\Omega))$ with the space $C_b(\Omega; M_n)$ of bounded and continuous functions from Ω into M_n . Thus for any $[g_{jk}] \in M_n(C_b(\Omega))$, we have

(2.2)
$$\left\| [g_{jk}] \right\| = \sup \Big\{ \left\| [g_{jk}(\lambda)] \right\|_{M_n} : \lambda \in \Omega \Big\}.$$

Let H be a Hilbert space, let \mathcal{C} be a C^* -algebra and let $E \subset \mathcal{C}$ be a (not necessarily closed) subspace of \mathcal{C} . Then the space $M_n(E)$ of $n \times n$ matrices with entries in E may be obviously regarded as embedded in $M_n(\mathcal{C})$. By definition, a linear mapping $u: E \to B(H)$ is completely bounded if there exists a constant $K \geq 0$ such that

$$\|[u(a_{jk})]\|_{M_n(B(H))} \le K \|[a_{jk}]\|_{M_n(E)}$$

for any $n \geq 1$ and any $[a_{jk}] \in M_n(E)$. In that case, the least possible K is denoted by $||u||_{cb}$ and is called the completely bounded norm of u. If the latter is ≤ 1 , then we say that u is completely contractive. Obviously any completely bounded mapping u is bounded, with $||u|| \leq ||u||_{cb}$.

Paulsen's Theorem asserts that any completely bounded homomorphism on an operator algebra (= subalgebra of a C^* -algebra) is similar to a completely contractive one. More precisely, we have the following statement (see [9]), that we will use in the situation when $\mathcal{C} = C_b(\Omega)$ for some Ω .

Theorem 2.1. (Paulsen) Let H be a Hilbert space, let C be a C^* algebra, let $\mathcal{A} \subset C$ be a subalgebra, and consider a linear homomorphism $u: \mathcal{A} \to B(H)$. If u is completely bounded, then there exists a bounded invertible operator $S: H \to H$ such that the linear homomorphism $u_S: \mathcal{A} \to B(H)$ defined by letting $u_S(a) = S^{-1}u(a)S$ for any $a \in \mathcal{A}$ is completely contractive. In particular, $||S^{-1}u(a)S|| \leq ||a||$ for any $a \in \mathcal{A}$.

We finally recall for further use that for any $[\alpha_{jk}] \in M_n$ and for any vectors ξ_1, \ldots, ξ_n and η_1, \ldots, η_n in a Hilbert space H, we have

(2.3)
$$\left|\sum_{j,k=1}^{n} \alpha_{jk} \langle \xi_k, \eta_j \rangle \right| \leq \left\| [\alpha_{jk}] \right\|_{M_n} \left(\sum_{k=1}^{n} \|\xi_k\|^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} \|\eta_j\|^2 \right)^{\frac{1}{2}}.$$

3. Proof of Theorem 1.1.

We first introduce some notation concerning H^{∞} functional calculus associated to sectorial operators (in the sense of [8], [3]). For any $\theta \in (0, \pi)$, we recall that

$$\Sigma_{\theta} = \{ z \in \mathbb{C} : |\operatorname{Arg}(z)| < \theta \}$$

and we let Γ_{θ} be the counterclockwise oriented boundary of Σ_{θ} . Then we let $H_0^{\infty}(\Sigma_{\theta})$ be the space of all bounded analytic functions $f \colon \Sigma_{\theta} \to \mathbb{C}$ for which there exist two positive numbers c > 0, s > 0, such that

$$|f(z)| \le c \frac{|z|^s}{1+|z|^{2s}}, \qquad z \in \Sigma_{\theta}.$$

We recall that if A is a sectorial operator of type $\omega \in (0, \pi)$ and if $f \in H_0^{\infty}(\Sigma_{\theta})$ for some $\theta \in (\omega, \pi)$, then we may define $f(A) \in B(H)$ by letting

$$f(A) = \frac{1}{2\pi i} \int_{\Gamma_{\gamma}} f(z)(z-A)^{-1} dz,$$

where $\gamma \in (\omega, \theta)$ is an intermediate angle. (The definition of f(A) does not depend on γ by Cauchy's Theorem.)

We let A be an injective sectorial operator satisfying (1.2) for some $\omega \in (0, \frac{\pi}{2})$ and aim at proving that A is similar to an ω -accretive

operator. Recall from [11, Theorem 2] that A is necessarily sectorial of type ω . Changing A into $A^{\frac{\pi}{2\omega}}$, we may assume that $\omega = \frac{\pi}{2}$. We fix some $\theta \in (\frac{\pi}{2}, \pi)$ and we let $\mathcal{A}_0 = H_0^{\infty}(\Sigma_{\theta})$ that we regard (by taking restrictions) as a subalgebra of $C_b(\Sigma_{\frac{\pi}{2}})$. Then we let $\mathcal{A} \subset C_b(\Sigma_{\frac{\pi}{2}})$ be the subalgebra linearly spanned by \mathcal{A}_0 , the function $f_0(z) = \frac{1}{1+z}$, and the constant function 1. We clearly define a homomorphism $u: \mathcal{A} \to B(H)$ by letting u(f) = f(A) for $f \in \mathcal{A}_0$, $u(f_0) = (1 + A)^{-1}$, u(1) = 1, and then extending linearly. We will prove that

(3.1)
$$u: \mathcal{A} \longrightarrow B(H)$$
 is completely bounded.

Taking this for granted, the conclusion goes as follows. By Paulsen's Theorem, there exists an invertible $S \in B(H)$ such that $||S^{-1}u(f)S|| \leq ||f||_{C_b(\Sigma_{\frac{\pi}{2}})}$ for all $f \in \mathcal{A}$. Moreover the function $f(z) = \frac{1-z}{1+z}$ belongs to \mathcal{A} and $u(f) = (1-A)(1+A)^{-1}$. Since we have

$$||f||_{C_b(\Sigma_{\frac{\pi}{2}})} = \sup\left\{ \left| \frac{1-z}{1+z} \right| : \operatorname{Re}(z) > 0 \right\} = 1,$$

we conclude that

$$S^{-1}(1-A)(1+A)^{-1}S = (1-S^{-1}AS)(1+S^{-1}AS)^{-1}$$
 is a contraction.
This shows that $S^{-1}AS$ is maximal accretive.

To prove (3.1), we will change our sectorial functional calculus into a band sectorial functional calculus by means of the Log function. For any $\gamma > 0$, let

$$P_{\gamma} = \{\lambda \in \mathbb{C} : |\mathrm{Im}(\lambda)| < \gamma\}$$

and let Δ_{γ} denote its counterclockwise oriented boundary. Let iB be the generator of the c_0 -group $(A^{it})_t$, so that B should be thought as being Log(A). Our assumption that $||A^{it}|| \leq e^{\frac{\pi}{2}|t|}$ for any $t \in \mathbb{R}$ means that $iB - \frac{\pi}{2}$ and $-iB - \frac{\pi}{2}$ both generate contractive semigroups on H. Hence $\frac{\pi}{2} - iB$ and $\frac{\pi}{2} + iB$ are both maximal accretive, whence

$$\operatorname{Re}\left\langle (\frac{\pi}{2} - iB)\xi, \xi \right\rangle \ge 0 \quad \text{and} \quad \operatorname{Re}\left\langle (\frac{\pi}{2} + iB)\xi, \xi \right\rangle \ge 0, \qquad \xi \in D(B).$$

In turn this is equivalent to say that the numerical range of B lies into the closure of $P_{\frac{\pi}{2}}$, that is,

(3.2)
$$\langle B\xi,\xi\rangle\in\overline{P_{\frac{\pi}{2}}},\qquad \xi\in D(B),\ \|\xi\|\leq 1.$$

Let $H_0^{\infty}(P_{\theta})$ be the space of all bounded analytic functions $g: P_{\theta} \to \mathbb{C}$ for which there exist a constant c > 0 such that $|g(\lambda)| \leq \frac{c}{1+|\lambda|^2}$ for any $\lambda \in P_{\theta}$. Then let $\gamma \in (\frac{\pi}{2}, \theta)$ be an arbitrary number. Since $iB - \frac{\pi}{2}$ and $-iB - \frac{\pi}{2}$ both generate contractive semigroups, the function $\lambda \mapsto$ $(\lambda - B)^{-1}$ is well-defined and bounded on Δ_{γ} hence for any $g \in H_0^{\infty}(P_{\theta})$ we may define $g(B) \in B(H)$ by letting

$$g(B) = \frac{1}{2\pi i} \int_{\Delta_{\gamma}} g(\lambda) (\lambda - B)^{-1} d\lambda.$$

It is easy to check (using Cauchy's Theorem) that this definition does not depend on the choice of γ and that the mapping $v: g \mapsto g(B)$ is a linear homomorphism from $H_0^{\infty}(P_{\theta})$ into B(H). Moreover the sectorial and band functional calculi are compatible in the sense that for any $f \in H_0^{\infty}(\Sigma_{\theta})$, the function $\lambda \mapsto f(e^{\lambda})$ belongs to $H_0^{\infty}(P_{\theta})$ and

(3.3)
$$g(B) = f(A) \quad \text{if} \quad g(\lambda) = f(e^{\lambda}).$$

We refer the reader to [2] for various relationships between sectorial and band functional calculi, from which a proof of (3.3) can be extracted. However we give a direct argument for the sake of completeness. Let φ be the function defined by $\varphi(z) = z(1+z)^{-2}$, so that $\varphi(A) = A(1+A)^{-2}$. It is well-known that $\varphi(A)$ has a dense range, so that we only need to prove that $g(B)\varphi(A) = f(A)\varphi(A)$. We fix two parameters $\frac{\pi}{2} < \gamma_2 < \gamma_1 < \theta$. Let λ be a complex number with $\text{Im}(\lambda) = \gamma_1$. Applying the Laplace formula to the semigroup $(A^{-it})_{t\geq 0}$, we have (in the strong sense)

$$(\lambda - B)^{-1} = i(i\lambda - iB)^{-1} = -i \int_0^\infty e^{i\lambda t} A^{-it} dt.$$

Hence using Fubini's Theorem, we obtain

$$\begin{aligned} (\lambda - B)^{-1}\varphi(A) &= \frac{-1}{2\pi} \int_0^\infty e^{i\lambda t} \int_{\Gamma_{\gamma_2}} z^{-it}\varphi(z)(z - A)^{-1} dz dt \\ &= \frac{1}{2\pi i} \int_{\Gamma_{\gamma_2}} \left(-i \int_0^\infty e^{i\lambda t} z^{-it} dt \right) \varphi(z)(z - A)^{-1} dz \end{aligned}$$

whence

$$(\lambda - B)^{-1}\varphi(A) = \frac{1}{2\pi i} \int_{\Gamma_{\gamma_2}} \frac{1}{\lambda - Log(z)} \varphi(z)(z - A)^{-1} dz.$$

The latter idendity can be proved as well if $\text{Im}(\lambda) = -\gamma_1$ hence holds true for any $\lambda \in \Delta_{\gamma_1}$. Using Fubini's Theorem again and Cauchy's Theorem, we therefore deduce that

$$\begin{split} g(B)\varphi(A) &= \frac{1}{2\pi i} \int_{\Delta_{\gamma_1}} g(\lambda)(\lambda - B)^{-1}\varphi(A) \, d\lambda \\ &= \left(\frac{1}{2\pi i}\right)^2 \int_{\Delta_{\gamma_1}} g(\lambda) \int_{\Gamma_{\gamma_2}} \frac{1}{\lambda - Log(z)} \, \varphi(z)(z - A)^{-1} \, dz \, d\lambda \\ &= \left(\frac{1}{2\pi i}\right)^2 \int_{\Gamma_{\gamma_2}} \left(\int_{\Delta_{\gamma_1}} g(\lambda) \frac{1}{\lambda - Log(z)} \, d\lambda\right) \varphi(z)(z - A)^{-1} \, dz \\ &= \frac{1}{2\pi i} \int_{\Gamma_{\gamma_2}} g(Log(z))\varphi(z)(z - A)^{-1} \, dz \\ &= f(A)\varphi(A), \end{split}$$

which concludes the proof of (3.3).

We let \mathcal{B} be equal to $H_0^{\infty}(P_{\theta})$ regarded as a subalgebra of $C_b(P_{\frac{\pi}{2}})$. To prove (3.1), it will suffice to show that

(3.4) $v: \mathcal{B} \longrightarrow B(H)$ is completely bounded.

Indeed since the exponential function is a holomorphic bijection from $P_{\frac{\pi}{2}}$ onto $\Sigma_{\frac{\pi}{2}}$, it follows from (3.3) and the definition of the matrix norms on \mathcal{A} and \mathcal{B} (see (2.2)) that if v is completely bounded, then $u_{|\mathcal{A}_0|}$ is completely bounded as well, with $||u_{|\mathcal{A}_0|}|_{cb} \leq ||v||_{cb}$. However \mathcal{A}_0 has codimension 2 in \mathcal{A} hence the complete boundednes of $u_{|\mathcal{A}_0|}$ implies that of u on \mathcal{A} .

We now come to the heart of the proof, which consists in showing that for an operator B whose spectrum is included in $\overline{P_{\frac{\pi}{2}}}$, the condition (3.2) implies (3.4). That (3.2) implies the boundedness of v is a recent result of Crouzeix and Delyon ([5]) and our proof of the complete boundedness of v will essentially be a repetition of their arguments, up to some adequate matrix norm manipulations. Before embarking into computations, we notice that (3.2) is equivalent to the following real/imaginary parts decomposition for B:

(3.5)
$$B = C + iD$$
, with $C = C^*$, $D = D^*$, $||D|| \le \frac{\pi}{2}$.

In this decomposition, C is a possibly unbounded self-adjoint operator with D(C) = D(B). Let $(E(s))_s$ be the resolution of the identity for C and for any integer $m \ge 1$, let

$$C_m = \int_{(-m,m)} s \, dE(s)$$
 and $B_m = C_m + iD$.

90

Then C_m is a bounded self-adjoint operator hence B_m is a bounded operator whose numerical range lies in $\overline{P_{\frac{\pi}{2}}}$. Moreover for any $\lambda \notin \overline{P_{\frac{\pi}{2}}}$, we have

(3.6)
$$(\lambda - B_m)^{-1} \longrightarrow (\lambda - B)^{-1}$$
 strongly

Indeed, $(\lambda - B_m)^{-1} - (\lambda - B)^{-1} = (\lambda - B_m)^{-1}(C_m - C)(\lambda - B)^{-1}$, we have $C_m \xi \to C\xi$ for any $\xi \in D(B) = D(C)$, and since the operators $\frac{\pi}{2} \pm iB_m$ are maximal accretive, we have a uniform estimate

(3.7)
$$\| (\lambda - B_m)^{-1} \| \le d(\lambda, P_{\frac{\pi}{2}}), \quad m \ge 1$$

Next, by Lebesgue's Theorem, it follows from (3.6) and (3.7) that $g(B_m) \to g(B)$ strongly for any $g \in \mathcal{B}$. Thus for any $n \geq 1$ and any $[g_{ik}] \in M_n(\mathcal{B})$, we have

$$\left\| \left[g_{jk}(B) \right] \right\| \le \limsup_{m} \left\| \left[g_{jk}(B_m) \right] \right\|$$

To prove the complete boundedness of v, it therefore suffices to prove that the mappings $g \mapsto g(B_m)$ are uniformly completely bounded. To achieve this goal we shall now assume that B is bounded and shall prove that

(3.8)
$$||v||_{cb} \le \frac{2}{\sqrt{3}} + 2.$$

Let $\gamma \in (\frac{\pi}{2}, \theta)$ be an arbitrary intermediate angle. Then according to [5, (5)] (and its proof), we may write

$$v(g) = g(B) = v_1^{\gamma}(g) + v_2^{\gamma}(g)$$

for any $g \in \mathcal{B} = H_0^{\infty}(P_{\theta})$, with

$$v_1^{\gamma}(g) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} g(x) \left((x + 2\gamma i - B^*)^{-1} - (x - 2\gamma i - B^*)^{-1} \right) dx;$$

$$v_2^{\gamma}(g) = \frac{1}{2\pi i} \int_{\Delta_{\gamma}} g(\lambda) \left((\lambda - B)^{-1} - (\overline{\lambda} - B^*)^{-1} \right) d\lambda.$$

Moreover it is easy to check that for any $x \in \mathbb{R}$, one has

$$(x + 2\gamma i - B^*)^{-1} - (x - 2\gamma i - B^*)^{-1}$$

= $-4\gamma i (x + 2\gamma i - B^*)^{-1} (x - 2\gamma i - B^*)^{-1}$
= $-4\gamma i (M(x) - iN(x))^{-1}$,

where M(x) and N(x) are self-adjoint operators defined by

$$M(x) = (x - C)^2 - D^2 + 4\gamma^2$$
 and $N(x) = CD + DC - 2xD$.

(The boundedness of C allows this real/imaginary parts decomposition.) It follows from (3.5) that

(3.9)
$$M(x) \ge (x - C)^2 + 3\left(\frac{\pi}{2}\right)^2.$$

In particular, M(x) is invertible and with $Q(x) = M(x)^{-\frac{1}{2}}N(x)M(x)^{-\frac{1}{2}}$, we may write

$$(x+2\gamma i-B^*)^{-1}-(x-2\gamma i-B^*)^{-1} = -4\gamma i M(x)^{-\frac{1}{2}} (1-iQ(x))^{-1} M(x)^{-\frac{1}{2}}.$$

Let $n \geq 1$ be an integer and let $[g_{jk}]$ be an element of $M_n(\mathcal{B})$ with norm ≤ 1 . According to (2.2), this simply means that

(3.10)
$$\left\| \left[g_{jk}(\lambda) \right] \right\|_{M_n} \le 1, \qquad \lambda \in P_{\frac{\pi}{2}}.$$

We let $\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_n$ be arbitrary elements of H. Then

$$\sum_{j,k=1}^{n} \left\langle v_{1}^{\gamma}(g_{jk})\xi_{k},\eta_{j}\right\rangle$$

= $\sum_{j,k=1}^{n} \left(\frac{-2\gamma}{\pi}\right) \int_{-\infty}^{+\infty} g_{jk}(x) \left\langle M(x)^{-\frac{1}{2}} (1-iQ(x))^{-1} M(x)^{-\frac{1}{2}} \xi_{k},\eta_{j}\right\rangle dx$
= $\left(\frac{-2\gamma}{\pi}\right) \int_{-\infty}^{+\infty} \sum_{j,k=1}^{n} g_{jk}(x) \left\langle (1-iQ(x))^{-1} M(x)^{-\frac{1}{2}} \xi_{k}, M(x)^{-\frac{1}{2}} \eta_{j}\right\rangle dx$.

Applying (2.3) and (3.10), we obtain that

$$\begin{split} & \left| \sum_{j,k=1}^{n} \left\langle v_{1}^{\gamma}(g_{jk})\xi_{k},\eta_{j} \right\rangle \right| \\ & \leq \frac{2\gamma}{\pi} \int_{-\infty}^{+\infty} \left(\sum_{k} \left\| \left(1 - iQ(x)\right)^{-1}M(x)^{-\frac{1}{2}}\xi_{k} \right\|^{2} \right)^{\frac{1}{2}} \left(\sum_{j} \left\| M(x)^{-\frac{1}{2}}\eta_{j} \right\|^{2} \right)^{\frac{1}{2}} dx. \end{split}$$

Since Q(x) is self-adjoint, the operator $(1 - iQ(x))^{-1}$ is a contraction for any $x \in \mathbb{R}$ hence applying Cauchy-Schwarz, we finally obtain that

$$\left|\sum_{j,k=1}^{n} \left\langle v_{1}^{\gamma}(g_{jk})\xi_{k},\eta_{j}\right\rangle\right| \leq \frac{2\gamma}{\pi} \left(\sum_{k} \int_{-\infty}^{+\infty} \left\|M(x)^{-\frac{1}{2}}\xi_{k}\right\|^{2} dx\right)^{\frac{1}{2}} \left(\sum_{j} \int_{-\infty}^{+\infty} \left\|M(x)^{-\frac{1}{2}}\eta_{j}\right\|^{2} dx\right)^{\frac{1}{2}}.$$

92

Now observe that for any $\xi \in H$, we have

$$\int_{-\infty}^{+\infty} \left\| M(x)^{-\frac{1}{2}} \xi \right\|^2 dx = \int_{-\infty}^{+\infty} \langle M(x)^{-1} \xi, \xi \rangle \, dx$$
$$\leq \int_{-\infty}^{+\infty} \left\langle \left((x - C)^2 + 3\left(\frac{\pi}{2}\right)^2 \right)^{-1} \xi, \xi \right\rangle \, dx$$

by (3.9). Moreover using the spectral representation of C we see that the latter integral is equal to

$$\int_{-\infty}^{+\infty} \frac{\|\xi\|^2}{x^2 + 3\left(\frac{\pi}{2}\right)^2} \, dx = \frac{2}{\sqrt{3}} \, \|\xi\|^2.$$

Combining with the previous estimate, this yields

$$\left|\sum_{j,k=1}^{n} \left\langle v_{1}^{\gamma}(g_{jk})\xi_{k},\eta_{j}\right\rangle\right| \leq \frac{4\gamma}{\pi\sqrt{3}} \left(\sum_{k} \|\xi_{k}\|^{2}\right)^{\frac{1}{2}} \left(\sum_{j} \|\eta_{j}\|^{2}\right)^{\frac{1}{2}}.$$

In view of the definition of matrix norms on B(H) (see (2.1)), we deduce

(3.11)
$$\left\| \left[v_1^{\gamma}(g_{jk}) \right] \right\| \le \frac{4\gamma}{\pi\sqrt{3}}$$

We now turn to an estimate for v_2^{γ} . We rewrite the definition of the latter mapping as

$$v_2^{\gamma}(g) = \int_{\Delta_{\gamma}} g(\lambda) T(\lambda) \, |d\lambda|,$$

where $T(\lambda)$ is equal to $\frac{1}{2\pi i} ((\lambda - B)^{-1} - (\overline{\lambda} - B^*)^{-1})$ if $\operatorname{Im}(\lambda) = -\gamma$ and is equal to its opposite if $\operatorname{Im}(\lambda) = \gamma$. The key point is that $T(\lambda)$ is a nonnegative operator for any $\lambda \in \Delta_{\gamma}$. Indeed assume for example that $\operatorname{Im}(\lambda) = -\gamma$. Then

$$\frac{1}{2\pi i} ((\lambda - B)^{-1} - (\overline{\lambda} - B^*)^{-1})$$

= $\frac{1}{2\pi i} (\lambda - B)^{-1} (2i\gamma + B - B^*) (\overline{\lambda} - B^*)^{-1}$
= $\frac{1}{\pi} (\lambda - B)^{-1} (\gamma + D) (\overline{\lambda} - B^*)^{-1}$,

which is nonnegative by (3.5). Then arguing as above, we obtain that for any vectors ξ_1, \ldots, ξ_n , and $\eta_1, \ldots, \eta_n \in H$, we have

$$\left|\sum_{j,k=1}^{n} \left\langle v_{2}^{\gamma}(g_{jk})\xi_{k},\eta_{j}\right\rangle\right| \leq \sup_{\lambda\in P_{\gamma}} \left\{ \left\| \left[g_{jk}(\lambda)\right]\right\|\right\} \left(\sum_{k} \int_{\Delta_{\gamma}} \left\| T(\lambda)\xi_{k}\right\|^{2} \left|d\lambda\right|\right)^{\frac{1}{2}} \times \left(\sum_{j} \int_{\Delta_{\gamma}} \left\| T(\lambda)\eta_{j}\right\|^{2} \left|d\lambda\right|\right)^{\frac{1}{2}}.$$

Now observe that since B is bounded, the function $\lambda \mapsto (\lambda - B)^{-1} - (\overline{\lambda} - B^*)^{-1}$ is integrable on Δ_{γ} and that $\frac{1}{2\pi i} \int_{\Delta_{\gamma}} (\lambda - B)^{-1} - (\overline{\lambda} - B^*)^{-1} d\lambda = 2$ by Cauchy's Theorem. Hence for any $\xi \in H$, we have

$$\int_{\Delta_{\gamma}} \left\| T(\lambda)\xi \right\|^2 |d\lambda| = \frac{1}{2\pi i} \int_{\Delta_{\gamma}} \left\langle \left((\lambda - B)^{-1} - (\overline{\lambda} - B^*)^{-1} \right)\xi, \xi \right\rangle d\lambda = 2 \|\xi\|^2.$$

Combining with the above estimate, we obtain that

$$\left\| \left[v_2^{\gamma}(g_{jk}) \right] \right\| \le 2 \sup_{\lambda \in P_{\gamma}} \Big\{ \left\| \left[g_{jk}(\lambda) \right] \right\| \Big\}.$$

Since

$$\lim_{\gamma \to \frac{\pi}{2}} \left(\sup_{\lambda \in P_{\gamma}} \left\{ \left\| [g_{jk}(\lambda)] \right\| \right\} \right) = \sup_{\lambda \in P_{\frac{\pi}{2}}} \left\{ \left\| [g_{jk}(\lambda)] \right\| \right\} \le 1,$$

we finally deduce that

$$\left\| [v(g_{jk})] \right\| \le \inf_{\gamma > \frac{\pi}{2}} \left\{ \left\| [v_1^{\gamma}(g_{jk})] \right\| + \left\| [v_2^{\gamma}(g_{jk})] \right\| \right\} \le \frac{2}{\sqrt{3}} + 2,$$

which concludes our proof of (3.8).

Remark 3.1. Two results analogous to the one in [5] appear in [6] and [4]. On the one hand, it is shown in [6] that if $\Omega \subset \mathbb{C}$ is bounded and convex and if B is a bounded operator on H whose numerical range lies in Ω , then the analytic functional calculus associated to Bis bounded with respect to the norm induced by $C_b(\Omega)$. On the other hand, it is shown in [4] that if A is an ω -accretive operator on H, then its analytic functional calculus is bounded with respect to the norm induced by $C_b(\Sigma_{\omega})$. In the two cases, it it actually possible to show that these bounded functional calculi are completely bounded. If we apply Paulsen's Theorem to the functional calculus considered in [4] (sectorial case), we recover Corollary 1.2.

Acknowledgements. This research was carried out while I was visiting the Centre for Mathematics and its Applications at the Australian National University in Canberra. It is a pleasure to thank the CMA for

94

its warm hospitality. I am also grateful to Alan M^cIntosh for pointing out to me the paper [5].

References

- D. Albrecht, X. Duong, and A. M^cIntosh, Operator theory and harmonic analysis, Proc. of CMA, Canberra 34 (1996), 77-136.
- [2] K. Boyadzhiev, and R. deLaubenfels, Spectral theorem for unbounded strongly continuous groups on a Hilbert space, Proc. Amer. Math. Soc. 120 (1994), 127-136.
- [3] M. Cowling, I. Doust, A. M^cIntosh, and A. Yagi, Banach space operators with a bounded H[∞] functional calculus, J. Austr. Math. Soc. (Series A) 60 (1996), 51-89.
- [4] M. Crouzeix, Une majoration du type von Neumann pour les fractions rationnelles d'opérateurs sectoriels, C. R. Acad. Sci. Paris 330, Série I (2000), 513-516.
- [5] M. Crouzeix, B. Delyon, Some estimates for analytic functions of band or sectorial operators, Preprint (2001).
- [6] B. Delyon, and F. Delyon, Generalization of von Neumann's spectral sets and integral representations of operators, Bull. Soc. Math. France 127 (1999), 25-42.
- [7] C. Le Merdy, The similarity problem for bounded analytic semigroups on Hilbert space, Semigroup Forum 56 (1998), 205-224.
- [8] A. M^cIntosh, Operators which have an H[∞] functional calculus, Proc. of CMA, Canberra 14 (1986), 210-231.
- [9] V. Paulsen, Completely bounded homomorphisms of operator algebras, Proc. Amer. Math. Soc. 02 (1984), 225-228.
- [10] G. Pisier, Similarity problems and completely bounded maps, Lecture Notes 1618, Springer Verlag, 1996.
- [11] J. Prüss, and H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), 429-452.
- [12] A. Simard, Counterexamples concerning powers of sectorial operators on a Hilbert space, Bull. Austr. Math. Soc. 60 (1999), 459-458.

Département de Mathématiques, Université de Franche-Comté, 25030 Besançon Cedex, France

E-mail address: lemerdy@math.univ-fcomte.fr