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Abstract. Let X be a space of homogeneous type and T a sin-
gular integral operator which is bounded on L2(X ). We give a
sufficient condition on the kernel of T so that the maximal trun-
cated operator T∗, which is defined by T∗f(x) = supε>0 |Tεf(x)|,
to be of weak type (1, 1). Our condition is weaker than the usual
Hörmander type condition. Applications include the dominated
convergence theorem of holomorphic functional calculi of linear el-
liptic operators on irregular domains.

1. Introduction and main theorem

Let us consider a space of homogeneous type (X , d, µ) which is a set
X endowed with a distance d and a non-negative Borel measure µ on
X such that the doubling condition

µ(B(x, 2r)) ≤ cµ(B(x, r)) < ∞
holds for all x ∈ X and r > 0, where B(x, r) = {y ∈ X : d(x, y) < r}.
A more general defintion can be found in [CW, Chapter 3].

The doubling property implies the following strong homogeneity
property,

(1.1) µ(B(x; λr)) ≤ cλnµ(B(x; r))

for some c, n > 0 uniformly for all λ ≥ 1. The parameter n is a measure
of the dimension of the space. There also exist c and N, 0 ≤ N ≤ n so
that

(1.2) µ(B(y; r)) ≤ c

(
1 +

d(x, y)

r

)N

µ(B(x; r))

uniformly for all x, y ∈ X and r > 0. Indeed, the property (1.2) with
N = n is a direct consequence of triangle inequality of the metric d
and the strong homogeneity property. In the case of Euclidean spaces
Rn and Lie groups of polynomial growth, N can be chosen to be 0.
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We consider the following “generalised approximations to the iden-
tity” which was introduced in [DM].

DEFINITION 1.1. A family of operators {At, t > 0} is said to be a “gen-
eralised approximation to the identity” if, for every t > 0, At is rep-
resented by kernels at(x, y) in the following sense: for every function
f ∈ Lp(X ), p ≥ 1,

Atf(x) =

∫
X

at(x, y)f(y)dµ(y);

and the following condition holds:

(1.3) |at(x, y)| ≤ ht(x, y) =
1

µ(B(x; t1/m))
s(d(x, y)mt−1),

where m is a positive fixed constant and s is a positive, bounded, de-
creasing function satisfying

(1.4) lim
r→∞

rn+N+εs(rm) = 0

for some ε > 0, where n and N are two constants in (1.1) and (1.2).

The operators we are going to consider henceforth were introduced
in [DM]. They are defined in the following way.

(1.5) T is a bounded operator on L2(X ) with an associated kernel
k(x, y) such that for f ∈ L∞0 (X ),

T (f)(x) =

∫
X

k(x, y)f(y)dµ(y), for µ−almost every x 6∈ suppf.

(1.6) There exists a “generalised approximation of the identity” {At,
t > 0} such that TAt have associated kernels kt(x, y) and there exist
constants c1, c2 > 0 so that∫

d(x,y)≥c1t1/m

|k(x, y)− kt(x, y)|dµ(x) ≤ c2, for all y ∈ X .

(1.7) There exists a “generalised approximation of the identity” {Bt,
t > 0} such that BtT have kernels Kt(x, y) which satisfy

|Kt(x, y)| ≤ c4
1

µ(B(x; t1/m))
, when d(x, y) ≤ c3t

1/m

and

|Kt(x, y)−k(x, y)| ≤ c4
1

µ(B(x; d(x, y)))

tα/m

d(x, y)α
, when d(x, y)≥ c3t

1/m,

for some constants c3, c4, α > 0.
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We assume that T is an operator satisfying (1.5), (1.6) and (1.7).
The maximal operator T∗ is the supremum of the truncated integrals,
namely,

T∗f(x) = sup
ε>0

|Tεf(x)| = sup
ε>0

∣∣∣∣∫
d(x,y)≥ε

k(x, y)f(y)dµ(y)

∣∣∣∣ .

It is proved in [DM] that if T verifies (1.5) and (1.6), then it is of
weak type (1,1) and of strong type (p, p) for 1 < p ≤ 2. In addition,
if (1.7) is also satisfied, the operator T is bounded on Lp(X ) for all
1 < p < ∞. Furthermore, Theorem 3 [DM] shows that T∗ is bounded
on Lp(X ), 1 < p < ∞. Implicitly in the proof we can find the following
Cotlar type inequality:

T∗f(x) ≤ CM(Tf)(x) + CMf(x),

where M is the Hardy-Littlewood maximal function. Hence, bounded-
ness of T∗ follows from boundedness of T and M .

The following is the main result of this paper.

THEOREM 1.2. Let T be an operator satisfying the assumptions (1.5)
and (1.7). Also assume the following condition (1.8): there exists a
“generalised approximation of the identity” {At, t > 0} so that the
kernels (Kε,t(x, y)−Kε(x, y)) of the operators (BεTAt −BεT ) satisfy

(1.8) sup
ε

∫
d(x,y)≥βt1/m

|Kε,t(x, y)−Kε(x, y)|dµ(x) ≤ C

for some constants C and β, and for all y ∈ X . Then,
(i) the maximal truncated operator T∗ is bounded on Lp(X ) for 1 <

p < ∞.
(ii) When p = 1, T∗ is of weak-type (1, 1), that is,

µ({x : |T∗f(x) > α}) ≤ C

α
‖f‖1, for all α > 0.

NOTE: (i) Comparing the above Theorem 1.2 with Theorem 3 of [DM],
the assumption (1.8) is stronger than (1.6), but we obtain new end-
point estimates, i.e. the weak type (1,1) estimates in (ii).

(ii) Theorem 1.2 improves the classical results of Calderón-Zygmund
operators. See [St, Chapter 1, Corollary 2] for Euclidean spaces X =
Rn, and [CW] for spaces of homogeneous type. Let us note that there
is no regularity assumptions in the space variables. In comparison
with the classical Calderón-Zygmund operators, the Hörmander type
inequalities are replaced by (1.7) and (1.8) which involved the “gener-
alised approximations of the identity”. In fact, for suitable “generalised
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approximations of the identity”, it is proved in [DM] that conditions
(1.6) and (1.7) are weaker than the usual assumptions of Calderón-
Zygmund operators (Proposition 2, [DM]). We also show that our con-
dition (1.8) is actually a consequence of the condition (1.6) (Proposition
2.1). As applications, we get the dominated convergence theorem of
holomorphic functional calculi of linear elliptic operators on irregular
domains.

2. Proof of Theorem 1.2

We first prove (ii). For a fixed ε > 0, one writes Tεu(x) = BεmTu(x)−
(BεmT − Tε)(u)(x). Since the class of operators Bt satisfies the condi-
tions (1.3) and (1.4), we have

(2.1) |BεmTu(x)| ≤ cM(|Tu(x)|)
where c is a constant independent of ε. Similarly to the proof of The-
orem 3 in [DM], using the condition (1.7) we also have

(2.2) sup
ε>0

|(BεmT − Tε)u(x)| ≤ cM(|u|(x)).

Theorem 1.2 then follows from (2.2) if we can prove that the operator

TB
∗ u(x) = sup

ε
|BεmTu(x)|

is of weak-type (1, 1). Following the idea of Theorem 1 of [DM], we first
use the Calderón-Zygmund decomposition to decompose an integrable
function into “good” and “bad” parts (see, for example, [CW]).

Given f ∈ L1(X ) ∩ L2(X ) and α > ‖f‖1(µ(X ))−1, then there exist
a constant c independent of f and α, and a decomposition

f = g + b = g +
∑

i

bi,

so that
(a) |g(x)| ≤ cα for all almost x ∈ X ;
(b) there exists a sequence of balls Qi so that the support of each

bi is contained in Qi and∫
X
|bi(x)|dµ(x) ≤ cαµ(Qi);

(c)
∑
i

µ(Qi) ≤ cα−1
∫
X |f |dµ(x);

(d) each point of X is contained in at most a finite number N of
the balls Qi.

Note that conditions (b) and (c) imply that ‖b‖1 ≤ c‖f‖1 and hence
that ‖g‖1 ≤ (1 + c)‖f‖1.
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We have

µ({x : |TB
∗ f(x)| > α})
≤ µ({x : |TB

∗ g(x)| > α/2}) + µ({x : |TB
∗ b(x)| > α/2}).

It follows from (2.1), (1.5) and boundedness of the Hardy-Littlewood
maximal function that TB

∗ is bounded on L2(X ). Since |g(x)| ≤ cα, we
obtain
(2.3)

µ({x : |TB
∗ g(x)| > α/2}) ≤ 4α−2‖TB

∗ g‖2
2 ≤ cα−2‖g‖2

2 ≤ cα−1‖f‖1.

Concerning the “bad” part b(x), we temporarily fix a bi whose support
is contained in Qi, then choose ti = rm

i where m is the constant ap-
pearing in (1.3), and ri is the radius of the ball Qi. We then decompose

sup
ε

∣∣∣BεT
∑

i

bi(x)
∣∣∣

≤ sup
ε

(∣∣∣BεT
∑

i

Atibi(x)
∣∣∣ +

∣∣∣BεT
∑

i

(I − Ati)bi(x)
∣∣∣).

It follows from the decay assumption (1.3) that∥∥∥∑
i

Atibi

∥∥∥
2
≤ cα

( ∑
i

µ(Qi)
)1/2

≤ cα1/2‖f‖1/2
1 .

See details in the proof of estimate (10) in [DM]. Combining this with
L2-boundedness of TB

∗ , we have

(2.4) µ({x : sup
ε
|BεT

∑
iAtibi(x)| > α/4}) ≤ 16α−2

∥∥∥∑
i

TB
∗ Atibi

∥∥∥2

2

≤ cα−2
∥∥∥∑

i

Atibi

∥∥∥2

2

≤ c

α
‖f‖1.

On the other hand

µ({x : sup
ε
|BεT

∑
i(I − Ati)bi(x)| > α/4})

≤
∑

i

µ(Bi) +
∑

i

4

α

∫
(Bi)c

sup
ε
|BεT (I − Ati)bi(x)|dµ(x),

where (Bi)
c denotes the complement of Bi which is the ball with the

same centre yi as that of the ball Qi in the Calderón-Zygmund decom-
position but with radius increased by a factor of (1+c1), where c1 is the
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constant in (1.6). Because of property (c) of the Calderón-Zygmund
decomposition and doubling volume property of X , we have

(2.5)
∑

i

µ(Bi) ≤ c
∑

i

µ(Qi) ≤ cα−1‖f‖1.

Using assumption (1.8), we have∫
(Bi)c

sup
ε
|BεT (I − Ati)bi(x)|dµ(x)

≤
∫

(Bi)c

sup
ε

∣∣∣∣∫
X
(Kε(x, y)−Kε,ti(x, y))bi(y)dµ(y)

∣∣∣∣ dµ(x)

≤
∫
X
‖bi(y)‖

{
sup

y
sup

ε

∫
d(x,y)≥cti1/m

|Kε(x, y)−Kε,ti(x, y)|dµ(x)

}
dµ(y)

≤ C‖bi‖1, because B(y; ct
1/m
i ) ⊂ Bi.

Therefore
(2.6)∑

i

1

α

∫
(Bi)c

sup
ε
|BεT (I − Ati)bi(x)|dµ(x) ≤ Cα−1

∑
i

‖bi‖1 ≤
C

α
‖f‖1.

Combining the above estimates (2.2), (2.3), (2.4), (2.5) and (2.6), we
have for any α > ‖f‖1(µ(X ))−1,

µ({x : |T∗f(x)| > α}) ≤ C

α
‖f‖1.

If X is unbounded, the proof is done because the former inequality
holds for every α > 0. Otherwise, we have to consider what happens for
0 < α ≤ ‖f‖1(µ(X ))−1. Since X is bounded we can write X = B(x0, r)
for some r > 0. We conclude

µ({x : |T∗f(x)| > α}) ≤ µ(X ) ≤ C

α
‖f‖1

for any α > 0.
We now prove (i). For any 1 < p ≤ 2, Lp-boundedness of T∗ follows

from the Marcinkiewicz interpolation theorem. Using a standard dual-
ity argument, T∗ is proved to be a bounded operator on Lp(X ) for all
2 < p < ∞.

The proof of Theorem 1.2 is complete.

In the next proposition, we show that, for suitable chosen Bt, our
condition (1.8) is actually a consequence of condition (1.6).

PROPOSITION 2.1. Let T be a bounded linear operator on L2(X ) with
kernel k(x, y). Assume there exists a “generalised approximation of



52 XUAN THINH DUONG AND LIXIN YAN

the identity” {At, t > 0} so that the kernels kt(x, y) of TAt satisfy the
condition (1.6), i.e. there exist constant c and δ > 1 so that

(2.7)

∫
d(x,y)≥δt1/m

|k(x, y)− kt(x, y)|dµ(x) ≤ c

for all y ∈ X .
Then, there exists a “generalised approximation of the identity” {Bt,

t > 0} which is represented by kernels bt(x, y) in the following sense:
for any f ∈ Lp(X ), p ≥ 1,

Btf(x) =

∫
X

bt(x, y)f(y)dµ(y),

so that the kernels (Kε,t(x, y)−Kε(x, y)) of the operators (BεTAt−BεT )
satisfy

sup
ε

∫
d(x,y)≥βt1/m

|Kε,t(x, y)−Kε(x, y)|dµ(x) ≤ C

for some constants C and β, and for all y ∈ X .

Proof. Choose δ > 1 and let β = 3δ/2. For any ε > 0, we choose
bε(x, z) = 0 when d(x, z) ≥ (δ/2)t1/m. Then, for x, y ∈ X so that

Kε,t(x, y) =

∫
X

bε(x, z)kt(z, y)dµ(z),

and Kε(x, y) =

∫
X

bε(x, z)k(z, y)dµ(z).

For all y ∈ X ,∫
d(x,y)≥βt1/m

|Kε,t(x, y)−Kε(x, y)|dµ(x)

≤
∫

d(x,y)≥βt1/m

∫
X
|bε(x, z)||kt(z, y)− k(z, y)|dµ(x)dµ(z)

≤
(

sup
z∈X

∫
X
|bε(x, z)|dµ(x)

)
×

∫
d(z,y)≥δt1/m

|kt(z, y)− k(z, y)|dµ(z)

≤ c1

∫
d(z,y)≥δt1/m

|kt(z, y)− k(z, y)|dµ(z)

≤ C,

where the last inequality follows from (2.7) and the third inequality is
using the estimate∫

X
|bε(x, z)|dµ(x) ≤

∫
X

hε(x, z)dµ(z) ≤ c1.
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As a consequence of the boundedness of the maximal truncated
operator T∗, we obtain pointwise almost everywhere convergence of
limε→0 Tεf(x). More precisely, we have the following corollary.

COROLLARY 2.2. Assume that the operator T satisfies the conditions of
Theorem 1.2. Assume that the kernel k(x, y) of T satisfies the estimate

|k(x, y)| ≤ c(µ(B(x; d(x, y)))−1.

Then there exist a sequence of positive functions εj(x) such that
lim
j→∞

εj(x) = 0, and a function m ∈ L∞(X ) such that for f ∈ Lp(X ), 1 ≤
p < ∞,

Tf(x) = m(x)f(x) + lim
j→∞

∫
|x−y|≥εj(x)

k(x, y)f(y)dµ(y)

for almost every x ∈ X .

Proof. Corollary 2.2 follows from a standard argument of proving the
existence of almost everywhere pointwise limits as a consequence of the
corresponding maximal inequality. See, for example, [CM, Chapter 7,
Theorem 6] for Euclidean spaces X = Rn, and [CW] for spaces of
homogeneous type.

REMARK 2.3.
As in Section 3 of [DM], Theorem 1.2 and Corollary 2.2 can be

modified so that they are still true when the space of homogeneous
type X is replaced by one of its measurable subsets Ω. In this sense,
it is sufficient that condition (1.3) on the upper bound ht(x, y) of the
kernel at(x, y) is replaced by

ht(x, y) = (µ(BX (x; t1/m)))−1s(d(x, y)mt−1),

where BX (x; t1/m) is the ball of centre x, radius t1/m in the space X .
For the details, see Section 3, [DM].

3. Applications: Holomorphic functional calculi of
linear elliptic operators

We first review some definitions regarding the holomorphic func-
tional calculus as introduced by McIntosh [Mc]. Let 0 ≤ ω < π be
given. Then

Sω = {z ∈ C : |argz| ≤ ω} ∪ {0}
denotes the closed sector of angle ω and S0

ω denotes its interior, while
Ṡω = Sω\{0}. An operator L on some Banach space E is said to be
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of type ω if L is closed and densely defined, σ(L) ⊂ Sω, and for each
θ ∈ (ω, π] there exists a constant Cθ such that

|η| ‖(ηI − L)−1‖L(E) ≤ Cθ, η ∈ −Ṡπ−θ.

If µ ∈ (0, π], then

H∞(S0
µ) = {f : S0

µ → C; f is holomorphic and ||f ||∞ < ∞},
where ||f ||H∞ = sup{|f(z)| : z ∈ S0

µ}. In addition, we define

Ψ(S0
µ) =

{
g ∈ H∞(S0

µ) : ∃s > 0,∃c ≥ 0 : |g(z)| ≤ c
|z|s

1 + |z|2s

}
.

If L is of type ω and g ∈ Ψ(S0
µ), we define g(L) ∈ L(E) by

(3.1) g(L) = − 1

2πi

∫
Γ

(ηI − L)−1g(η)dη,

where Γ is the contour {ξ = re±iθ : r ≥ 0} parametrised clockwise
around Sω, and ω < θ < µ. If, in addition, L is one-one and has dense
range and if g ∈ H∞(S0

µ), then

(3.2) f(L) = [h(L)]−1(fh)(L),

where h(z) = z(1 + z)−2. It can be shown that g(L) is a well-defined
linear operator in E and that this definition is consistent with definition
(3.2) for g ∈ Ψ(S0

µ). The definition of g(L) can even extended to
encompass unbounded holomorphic functions; see [Mc] for details. L is
said to have a bounded holomorphic functional calculus on the sector
Sµ if

||g(L)||L(E) ≤ N ||g||∞
for some N > 0, and for all g ∈ H∞(S0

µ).
Assume that Ω is a measurable subset of a space of homogeneous type

(X , d, µ). Let L be a linear operator on L2(Ω) with ω < π/2 so that
(−L) generates a holomorphic semigroup e−zL, 0 ≤ |Arg(z)| < π/2−ω
which possesses the following two properties:

(3.3) The holomorphic semigroup e−zL, |Arg(z)| < π/2− ω is repre-
sented by kernels az(x, y) which satisfy, for all θ > ω, an upper bound

|az(x, y)| ≤ cθh|z|(x, y)

for x, y ∈ Ω, and |Arg(z)| < π/2 − θ, where h|z| is defined on X × X
by (1.3).

(3.4) The operator L has a bounded holomorphic functional calculus
in L2(Ω). That is, for any ν > ω and g ∈ H∞(S0

ν), the operator g(L)
satisfies

||g(L)f ||2 ≤ cν ||g||∞‖f‖2.

Applying Theorem 1.2, Corollary 2.2 and Remark 2.3, we have
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THEOREM 3.1. Let L be an operator verifying the assumptions (3.3)
and (3.4). Assume that for g ∈ H∞(S0

ν), the kernel k(x, y) of g(L)
satisfies the estimate

(3.5) |k(x, y)| ≤ c(µ(B(x; d(x, y)))−1, for all x, y ∈ Ω.

If we denote T = g(L), then

(i) If 1 < p < ∞, then ‖T∗f‖p ≤ C‖g‖∞‖f‖p.

(ii) If f ∈ L1(X ), then the map f → T∗f is weak type (1, 1).

(iii) There exist a sequence of positive functions εj(x) such that
lim
j→∞

εj(x) = 0, and a function m(x) ∈ L∞(Ω) such that for f(x) ∈
Lp(Ω), 1 ≤ p < ∞,

Tf(x) = m(x)f(x) + lim
j→∞

∫
|x−y|≥εj(x)

K(x, y)f(y)dµ(y)

for almost every x ∈ Ω.

Proof. We follow an idea of Theorem 6 in [DM]. Choose operators
Bt = At = e−tL. As in Theorem 6 of [DM], there exist some constants
c, c1, α > 0 such that the kernels Kt(x, y) of BtT satisfy

|Kt(x, y)| ≤ c
1

µ(BX (x; t1/m))
,

for all x, y ∈ Ω such that when d(x, y) ≤ c1t
1/m;

|Kt(x, y)− k(x, y)| ≤ c
1

µ(BX (x; d(x, y)))

tα/m

d(x, y)α

for all x, y ∈ Ω such that when d(x, y) ≥ c1t
1/m.

Using the methods of Theorems 5 and 6 [DM], it is not difficult to
check that the kernels (Kε,t(x, y)−Kε(x, y)) of the operators (BεTAt−
BεT ) satisfy

(3.6) sup
ε

∫
d(x,y)≥βt1/m

|Kε,t(x, y)−Kε(x, y)|dµ(x) ≤ C

for some constants C and β, and for all y ∈ Ω.
For the proof of (3.6), we leave it to readers. Then, Theorem 3.1

follows from Remark 2.3.

REMARK 3.2.
The condition (3.5) is satisfied by large classes of linear operators on

Rn or a domain Ω of Rn without any condition on smoothness of the
boundary of Ω. For example, if the function ht(x, y) of (1.3) is bounded
above by the Gaussian bounds
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ct−n/2exp{−α|x− y|2/t}
for some α > 0, or by the Poisson bounds

ct

(t2 + |x− y|2)(n+1)/2
,

then (3.5) is a direct result from straightforward integration.
One example of an operator L which possesses Gaussian bounds on

its heat kernel is the Schrödinger operator with potential V , defined by

L = −4+ V (x),

where V is a nonnegative function on Rn. See, Lecture 7 in [ADM].
Another example of an operator L on such a domain, which possesses
Gaussian bounds on its heat kernel, is the Laplacian on an open subset
of Rn subject to Dirichlet boundary conditions. More general operators
on open domain of Rn which possess Gaussian bounds can be found in
[AE], [DM].
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