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Abstract

If A,B are sectorial operators on a Hilbert space with the same
domain and range, and if ‖Ax‖ ≈ ‖Bx‖ and ‖A−1x‖ ≈ ‖B−1x‖, then
it is a result of Auscher, McIntosh and Nahmod that if A has an
H∞−calculus then so does B. On an arbitrary Banach space this is
true with the additional hypothesis on B that it is almost R-sectorial
as was shown by the author, Kunstmann and Weis in a recent preprint.
We give an alternative approach to this result.
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1 Introduction
In [1] the authors showed that if X is a Hilbert space and A, B are sectorial
operators with the same domain and range and satisfying estimates

‖Ax‖ ≈ ‖Bx‖ x ∈ Dom (A) (1.1)

and
‖A−1x‖ ≈ ‖B−1x‖ x ∈ Ran (A) (1.2)

then if one of (A, B) admits an H∞−calculus then so does the other. Results
of this type are useful in applications and were studied in [7] for arbitrary
Banach spaces. In that paper, a similar result (Theorem 5.1) is proved under
the additional hypothesis that A is almost R-sectorial.

In this note we give a rather different approach to this result. We replace
the almost R-sectoriality assumption by the technically weaker assumption
of almost U-sectoriality, although this is probably not of great significance.
However, our approach here is perhaps a little simpler. We also point out
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that some additional assumption is necessary in arbitrary Banach spaces;
there are examples of sectorial operators A, B satisfying (1.1) and (1.2) but
such that only one has an H∞−calculus.

It is possible to consider estimates on fractional powers and our results
can be extended in this direction (as in [7]); however to keep the exposition
simple we will not discuss this point. We also point out that our approach
is really based on an interpolation method, known as the Gustavsson-Peetre
method [5] (see also [4]); but to avoid certain technicalities we have not made
this explicit.

2 U-bounded collections of operators
Let X be a complex Banach space. A family T of operators T : X → X is
called U-bounded if there is a constant C such that if (xj)n

j=1 ⊂ X, (x∗j)
n
j=1 ⊂

X∗, (Tj)n
j=1 ⊂ T,

n∑

j=1

|〈Tjxj, x
∗
j〉| ≤ C sup

|aj |=1
‖

n∑

j=1

ajxj‖ sup
|aj |=1

‖
n∑

j=1

ajx
∗
j‖.

The best such constant C is called the U-bound for T and is denoted U(T).
This concept was introduced in [8].

We recall that T is called R-bounded if there is a constant C such that if
(xj)n

j=1 ⊂ X, (Tj)n
j=1 ⊂ T,

(E‖
n∑

j=1

εjTxj‖2)1/2 ≤ C(E‖
n∑

j=1

εjxj‖2)1/2.

Here (εj)n
j=1 is a sequence of independent Rademachers. The best such con-

stant C is called the R-bound for T and is denoted R(T). An R-bounded
family is automatically U-bounded [8].

We will need the following elementary property:

Proposition 2.1. Suppose F : (0,∞) → L(X) is a continuous function and
that T = {F (t) : 0 < t < ∞} is U-bounded with U-bound U(F ). Suppose
g ∈ L1(R, dt/t). Then the family of operators

G(s) =

∫ ∞

0

g(st)F (t)
dt

t
0 < s < ∞

is U-bounded with constant at most U(F )
∫∞

0 |g(t)|dt/t.
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Proof. Suppose (xj)n
j=1 ⊂ X, (x∗j)

n
j=1 ⊂ X∗ with

sup
|aj |=1

‖
n∑

j=1

ajxj‖, sup
|aj |=1

‖
n∑

j=1

ajx
∗
j‖ ≤ 1.

Then for s1, . . . , sn ∈ R we have

n∑

j=1

|〈G(sj)xj, x
∗
j〉| ≤

n∑

j=1

∫ ∞

0

|g(t)|〈F (s−1
j t)xj, x

∗
j〉|

dt

t

≤ U(F )

∫ ∞

0

|g(t)|dt

t
.

3 Sectorial operators
Let X be a complex Banach space and let A be a closed operator on X. A is
called sectorial if A has dense domain Dom (A) and dense range Ran (A) =
Dom (A−1) and for some 0 < ϕ < π the resolvent (λ − A)−1 is bounded for
| arg λ| ≥ ϕ and satisfies the estimate

sup
| arg λ|≥ϕ

‖λ(λ− A)−1‖ < ∞.

The infimum of such angles ϕ is denoted ω(A).
Let Σϕ be the open sector {z -= 0 : | arg z| < ϕ}. If f ∈ H∞(Σϕ) we say

that f ∈ H∞
0 (Σϕ) if there exists δ > 0 such that |f(z)| ≤ C max(|z|δ, |z|−δ).

For f ∈ H∞
0 (Σϕ) where ϕ > ω(A) we can define f(A) by a contour integral,

which converges as a Bochner integral in L(X).

f(A) =
1

2πi

∫

Γν

f(λ)(λ− A)−1dλ

where Γν is the contour {|t|e−iνsgn t : −∞ < 0 < ∞} and ω(A) < ν < ϕ. We
can then estimate ‖f(A)‖ by

‖f(A)‖ ≤ Cϕ

∫

Γν

|f(λ)| |dλ|
|λ| .
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If we have a stronger estimate

‖f(A)‖ ≤ C‖f‖H∞(Σϕ) f ∈ H∞
0 (Σϕ)

then we say that A has an H∞(Σϕ)−calculus; in this case we may extend
the functional calculus to define f(A) for every f ∈ H∞(Σϕ). The infimum
of all such angles ϕ is denoted by ωH(A).

We will need a criterion for the existence of an H∞-calculus. It will be
convenient to use the notation fλ(z) = f(λz) and to let u(z) = z(1 + z)−2

so that u ∈ H∞
0 (Σϕ) for all ϕ < π. The following criterion goes back to [2]

and [3]. A simple proof is given in [10].

Proposition 3.1. Let A be a sectorial operator and suppose 0 < ϕ < π.
Then the following are equivalent:
(i) There is a constant C so that

∫ ∞

0

|〈uµ(tA)x, x∗〉|dt

t
≤ C‖x‖‖x∗‖ | arg µ| = ϕ, x ∈ X, x∗ ∈ X∗.

(ii) A has an H∞−calculus with ωH(A) ≤ π − ϕ.

Remark. (i) is equivalent by the Maximum Modulus Principle to
∫ ∞

0

|〈uµ(tA)x, x∗〉|dt

t
≤ C‖x‖‖x∗‖ | arg µ| ≤ ϕ, x ∈ X, x∗ ∈ X∗.

If A is sectorial we can define a closed operator A∗ on X∗ by A∗x∗ = x∗◦A
with domain Dom (A∗) consisting of all x∗ such that x → x∗(Ax) extends
to a bounded linear functional on X. Then A∗ need not be sectorial since it
need not have dense domain or range. Note that

‖A∗x∗‖ = sup
‖A−1x‖≤1
x∈Ran (A)

|〈x, x∗〉| x∗ ∈ Dom (A∗)

and
‖(A∗)−1x‖ = sup

‖Ax‖≤1
x∈Dom (A)

|〈x, x∗〉| x∗ ∈ Ran (A∗).

Thus if A and B are sectorial operators satisfying (1.1) and (1.2) they will
also satisfy Dom (A∗) = Dom (B∗), Ran (A∗) = Ran (B∗) and

‖A∗x∗‖ ≈ ‖B∗x∗‖ x∗ ∈ Dom (A∗) (3.1)
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and
‖(A∗)−1x∗‖ ≈ ‖(B∗)−1x∗‖ x∗ ∈ Ran (A∗) (3.2)

If A is a sectorial operator and ϕ > ω(A) we shall that f ∈ H∞
0 (Σϕ) is

U-bounded (respectively R-bounded) for A if the family of operators {f(tA) :
0 < t < ∞} is a U-bounded (respectively R-bounded) collection.

Proposition 3.2. Suppose A has an H∞-calculus and that ϕ > ωH(A). Then
for any f ∈ H∞

0 (Σϕ) we have that f is R-bounded (and thus U-bounded) for
A.

Proof. Suppose ω(A) < ψ < ϕ. Then the map λ → f(λA) is analytic on Σϕ−ψ

and extends continuously to the boundary. The operators {f(2kte±i(ϕ−ψ)A)}k∈Z
are R-bounded (uniformly in 0 < t < ∞) by Theorem 3.3 of [8] and the result
follows by Lemma 3.4 of the same paper.

Suppose A is a sectorial operator on X and ϕ > ω(A). We will say that
A is almost U-sectorial (respectively almost R-sectorial) if there is an angle
ϕ such that the set of operators {λAR(λ, A)2 : | arg λ| ≥ ϕ} is U-bounded
(respectively R-bounded). If we define u(z) = z(1+z)−2 this implies that the
functions uλ(z) = u(λz) are uniformly U-bounded (respectively uniformly R-
bounded) for | arg λ| ≤ π−ϕ. The infimum of such angles is denoted ω̃U(A).
By Lemma 3.4 of [8] this definition is equivalent to

ω̃U(A) = π − sup{θ : ue±iθ is U-bounded}

or, respectively

ω̃R(A) = π − sup{θ : ue±iθ is R-bounded}.

Proposition 3.3. Suppose A admits an H∞-calculus. Then A is almost
R-sectorial (and hence almost U-sectorial) and ω̃U(A) ≤ ω̃R(A) ≤ ωH(A).

Proof. This follows from Proposition 3.2.

Lemma 3.1. Suppose A is almost U-sectorial and ϕ > ν > ω̃U(A). Then
there is a constant C = C(ϕ) so that if f ∈ H∞

0 (Σϕ) then f is U-bounded
for A with U-bound

U(f) ≤ C

∫

Γν

|f(λ)| |dλ|
|λ| .

85



Proof. Fix ϕ > ψ > ν > ωU(A). We may write f(tA) in the form

f(tA) =
1

2πi

∫

Γψ

f(tλ)λ−1/2A1/2(λ− A)−1dλ.

Therefore the result follows from Lemma 2.1 once we show that the two
families of operators {h(e±iθtA) : 0 < t < ∞} are U-bounded where θ =
π − ψ and h(z) = z1/2(1 + z)−1.

Consider

g(z) = −i log
1 + iz1/2

1− iz1/2
− π

z

1 + z
| arg z| < π.

Then g ∈ H∞
0 (Σπ). Furthermore

g′(z) = z−1/2(1 + z)−1 − π(1 + z)−2.

Hence ge±iθ ∈ H∞
0 (Σψ). For convenience we consider the case of +θ. Thus

if
Tt = − 1

2πi

∫

Γν

g(teiθλ)A(λ− A)−2dλ

the family of operators {Tt : 0 < t < ∞} is U-bounded, again by Lemma
2.1. Now integration by parts shows that

Tt =
teiθ

2πi

∫

Γν

((teiθλ)−1/2(1 + teiθλ)−1 − π(1 + teiθλ)−2)λ(λ− A)−1dλ

=
1

2πi

∫

Γν

(h(teiθλ)− πu(teiθλ))(λ− A)−1dλ

= h(teiθA)− πu(teiθA).

Thus it follows that the family {h(teiθA) : 0 < t < ∞} is U-bounded.

4 The main results
If A is sectorial then the space Dom (A)∩Ran (A) is a Banach space (densely)
embedded into X under the norm ‖Ax‖+‖A−1x‖+‖x‖; similarly Dom (A∗)∩
Ran (A∗) is a Banach space embedded into X∗ under the norm ‖A∗x∗‖ +
‖(A∗)−1x∗‖+ ‖x∗‖.
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Theorem 4.1. Suppose A is a sectorial operator. In order that A have an
H∞-calculus with ωH(A) = ϕ it is necessary and sufficient that:
(i) A is almost U-sectorial with ω̃U(A) = ϕ.
(ii) There exists a constant C1 so that for each x ∈ X there is a continuous
function ξ : (0,∞) → Dom (A) ∩ Ran (A) such that

‖
N∑

k=−N

ak2
jktjAjξ(2kt)‖ ≤ C1‖x‖, j = −1, 0, 1, |ak| ≤ 1, N = 1, 2, . . . , 0 < t < ∞

and
〈x, x∗〉 =

∫ ∞

0

〈ξ(t), x∗〉dt

t
x∗ ∈ X∗.

(iii) There exists a constant C2 so that for each x∗ ∈ X∗ there is a continuous
function ξ∗ : (0,∞) → Dom (A∗) ∩ Ran (A∗) such that

‖
N∑

k=−N

ak2
jktj(Aj)∗ξ∗(2kt)‖ ≤ C2‖x∗‖, j = −1, 0, 1, |ak| ≤ 1, N = 1, 2, . . . , 0 < t < ∞

and
〈x, x∗〉 =

∫ ∞

0

〈x, ξ∗(t)〉dt

t
x ∈ X.

Proof. Let us assume (i), (ii) and (iii). Suppose |θ| < π − ϕ and ‖x‖ ≤
1, ‖x∗‖ ≤ 1. Let ξ(t), ξ∗(t) be chosen according to (ii) and (iii). We define

ξ̃(t) = tAξ(t) + t−1A−1ξ(t) + 2ξ(t), ξ̃∗(t) = tA∗ξ∗(t) + t−1A∗ξ∗(t) + 2ξ∗(t).

Thus we have

‖
N∑

k=−N

ak2
jkξ̃(2kt)‖ ≤ 3C1, j = −1, 0, 1, |ak| ≤ 1, N = 1, 2, . . . , 0 < t < ∞

and

‖
N∑

k=−N

ak2
jkξ̃∗(2kt)‖ ≤ 3C2, j = −1, 0, 1, |ak| ≤ 1, N = 1, 2, . . . , 0 < t < ∞.

Note that ξ̃ : (0,∞) → X and ξ̃∗ : (0,∞) → X∗ are both continuous and

ξ(t) = u(tA)ξ̃(t) 0 < t < ∞
ξ∗(t) = (u(tA))∗ξ̃∗(t) 0 < t < ∞.
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If π − | arg µ| > ν > ϕ we have
∫ ∞

0

| < uµ(rA)x, x∗ > |dr

r
≤

∫ ∞

0

∫ ∞

0

∫ ∞

0

|〈uµ(rA)ξ(s), ξ∗(t)〉|dt

t

ds

s

dr

r

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

|〈uµ(rtA)ξ(st), ξ∗(t)〉|dt

t

ds

s

dr

r

For fixed r, s
∫ ∞

0

|〈uµ(rtA)ξ(st), ξ∗(t)〉|dt

t
=

∫ ∞

0

|〈uµ(rtA)u(stA)ξ̃(st), (u(tA))∗ξ̃∗(t)〉|dt

t

=

∫ 2

1

∑

j∈Z
|〈urµ(2jtA)us(2

jtA)u(2jtA)ξ̃(s2jt), ξ̃∗(2jt)〉|dt

t

≤ 9C1C2U(urµusu)

≤ C

∫

Γν

|u(rµλ)u(sλ)u(λ)| |dλ|
|λ| ,

where C is constant independent of x, x∗. Integrating over r, s gives:
∫ ∞

0

| < uµ(rA)x, x∗ > |dr

r
≤ C

(∫

Γν

|uµ(λ)| |dλ|
|λ|

) (∫

Γν

|u(λ)| |dλ|
|λ|

)2

.

This estimate shows, by Proposition 3.1, that A has an H∞−calculus with
ωH(A) ≤ ϕ. Since ω̃U(A) ≤ ωH(A) by Proposition 3.3 we have equality.

To complete the proof we show that if A has an H∞−calculus then (i),
(ii) and (iii) hold and that ω̃U(A) ≤ ωH(A).

To show (ii) and (iii) we observe that

12

∫ ∞

0

(u(tz))2dt

t
= 1.

Note that zju(z)2 ∈ H∞
0 (Σϕ) for j = −1, 0, 1. It follows easily that if x ∈ X

and x∗ ∈ X∗ then

ξ(t) = 12u(tA)2x, ξ∗(t) = 12(u(tA)2)∗x∗

give the required functions.
For (i) observe that ω̃U(A) ≤ ωH(A) but the first part of the proof shows

equality.
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Theorem 4.2. Suppose A and B are sectorial operators such that Dom (A) =
Dom (B), Ran (A) = Ran (B) and for a suitable constant C we have

C−1‖Ax‖ ≤ ‖Bx‖ ≤ C‖Ax‖ x ∈ Dom (A)

and
C−1‖A−1x‖ ≤ ‖B−1x‖ ≤ C‖A−1x‖ x ∈ Ran (A).

Suppose A has an H∞−calculus. Then the following are equivalent:
(i) B has an H∞−calculus with ωH(B) = ϕ.
(ii) B is almost U-sectorial and ω̃U(B) = ϕ.

Proof. This is now immediate from Theorem 4.1 using (3.1) and (3.2).

If X is a Hilbert space then the assumption that B is almost U-sectorial is
redundant and this reduces to the result of Auscher, McIntosh and Nahmod
[1]. However, in general this assumption cannot be eliminated. It suffices
to take a sectorial operator A with an H∞−calculus with ωH(A) > ω(A).
Such examples exist [6]; in fact examples are known on subspaces of Lp when
1 < p < 2 [9]. Now fix θ with π − ωH(A) < θ < π − ω(A). Thus e±iθA are
sectorial with ω(e±iθA) ≤ ω(A)+π−θ. However if both have an H∞−calculus
we would deduce that for a suitable constant C

∫ ∞

0

|〈u(te±iθA)x, x∗〉|dt

t
≤ C‖x‖‖x∗‖ x ∈ X, x∗ ∈ X∗

which would imply that ωH(A) ≤ π − θ. This contradiction implies that at
least one of e±iθA fails to have an H∞−calculus. However if B = e±iθA then
(1.1) and (1.2) are trivially satisfied.
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