
SIMILARITIES OF ω-ACCRETIVE OPERATORS

CHRISTIAN LE MERDY

Abstract. Given a number 0 < ω ≤ π
2 , an ω-accretive operator

is a sectorial operator A on Hilbert space whose numerical range
lies in the closed sector of all z ∈ C such that |Arg(z)| ≤ ω. It is
easy to check that any such operator admits bounded imaginary
powers, with ‖Ait‖ ≤ eω|t| for any t ∈ R. We show that conversely,
A is similar to an ω-accretive operator if ‖Ait‖ ≤ eω|t| for any
t ∈ R.

1. Introduction.

Let H be a Hilbert space and let A be a closed operator on H with
dense domain D(A). Given any ω ∈ (0, π), we let Σω be the open
sector of all complex numbers z ∈ C∗ such that |Arg(z)| < ω, and we
say that A is sectorial of type ω if its spectrum σ(A) is included in the
closure of Σω and if for every θ ∈ (ω, π), the set

{
z(z−A)−1 : z /∈ Σθ

}
is bounded.

Assume that ω ≤ π
2
. We say that A is ω-accretive if it is sectorial of

type ω and if

(1.1) 〈Aξ, ξ〉 ∈ Σω, ξ ∈ D(A).

It is well-known that if the resolvent set ρ(A) contains −1, say, then
(1.1) implies that A is sectorial of type ω. Thus A is ω-accretive if and
only if−1 ∈ ρ(A) and (1.1) holds true. Note that with this terminology,
π
2
-accretivity coincides with maximal accretivity. The aim of this note

is to give a characterization of injective ω-accretive operators up to
similarity in terms of their imaginary powers.

If A is an injective maximal accretive operator on H, then we can
define its imaginary powers and we have ‖Ait‖ ≤ e

π
2
|t| for any real

number t ∈ R. Indeed this estimate is a consequence of von Neumann’s
inequality, see e.g. [1, Theorem G]. More generally, assume that A is an
injective ω-accretive operator. Then ei(π

2
−ω)A and e−i(π

2
−ω)A are both

maximal accretive hence for any t ∈ R, we have ‖(ei(π
2
−ω)A)it‖ ≤ e

π
2
|t|

and ‖(e−i(π
2
−ω)A)it‖ ≤ e

π
2
|t|. We easily deduce that

(1.2) ‖Ait‖ ≤ eω|t|, t ∈ R.
84
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Our main result asserts that conversely, if A is an injective sectorial
operator satisfying (1.2), then A is similar to an ω-accretive operator,
that is, there exists a bounded and invertible operator S : H → H such
that S−1AS is ω-accretive. We thus have the following characterization.

Theorem 1.1. Let ω ∈ (0, π
2
] be a number and let A be an injective

sectorial operator on H. Then A is similar to an ω-accretive operator
if and only if there exists a bounded and invertible operator S : H → H
such that ‖S−1AitS‖ ≤ eω|t| for any t ∈ R.

We wish to make three comments concerning this theorem. First,
it complements a previous result of ours ([7]) saying that if A is an
injective sectorial operator of type < π

2
, then A is similar to a maximal

accretive operator if and only if it admits bounded imaginary powers.
Second, Simard’s recent work ([12]) shows that our result is essentially
optimal. Indeed on the one hand, [12, Theorem 1] implies that for
any ω ≤ π

2
, one can find A not similar to an ω-accretive operator

whose imaginary powers satisfy an estimate ‖Ait‖ ≤ Keω|t| for some
K > 1. On the other hand, [12, Theorem 4] shows that one can find A
satisfying ‖Ait‖ ≤ e

π
2
|t| for any t ∈ R without being maximal accretive.

The third comment is that our proof heavily relies on some recent
work of Crouzeix and Delyon ([5]) who established some remarkable
estimates for the analytic functional calculus associated to an operator
whose numerical range lies in a band of the complex plane.

We now give a consequence of Theorem 1.1 concerning fractional
powers of ω-accretive operators. Let 0 < ω ≤ π

2
and α ∈ (0, 1] be two

numbers. It is well-known that if A is an ω-accretive operator, then
Aα is αω-accretive. Although the converse does not hold true (see e.g.
the discussion at the end of [12]), Theorem 1.1 implies the following.

Corollary 1.2. Let A be an ω-accretive operator for some ω ≤ π
2

and

let α ≥ 2ω
π

be a number. Then A
1
α is similar to an ω

α
-accretive operator.

Proof. We may assume that A is injective and that α ≤ 1. Then our
assumption of ω-accretivity implies (1.2). Since (A

1
α )it = Ai t

α , we thus

have ‖(A 1
α )it‖ ≤ e

ω
α
|t| for any t ∈ R. According to Theorem 1.1, this

implies that A
1
α is similar to an ω

α
-accretive operator, whence the result

by taking α-th powers. �

The proof of Theorem 1.1 is given in Section 3. It uses both H∞

functional calculus techniques (as introduced by McIntosh in [8]) and a
theorem of Paulsen ([9]) reducing our proof to the study of the complete
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boundedness of an appropriate functional calculus. In Section 2 below,
we provide some background on Paulsen’s Theorem for the convenience
of the reader.

2. Background on complete boundedness and Paulsen’s
Theorem.

We only give a brief account on complete boundedness and its con-
nections with similarity problems. More information and details, as
well as important developments and applications can be found in [10].

Given a Hilbert space H, we let B(H) denote the C∗-algebra of all
bounded linear operators on H. If C is a C∗-algebra and n ≥ 1 is an
integer, we let Mn(C) denote the C∗-algebra of all n× n matrices with
entries in C. Let us describe the resulting norm in two important special
cases. Assume first that C = B(H). Then the C∗-norm on Mn(B(H))
is obtained by regarding elements of Mn(B(H)) as operators on the
Hilbertian direct sum H ⊕ · · · ⊕ H of n copies of H. Thus for any
[Tjk] ∈ Mn(B(H)), we have

(2.1)
∥∥[Tjk]

∥∥ = sup

{( n∑
j=1

∥∥∥ n∑
k=1

Tjkξk

∥∥∥2
) 1

2

: ξk ∈ H,
n∑

k=1

‖ξk‖2 ≤ 1

}
.

Now consider the case when C = Cb(Ω) is the space of all bounded and
continuous functions g : Ω → C on some topological space Ω, equipped
with its sup norm. Then the C∗-norm on Mn(Cb(Ω)) is obtained by
identifying Mn(Cb(Ω)) with the space Cb(Ω; Mn) of bounded and con-
tinuous functions from Ω into Mn. Thus for any [gjk] ∈ Mn(Cb(Ω)), we
have

(2.2)
∥∥[gjk]

∥∥ = sup
{∥∥[gjk(λ)]

∥∥
Mn

: λ ∈ Ω
}

.

Let H be a Hilbert space, let C be a C∗-algebra and let E ⊂ C be a
(not necessarily closed) subspace of C. Then the space Mn(E) of n×n
matrices with entries in E may be obviously regarded as embedded in
Mn(C). By definition, a linear mapping u : E → B(H) is completely
bounded if there exists a constant K ≥ 0 such that∥∥[u(ajk)]

∥∥
Mn(B(H))

≤ K
∥∥[ajk]

∥∥
Mn(E)

for any n ≥ 1 and any [ajk] ∈ Mn(E). In that case, the least possible
K is denoted by ‖u‖cb and is called the completely bounded norm of
u. If the latter is ≤ 1, then we say that u is completely contractive.
Obviously any completely bounded mapping u is bounded, with ‖u‖ ≤
‖u‖cb.
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Paulsen’s Theorem asserts that any completely bounded homomor-
phism on an operator algebra (= subalgebra of a C∗-algebra) is similar
to a completely contractive one. More precisely, we have the following
statement (see [9]), that we will use in the situation when C = Cb(Ω)
for some Ω.

Theorem 2.1. (Paulsen) Let H be a Hilbert space, let C be a C∗-
algebra, let A ⊂ C be a subalgebra, and consider a linear homomor-
phism u : A → B(H). If u is completely bounded, then there exists a
bounded invertible operator S : H → H such that the linear homomor-
phism uS : A → B(H) defined by letting uS(a) = S−1u(a)S for any
a ∈ A is completely contractive. In particular, ‖S−1u(a)S‖ ≤ ‖a‖ for
any a ∈ A.

We finally recall for further use that for any [αjk] ∈ Mn and for any
vectors ξ1, . . . , ξn and η1, . . . , ηn in a Hilbert space H, we have

(2.3)

∣∣∣∣ n∑
j,k=1

αjk〈ξk, ηj〉
∣∣∣∣ ≤ ∥∥[αjk]

∥∥
Mn

( n∑
k=1

‖ξk‖2

) 1
2
( n∑

j=1

‖ηj‖2

) 1
2

.

3. Proof of Theorem 1.1.

We first introduce some notation concerning H∞ functional calculus
associated to sectorial operators (in the sense of [8], [3]). For any
θ ∈ (0, π), we recall that

Σθ = {z ∈ C : |Arg(z)| < θ}
and we let Γθ be the counterclockwise oriented boundary of Σθ. Then
we let H∞

0 (Σθ) be the space of all bounded analytic functions f : Σθ →
C for which there exist two positive numbers c > 0, s > 0, such that

|f(z)| ≤ c
|z|s

1 + |z|2s
, z ∈ Σθ.

We recall that if A is a sectorial operator of type ω ∈ (0, π) and if
f ∈ H∞

0 (Σθ) for some θ ∈ (ω, π), then we may define f(A) ∈ B(H) by
letting

f(A) =
1

2πi

∫
Γγ

f(z)(z − A)−1 dz,

where γ ∈ (ω, θ) is an intermediate angle. (The definition of f(A) does
not depend on γ by Cauchy’s Theorem.)

We let A be an injective sectorial operator satisfying (1.2) for some
ω ∈ (0, π

2
) and aim at proving that A is similar to an ω-accretive
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operator. Recall from [11, Theorem 2] that A is necessarily sectorial
of type ω. Changing A into A

π
2ω , we may assume that ω = π

2
. We fix

some θ ∈ (π
2
, π) and we let A0 = H∞

0 (Σθ) that we regard (by taking
restrictions) as a subalgebra of Cb(Σπ

2
). Then we letA ⊂ Cb(Σπ

2
) be the

subalgebra linearly spanned by A0, the function f0(z) = 1
1+z

, and the
constant function 1. We clearly define a homomorphism u : A → B(H)
by letting u(f) = f(A) for f ∈ A0, u(f0) = (1 + A)−1, u(1) = 1, and
then extending linearly. We will prove that

(3.1) u : A −→ B(H) is completely bounded.

Taking this for granted, the conclusion goes as follows. By Paulsen’s
Theorem, there exists an invertible S ∈ B(H) such that ‖S−1u(f)S‖ ≤
‖f‖Cb(Σπ

2
) for all f ∈ A. Moreover the function f(z) = 1−z

1+z
belongs to

A and u(f) = (1− A)(1 + A)−1. Since we have

‖f‖Cb(Σπ
2

) = sup

{∣∣∣1− z

1 + z

∣∣∣ : Re(z) > 0

}
= 1,

we conclude that

S−1(1−A)(1+A)−1S = (1−S−1AS)(1+S−1AS)−1 is a contraction.

This shows that S−1AS is maximal accretive.

To prove (3.1), we will change our sectorial functional calculus into
a band sectorial functional calculus by means of the Log function. For
any γ > 0, let

Pγ = {λ ∈ C : |Im(λ)| < γ}
and let ∆γ denote its counterclockwise oriented boundary. Let iB be
the generator of the c0-group (Ait)t, so that B should be thought as
being Log(A). Our assumption that ‖Ait‖ ≤ e

π
2
|t| for any t ∈ R means

that iB − π
2

and −iB − π
2

both generate contractive semigroups on H.
Hence π

2
− iB and π

2
+ iB are both maximal accretive, whence

Re
〈
(
π

2
− iB)ξ, ξ

〉
≥ 0 and Re

〈
(
π

2
+ iB)ξ, ξ

〉
≥ 0, ξ ∈ D(B).

In turn this is equivalent to say that the numerical range of B lies into
the closure of Pπ

2
, that is,

(3.2) 〈Bξ, ξ〉 ∈ Pπ
2
, ξ ∈ D(B), ‖ξ‖ ≤ 1.

Let H∞
0 (Pθ) be the space of all bounded analytic functions g : Pθ → C

for which there exist a constant c > 0 such that |g(λ)| ≤ c
1+|λ|2 for any

λ ∈ Pθ. Then let γ ∈ (π
2
, θ) be an arbitrary number. Since iB − π

2
and −iB − π

2
both generate contractive semigroups, the function λ 7→
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(λ−B)−1 is well-defined and bounded on ∆γ hence for any g ∈ H∞
0 (Pθ)

we may define g(B) ∈ B(H) by letting

g(B) =
1

2πi

∫
∆γ

g(λ)(λ−B)−1 dλ.

It is easy to check (using Cauchy’s Theorem) that this definition does
not depend on the choice of γ and that the mapping v : g 7→ g(B) is a
linear homomorphism from H∞

0 (Pθ) into B(H). Moreover the sectorial
and band functional calculi are compatible in the sense that for any
f ∈ H∞

0 (Σθ), the function λ 7→ f(eλ) belongs to H∞
0 (Pθ) and

(3.3) g(B) = f(A) if g(λ) = f(eλ).

We refer the reader to [2] for various relationships between sectorial and
band functional calculi, from which a proof of (3.3) can be extracted.
However we give a direct argument for the sake of completeness. Let ϕ
be the function defined by ϕ(z) = z(1+z)−2, so that ϕ(A) = A(1+A)−2.
It is well-known that ϕ(A) has a dense range, so that we only need to
prove that g(B)ϕ(A) = f(A)ϕ(A). We fix two parameters π

2
< γ2 <

γ1 < θ. Let λ be a complex number with Im(λ) = γ1. Applying the
Laplace formula to the semigroup (A−it)t≥0, we have (in the strong
sense)

(λ−B)−1 = i(iλ− iB)−1 = −i

∫ ∞

0

eiλtA−it dt.

Hence using Fubini’s Theorem, we obtain

(λ−B)−1ϕ(A) =
−1

2π

∫ ∞

0

eiλt

∫
Γγ2

z−itϕ(z)(z − A)−1 dz dt

=
1

2πi

∫
Γγ2

(
−i

∫ ∞

0

eiλtz−it dt

)
ϕ(z)(z − A)−1 dz

whence

(λ−B)−1ϕ(A) =
1

2πi

∫
Γγ2

1

λ− Log(z)
ϕ(z)(z − A)−1 dz.

The latter idendity can be proved as well if Im(λ) = −γ1 hence holds
true for any λ ∈ ∆γ1 . Using Fubini’s Theorem again and Cauchy’s
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Theorem, we therefore deduce that

g(B)ϕ(A) =
1

2πi

∫
∆γ1

g(λ)(λ−B)−1ϕ(A) dλ

=
( 1

2πi

)2
∫

∆γ1

g(λ)

∫
Γγ2

1

λ− Log(z)
ϕ(z)(z − A)−1 dz dλ

=
( 1

2πi

)2
∫

Γγ2

(∫
∆γ1

g(λ)
1

λ− Log(z)
dλ

)
ϕ(z)(z − A)−1 dz

=
1

2πi

∫
Γγ2

g(Log(z))ϕ(z)(z − A)−1 dz

= f(A)ϕ(A),

which concludes the proof of (3.3).

We let B be equal to H∞
0 (Pθ) regarded as a subalgebra of Cb(Pπ

2
).

To prove (3.1), it will suffice to show that

(3.4) v : B −→ B(H) is completely bounded.

Indeed since the exponential function is a holomorphic bijection from
Pπ

2
onto Σπ

2
, it follows from (3.3) and the definition of the matrix norms

on A and B (see (2.2)) that if v is completely bounded, then u|A0
is

completely bounded as well, with ‖u|A0
‖cb ≤ ‖v‖cb. However A0 has

codimension 2 in A hence the complete boundednes of u|A0
implies

that of u on A.

We now come to the heart of the proof, which consists in showing
that for an operator B whose spectrum is included in Pπ

2
, the condition

(3.2) implies (3.4). That (3.2) implies the boundedness of v is a re-
cent result of Crouzeix and Delyon ([5]) and our proof of the complete
boundedness of v will essentially be a repetition of their arguments,
up to some adequate matrix norm manipulations. Before embarking
into computations, we notice that (3.2) is equivalent to the following
real/imaginary parts decomposition for B:

(3.5) B = C + iD, with C = C∗, D = D∗, ‖D‖ ≤ π

2
.

In this decomposition, C is a possibly unbounded self-adjoint operator
with D(C) = D(B). Let (E(s))s be the resolution of the identity for
C and for any integer m ≥ 1, let

Cm =

∫
(−m,m)

s dE(s) and Bm = Cm + iD.
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Then Cm is a bounded self-adjoint operator hence Bm is a bounded
operator whose numerical range lies in Pπ

2
. Moreover for any λ /∈ Pπ

2
,

we have

(3.6) (λ−Bm)−1 −→ (λ−B)−1 strongly.

Indeed, (λ−Bm)−1 − (λ−B)−1 = (λ−Bm)−1(Cm −C)(λ−B)−1, we
have Cmξ → Cξ for any ξ ∈ D(B) = D(C), and since the operators
π
2
± iBm are maximal accretive, we have a uniform estimate

(3.7) ‖(λ−Bm)−1‖ ≤ d(λ, Pπ
2
), m ≥ 1.

Next, by Lebesgue’s Theorem, it follows from (3.6) and (3.7) that
g(Bm) → g(B) strongly for any g ∈ B. Thus for any n ≥ 1 and
any [gjk] ∈ Mn(B), we have∥∥[gjk(B)]

∥∥ ≤ lim sup
m

∥∥[gjk(Bm)]
∥∥

To prove the complete boundedness of v, it therefore suffices to prove
that the mappings g 7→ g(Bm) are uniformly completely bounded. To
achieve this goal we shall now assume that B is bounded and shall
prove that

(3.8) ‖v‖cb ≤
2√
3

+ 2.

Let γ ∈ (π
2
, θ) be an arbitrary intermediate angle. Then according

to [5, (5)] (and its proof), we may write

v(g) = g(B) = vγ
1 (g) + vγ

2 (g)

for any g ∈ B = H∞
0 (Pθ), with

vγ
1 (g) =

1

2πi

∫ +∞

−∞
g(x)

(
(x + 2γi−B∗)−1 − (x− 2γi−B∗)−1

)
dx;

vγ
2 (g) =

1

2πi

∫
∆γ

g(λ)
(
(λ−B)−1 − (λ−B∗)−1

)
dλ.

Moreover it is easy to check that for any x ∈ R, one has

(x + 2γi−B∗)−1 − (x− 2γi−B∗)−1

= −4γi (x + 2γi−B∗)−1(x− 2γi−B∗)−1

= −4γi
(
M(x)− iN(x)

)−1
,

where M(x) and N(x) are self-adjoint operators defined by

M(x) = (x− C)2 −D2 + 4γ2 and N(x) = CD + DC − 2xD.
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(The boundedness of C allows this real/imaginary parts decomposi-
tion.) It follows from (3.5) that

(3.9) M(x) ≥ (x− C)2 + 3
(π

2

)2
.

In particular, M(x) is invertible and with Q(x) = M(x)−
1
2 N(x)M(x)−

1
2 ,

we may write

(x+2γi−B∗)−1−(x−2γi−B∗)−1 = −4γi M(x)−
1
2

(
1−iQ(x)

)−1
M(x)−

1
2 .

Let n ≥ 1 be an integer and let [gjk] be an element of Mn(B) with
norm ≤ 1. According to (2.2), this simply means that

(3.10)
∥∥[gjk(λ)]

∥∥
Mn

≤ 1, λ ∈ Pπ
2
.

We let ξ1, . . . , ξn, η1, . . . , ηn be arbitrary elements of H. Then

n∑
j,k=1

〈
vγ

1 (gjk)ξk, ηj

〉
=

n∑
j,k=1

(−2γ

π

) ∫ +∞

−∞
gjk(x)

〈
M(x)−

1
2

(
1− iQ(x)

)−1
M(x)−

1
2 ξk, ηj

〉
dx

=
(−2γ

π

) ∫ +∞

−∞

n∑
j,k=1

gjk(x)
〈(

1− iQ(x)
)−1

M(x)−
1
2 ξk, M(x)−

1
2 ηj

〉
dx .

Applying (2.3) and (3.10), we obtain that∣∣∣∣ n∑
j,k=1

〈
vγ

1 (gjk)ξk, ηj

〉∣∣∣∣
≤ 2γ

π

∫ +∞

−∞

(∑
k

∥∥(
1− iQ(x)

)−1
M(x)−

1
2 ξk

∥∥2
)1

2
(∑

j

∥∥M(x)−
1
2 ηj

∥∥2
)1

2
dx.

Since Q(x) is self-adjoint, the operator
(
1− iQ(x)

)−1
is a contraction

for any x ∈ R hence applying Cauchy-Schwarz, we finally obtain that∣∣∣∣ n∑
j,k=1

〈
vγ

1 (gjk)ξk, ηj

〉∣∣∣∣
≤ 2γ

π

(∑
k

∫ +∞

−∞

∥∥M(x)−
1
2 ξk

∥∥2
dx

) 1
2
(∑

j

∫ +∞

−∞

∥∥M(x)−
1
2 ηj

∥∥2
dx

) 1
2

.



SIMILARITIES OF ω-ACCRETIVE OPERATORS 93

Now observe that for any ξ ∈ H, we have∫ +∞

−∞

∥∥M(x)−
1
2 ξ

∥∥2
dx =

∫ +∞

−∞
〈M(x)−1ξ, ξ〉 dx

≤
∫ +∞

−∞

〈(
(x− C)2 + 3

(π

2

)2
)−1

ξ, ξ
〉

dx

by (3.9). Moreover using the spectral representation of C we see that
the latter integral is equal to∫ +∞

−∞

‖ξ‖2

x2 + 3
(

π
2

)2 dx =
2√
3
‖ξ‖2.

Combining with the previous estimate, this yields∣∣∣∣ n∑
j,k=1

〈
vγ

1 (gjk)ξk, ηj

〉∣∣∣∣ ≤ 4γ

π
√

3

(∑
k

‖ξk‖2
) 1

2
(∑

j

‖ηj‖2
) 1

2
.

In view of the definition of matrix norms on B(H) (see (2.1)), we deduce

(3.11)
∥∥[vγ

1 (gjk)]
∥∥ ≤ 4γ

π
√

3
.

We now turn to an estimate for vγ
2 . We rewrite the definition of the

latter mapping as

vγ
2 (g) =

∫
∆γ

g(λ)T (λ) |dλ|,

where T (λ) is equal to 1
2πi

(
(λ−B)−1− (λ−B∗)−1

)
if Im(λ) = −γ and

is equal to its opposite if Im(λ) = γ. The key point is that T (λ) is a
nonnegative operator for any λ ∈ ∆γ. Indeed assume for example that
Im(λ) = −γ. Then

1

2πi

(
(λ−B)−1 − (λ−B∗)−1

)
=

1

2πi
(λ−B)−1(2iγ + B −B∗)(λ−B∗)−1

=
1

π
(λ−B)−1(γ + D)(λ−B∗)−1,
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which is nonnegative by (3.5). Then arguing as above, we obtain that
for any vectors ξ1, . . . , ξn, and η1, . . . , ηn ∈ H, we have∣∣∣∣ n∑

j,k=1

〈
vγ

2 (gjk)ξk, ηj

〉∣∣∣∣ ≤ sup
λ∈Pγ

{∥∥[gjk(λ)]
∥∥}(∑

k

∫
∆γ

∥∥T (λ)ξk

∥∥2 |dλ|
) 1

2

×
(∑

j

∫
∆γ

∥∥T (λ)ηj

∥∥2 |dλ|
) 1

2

.

Now observe that since B is bounded, the function λ 7→ (λ−B)−1−(λ−
B∗)−1 is integrable on ∆γ and that 1

2πi

∫
∆γ

(λ−B)−1−(λ−B∗)−1 dλ = 2

by Cauchy’s Theorem. Hence for any ξ ∈ H, we have∫
∆γ

∥∥T (λ)ξ
∥∥2 |dλ| = 1

2πi

∫
∆γ

〈(
(λ−B)−1−(λ−B∗)−1

)
ξ, ξ

〉
dλ = 2‖ξ‖2.

Combining with the above estimate, we obtain that∥∥[vγ
2 (gjk)]

∥∥ ≤ 2 sup
λ∈Pγ

{∥∥[gjk(λ)]
∥∥}

.

Since

lim
γ→π

2

(
sup
λ∈Pγ

{∥∥[gjk(λ)]
∥∥})

= sup
λ∈P π

2

{∥∥[gjk(λ)]
∥∥}

≤ 1,

we finally deduce that∥∥[v(gjk)]
∥∥ ≤ inf

γ> π
2

{∥∥[vγ
1 (gjk)]

∥∥ +
∥∥[vγ

2 (gjk)]
∥∥}

≤ 2√
3

+ 2,

which concludes our proof of (3.8).

Remark 3.1. Two results analogous to the one in [5] appear in [6]
and [4]. On the one hand, it is shown in [6] that if Ω ⊂ C is bounded
and convex and if B is a bounded operator on H whose numerical
range lies in Ω, then the analytic functional calculus associated to B
is bounded with respect to the norm induced by Cb(Ω). On the other
hand, it is shown in [4] that if A is an ω-accretive operator on H, then
its analytic functional calculus is bounded with respect to the norm
induced by Cb(Σω). In the two cases, it it actually possible to show
that these bounded functional calculi are completely bounded. If we
apply Paulsen’s Theorem to the functional calculus considered in [4]
(sectorial case), we recover Corollary 1.2.
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