A remark on the H^{∞} -calculus

Nigel J. Kalton *

Abstract

If A, B are sectorial operators on a Hilbert space with the same domain and range, and if $||Ax|| \approx ||Bx||$ and $||A^{-1}x|| \approx ||B^{-1}x||$, then it is a result of Auscher, McIntosh and Nahmod that if A has an H^{∞} -calculus then so does B. On an arbitrary Banach space this is true with the additional hypothesis on B that it is almost R-sectorial as was shown by the author, Kunstmann and Weis in a recent preprint. We give an alternative approach to this result. $MSC \ (2000): 47A60.$ Received 17 August 2006 / Accepted 21 August 2006.

1 Introduction

In [1] the authors showed that if X is a Hilbert space and A, B are sectorial operators with the same domain and range and satisfying estimates

$$||Ax|| \approx ||Bx|| \qquad x \in \text{Dom}(A) \tag{1.1}$$

and

$$||A^{-1}x|| \approx ||B^{-1}x|| \qquad x \in \text{Ran}(A)$$
 (1.2)

then if one of (A, B) admits an H^{∞} -calculus then so does the other. Results of this type are useful in applications and were studied in [7] for arbitrary Banach spaces. In that paper, a similar result (Theorem 5.1) is proved under the additional hypothesis that A is almost R-sectorial.

In this note we give a rather different approach to this result. We replace the almost R-sectoriality assumption by the technically weaker assumption of almost U-sectoriality, although this is probably not of great significance. However, our approach here is perhaps a little simpler. We also point out

^{*}The author was supported by NSF grant DMS-0555670 $\,$

that some additional assumption is necessary in arbitrary Banach spaces; there are examples of sectorial operators A, B satisfying (1.1) and (1.2) but such that only one has an H^{∞} -calculus.

It is possible to consider estimates on fractional powers and our results can be extended in this direction (as in [7]); however to keep the exposition simple we will not discuss this point. We also point out that our approach is really based on an interpolation method, known as the Gustavsson-Peetre method [5] (see also [4]); but to avoid certain technicalities we have not made this explicit.

2 U-bounded collections of operators

Let X be a complex Banach space. A family \mathfrak{T} of operators $T: X \to X$ is called U-bounded if there is a constant C such that if $(x_j)_{j=1}^n \subset X$, $(x_j^*)_{j=1}^n \subset X^*$, $(T_j)_{j=1}^n \subset \mathfrak{T}$,

$$\sum_{j=1}^{n} |\langle T_j x_j, x_j^* \rangle| \le C \sup_{|a_j|=1} \|\sum_{j=1}^{n} a_j x_j\| \sup_{|a_j|=1} \|\sum_{j=1}^{n} a_j x_j^*\|.$$

The best such constant C is called the U-bound for \mathfrak{T} and is denoted $U(\mathfrak{T})$. This concept was introduced in [8].

We recall that \mathfrak{T} is called *R*-bounded if there is a constant *C* such that if $(x_j)_{j=1}^n \subset X, \ (T_j)_{j=1}^n \subset \mathfrak{T},$

$$(\mathbb{E} \| \sum_{j=1}^{n} \epsilon_j T x_j \|^2)^{1/2} \le C (\mathbb{E} \| \sum_{j=1}^{n} \epsilon_j x_j \|^2)^{1/2}$$

Here $(\epsilon_j)_{j=1}^n$ is a sequence of independent Rademachers. The best such constant C is called the R-bound for \mathcal{T} and is denoted $R(\mathcal{T})$. An R-bounded family is automatically U-bounded [8].

We will need the following elementary property:

Proposition 2.1. Suppose $F : (0, \infty) \to \mathcal{L}(X)$ is a continuous function and that $\mathfrak{T} = \{F(t) : 0 < t < \infty\}$ is U-bounded with U-bound U(F). Suppose $g \in L_1(\mathbb{R}, dt/t)$. Then the family of operators

$$G(s) = \int_0^\infty g(st)F(t)\frac{dt}{t} \qquad 0 < s < \infty$$

is U-bounded with constant at most $U(F) \int_0^\infty |g(t)| dt/t$.

82

Proof. Suppose $(x_j)_{j=1}^n \subset X$, $(x_j^*)_{j=1}^n \subset X^*$ with

$$\sup_{|a_j|=1} \|\sum_{j=1}^n a_j x_j\|, \sup_{|a_j|=1} \|\sum_{j=1}^n a_j x_j^*\| \le 1.$$

Then for $s_1, \ldots, s_n \in \mathbb{R}$ we have

$$\sum_{j=1}^{n} |\langle G(s_j)x_j, x_j^* \rangle| \leq \sum_{j=1}^{n} \int_0^\infty |g(t)| \langle F(s_j^{-1}t)x_j, x_j^* \rangle |\frac{dt}{t}$$
$$\leq U(F) \int_0^\infty |g(t)| \frac{dt}{t}.$$

_	-	_

3 Sectorial operators

Let X be a complex Banach space and let A be a closed operator on X. A is called *sectorial* if A has dense domain Dom (A) and dense range Ran (A) = Dom (A⁻¹) and for some $0 < \varphi < \pi$ the resolvent $(\lambda - A)^{-1}$ is bounded for $|\arg \lambda| \ge \varphi$ and satisfies the estimate

$$\sup_{|\arg \lambda| \ge \varphi} \|\lambda(\lambda - A)^{-1}\| < \infty.$$

The infimum of such angles φ is denoted $\omega(A)$.

Let Σ_{φ} be the open sector $\{z \neq 0 : |\arg z| < \varphi\}$. If $f \in H^{\infty}(\Sigma_{\varphi})$ we say that $f \in H^{\infty}_{0}(\Sigma_{\varphi})$ if there exists $\delta > 0$ such that $|f(z)| \leq C \max(|z|^{\delta}, |z|^{-\delta})$. For $f \in H^{\infty}_{0}(\Sigma_{\varphi})$ where $\varphi > \omega(A)$ we can define f(A) by a contour integral, which converges as a Bochner integral in $\mathcal{L}(X)$.

$$f(A) = \frac{1}{2\pi i} \int_{\Gamma_{\nu}} f(\lambda) (\lambda - A)^{-1} d\lambda$$

where Γ_{ν} is the contour $\{|t|e^{-i\nu \operatorname{sgn} t}: -\infty < 0 < \infty\}$ and $\omega(A) < \nu < \varphi$. We can then estimate ||f(A)|| by

$$||f(A)|| \le C_{\varphi} \int_{\Gamma_{\nu}} |f(\lambda)| \frac{|d\lambda|}{|\lambda|}.$$

O	6)
0	e)
-		

If we have a stronger estimate

$$||f(A)|| \le C ||f||_{H^{\infty}(\Sigma_{\varphi})} \qquad f \in H^{\infty}_{0}(\Sigma_{\varphi})$$

then we say that A has an $H^{\infty}(\Sigma_{\varphi})$ -calculus; in this case we may extend the functional calculus to define f(A) for every $f \in H^{\infty}(\Sigma_{\varphi})$. The infimum of all such angles φ is denoted by $\omega_H(A)$.

We will need a criterion for the existence of an H^{∞} -calculus. It will be convenient to use the notation $f_{\lambda}(z) = f(\lambda z)$ and to let $u(z) = z(1+z)^{-2}$ so that $u \in H_0^{\infty}(\Sigma_{\varphi})$ for all $\varphi < \pi$. The following criterion goes back to [2] and [3]. A simple proof is given in [10].

Proposition 3.1. Let A be a sectorial operator and suppose $0 < \varphi < \pi$. Then the following are equivalent: (i) There is a constant C so that

$$\int_{0}^{\infty} |\langle u_{\mu}(tA)x, x^{*} \rangle| \frac{dt}{t} \le C ||x|| ||x^{*}|| \qquad |\arg \mu| = \varphi, \ x \in X, x^{*} \in X^{*}.$$

(ii) A has an H^{∞} -calculus with $\omega_H(A) \leq \pi - \varphi$.

Remark. (i) is equivalent by the Maximum Modulus Principle to

$$\int_0^\infty |\langle u_\mu(tA)x, x^*\rangle| \frac{dt}{t} \le C ||x|| ||x^*|| \qquad |\arg \mu| \le \varphi, \ x \in X, x^* \in X^*.$$

If A is sectorial we can define a closed operator A^* on X^* by $A^*x^* = x^* \circ A$ with domain Dom (A^*) consisting of all x^* such that $x \to x^*(Ax)$ extends to a bounded linear functional on X. Then A^* need not be sectorial since it need not have dense domain or range. Note that

$$||A^*x^*|| = \sup_{\substack{||A^{-1}x|| \le 1\\ x \in \text{Ran} (A)}} |\langle x, x^* \rangle| \qquad x^* \in \text{Dom } (A^*)$$

and

$$\|(A^*)^{-1}x\| = \sup_{\substack{\|Ax\| \le 1\\ x \in \text{Dom}(A)}} |\langle x, x^* \rangle| \qquad x^* \in \text{Ran}(A^*)$$

Thus if A and B are sectorial operators satisfying (1.1) and (1.2) they will also satisfy Dom $(A^*) = \text{Dom } (B^*)$, Ran $(A^*) = \text{Ran } (B^*)$ and

$$||A^*x^*|| \approx ||B^*x^*|| \qquad x^* \in \text{Dom}(A^*)$$
 (3.1)

O	_/
\sim	4
\sim	_

$$\|(A^*)^{-1}x^*\| \approx \|(B^*)^{-1}x^*\| \qquad x^* \in \text{Ran} (A^*)$$
(3.2)

If A is a sectorial operator and $\varphi > \omega(A)$ we shall that $f \in H_0^{\infty}(\Sigma_{\varphi})$ is U-bounded (respectively R-bounded) for A if the family of operators $\{f(tA) : 0 < t < \infty\}$ is a U-bounded (respectively R-bounded) collection.

Proposition 3.2. Suppose A has an H^{∞} -calculus and that $\varphi > \omega_H(A)$. Then for any $f \in H_0^{\infty}(\Sigma_{\varphi})$ we have that f is R-bounded (and thus U-bounded) for A.

Proof. Suppose $\omega(A) < \psi < \varphi$. Then the map $\lambda \to f(\lambda A)$ is analytic on $\Sigma_{\varphi-\psi}$ and extends continuously to the boundary. The operators $\{f(2^k t e^{\pm i(\varphi-\psi)}A)\}_{k\in\mathbb{Z}}$ are R-bounded (uniformly in $0 < t < \infty$) by Theorem 3.3 of [8] and the result follows by Lemma 3.4 of the same paper. \Box

Suppose A is a sectorial operator on X and $\varphi > \omega(A)$. We will say that A is almost U-sectorial (respectively almost R-sectorial) if there is an angle φ such that the set of operators $\{\lambda AR(\lambda, A)^2 : |\arg \lambda| \geq \varphi\}$ is U-bounded (respectively R-bounded). If we define $u(z) = z(1+z)^{-2}$ this implies that the functions $u_{\lambda}(z) = u(\lambda z)$ are uniformly U-bounded (respectively uniformly R-bounded) for $|\arg \lambda| \leq \pi - \varphi$. The infimum of such angles is denoted $\tilde{\omega}_U(A)$. By Lemma 3.4 of [8] this definition is equivalent to

$$\tilde{\omega}_U(A) = \pi - \sup\{\theta : u_{e^{\pm i\theta}} \text{ is U-bounded}\}$$

or, respectively

$$\tilde{\omega}_R(A) = \pi - \sup\{\theta : u_{e^{\pm i\theta}} \text{ is R-bounded}\}.$$

Proposition 3.3. Suppose A admits an H^{∞} -calculus. Then A is almost R-sectorial (and hence almost U-sectorial) and $\tilde{\omega}_U(A) \leq \tilde{\omega}_R(A) \leq \omega_H(A)$.

Proof. This follows from Proposition 3.2.

Lemma 3.1. Suppose A is almost U-sectorial and $\varphi > \nu > \tilde{\omega}_U(A)$. Then there is a constant $C = C(\varphi)$ so that if $f \in H_0^{\infty}(\Sigma_{\varphi})$ then f is U-bounded for A with U-bound

$$U(f) \le C \int_{\Gamma_{\nu}} |f(\lambda)| \frac{|d\lambda|}{|\lambda|}.$$

8	3	ļ	5
	~	2	^

and

Proof. Fix $\varphi > \psi > \nu > \omega_U(A)$. We may write f(tA) in the form

$$f(tA) = \frac{1}{2\pi i} \int_{\Gamma_{\psi}} f(t\lambda) \lambda^{-1/2} A^{1/2} (\lambda - A)^{-1} d\lambda.$$

Therefore the result follows from Lemma 2.1 once we show that the two families of operators $\{h(e^{\pm i\theta}tA): 0 < t < \infty\}$ are U-bounded where $\theta = \pi - \psi$ and $h(z) = z^{1/2}(1+z)^{-1}$.

Consider

$$g(z) = -i\log\frac{1+iz^{1/2}}{1-iz^{1/2}} - \pi\frac{z}{1+z} \qquad |\arg z| < \pi.$$

Then $g \in H_0^{\infty}(\Sigma_{\pi})$. Furthermore

$$g'(z) = z^{-1/2}(1+z)^{-1} - \pi(1+z)^{-2}.$$

Hence $g_{e^{\pm i\theta}} \in H_0^\infty(\Sigma_{\psi})$. For convenience we consider the case of $+\theta$. Thus if

$$T_t = -\frac{1}{2\pi i} \int_{\Gamma_\nu} g(te^{i\theta}\lambda) A(\lambda - A)^{-2} d\lambda$$

the family of operators $\{T_t: 0 < t < \infty\}$ is U-bounded, again by Lemma 2.1. Now integration by parts shows that

$$T_t = \frac{te^{i\theta}}{2\pi i} \int_{\Gamma_{\nu}} ((te^{i\theta}\lambda)^{-1/2}(1+te^{i\theta}\lambda)^{-1} - \pi(1+te^{i\theta}\lambda)^{-2})\lambda(\lambda-A)^{-1}d\lambda$$
$$= \frac{1}{2\pi i} \int_{\Gamma_{\nu}} (h(te^{i\theta}\lambda) - \pi u(te^{i\theta}\lambda))(\lambda-A)^{-1}d\lambda$$
$$= h(te^{i\theta}A) - \pi u(te^{i\theta}A).$$

Thus it follows that the family $\{h(te^{i\theta}A): 0 < t < \infty\}$ is U-bounded.

4 The main results

If A is sectorial then the space Dom $(A) \cap \text{Ran} (A)$ is a Banach space (densely) embedded into X under the norm $||Ax|| + ||A^{-1}x|| + ||x||$; similarly Dom $(A^*) \cap$ Ran (A^*) is a Banach space embedded into X^* under the norm $||A^*x^*|| + ||(A^*)^{-1}x^*|| + ||x^*||$.

86

Theorem 4.1. Suppose A is a sectorial operator. In order that A have an H^{∞} -calculus with $\omega_H(A) = \varphi$ it is necessary and sufficient that: (i) A is almost U-sectorial with $\tilde{\omega}_U(A) = \varphi$.

(ii) There exists a constant C_1 so that for each $x \in X$ there is a continuous function $\xi : (0, \infty) \to Dom(A) \cap Ran(A)$ such that

$$\left\|\sum_{k=-N}^{N} a_k 2^{jk} t^j A^j \xi(2^k t)\right\| \le C_1 \|x\|, \ j = -1, 0, 1, \ |a_k| \le 1, \ N = 1, 2, \dots, \ 0 < t < \infty$$

and

$$\langle x, x^* \rangle = \int_0^\infty \langle \xi(t), x^* \rangle \frac{dt}{t} \qquad x^* \in X^*.$$

(iii) There exists a constant C_2 so that for each $x^* \in X^*$ there is a continuous function $\xi^* : (0, \infty) \to Dom(A^*) \cap Ran(A^*)$ such that

$$\left\|\sum_{k=-N}^{N} a_k 2^{jk} t^j (A^j)^* \xi^* (2^k t)\right\| \le C_2 \|x^*\|, \ j = -1, 0, 1, \ |a_k| \le 1, \ N = 1, 2, \dots, \ 0 < t < \infty$$

and

$$\langle x, x^* \rangle = \int_0^\infty \langle x, \xi^*(t) \rangle \frac{dt}{t} \qquad x \in X.$$

Proof. Let us assume (i), (ii) and (iii). Suppose $|\theta| < \pi - \varphi$ and $||x|| \le 1$, $||x^*|| \le 1$. Let $\xi(t), \xi^*(t)$ be chosen according to (ii) and (iii). We define $\tilde{\xi}(t) = tA\xi(t) + t^{-1}A^{-1}\xi(t) + 2\xi(t)$, $\tilde{\xi}^*(t) = tA^*\xi^*(t) + t^{-1}A^*\xi^*(t) + 2\xi^*(t)$.

Thus we have

$$\left\|\sum_{k=-N}^{N} a_k 2^{jk} \tilde{\xi}(2^k t)\right\| \le 3C_1, \ j = -1, 0, 1, \ |a_k| \le 1, \ N = 1, 2, \dots, \ 0 < t < \infty$$

and

$$\left\|\sum_{k=-N}^{N} a_k 2^{jk} \tilde{\xi}^*(2^k t)\right\| \le 3C_2, \ j = -1, 0, 1, \ |a_k| \le 1, \ N = 1, 2, \dots, \ 0 < t < \infty.$$

Note that $\tilde{\xi}: (0,\infty) \to X$ and $\tilde{\xi}^*: (0,\infty) \to X^*$ are both continuous and

$$\xi(t) = u(tA)\tilde{\xi}(t) \qquad 0 < t < \infty$$

$$\xi^*(t) = (u(tA))^*\tilde{\xi}^*(t) \qquad 0 < t < \infty.$$

0	5
0	1

If $\pi - |\arg \mu| > \nu > \varphi$ we have

$$\int_0^\infty |\langle u_\mu(rA)x, x^*\rangle| \frac{dr}{r} \le \int_0^\infty \int_0^\infty \int_0^\infty |\langle u_\mu(rA)\xi(s), \xi^*(t)\rangle| \frac{dt}{t} \frac{ds}{s} \frac{dr}{r}$$
$$= \int_0^\infty \int_0^\infty \int_0^\infty |\langle u_\mu(rtA)\xi(st), \xi^*(t)\rangle| \frac{dt}{t} \frac{ds}{s} \frac{dr}{r}$$

For fixed r, s

$$\begin{split} \int_{0}^{\infty} |\langle u_{\mu}(rtA)\xi(st),\xi^{*}(t)\rangle| \frac{dt}{t} &= \int_{0}^{\infty} |\langle u_{\mu}(rtA)u(stA)\tilde{\xi}(st),(u(tA))^{*}\tilde{\xi}^{*}(t)\rangle| \frac{dt}{t} \\ &= \int_{1}^{2} \sum_{j\in\mathbb{Z}} |\langle u_{r\mu}(2^{j}tA)u_{s}(2^{j}tA)u(2^{j}tA)\tilde{\xi}(s2^{j}t),\tilde{\xi}^{*}(2^{j}t)\rangle| \frac{dt}{t} \\ &\leq 9C_{1}C_{2}U(u_{r\mu}u_{s}u) \\ &\leq C \int_{\Gamma_{\nu}} |u(r\mu\lambda)u(s\lambda)u(\lambda)| \frac{|d\lambda|}{|\lambda|}, \end{split}$$

where C is constant independent of x, x^* . Integrating over r, s gives:

$$\int_0^\infty |\langle u_\mu(rA)x, x^*\rangle| \frac{dr}{r} \le C\left(\int_{\Gamma_\nu} |u_\mu(\lambda)| \frac{|d\lambda|}{|\lambda|}\right) \left(\int_{\Gamma_\nu} |u(\lambda)| \frac{|d\lambda|}{|\lambda|}\right)^2$$

This estimate shows, by Proposition 3.1, that A has an H^{∞} -calculus with $\omega_H(A) \leq \varphi$. Since $\tilde{\omega}_U(A) \leq \omega_H(A)$ by Proposition 3.3 we have equality.

To complete the proof we show that if A has an H^{∞} -calculus then (i), (ii) and (iii) hold and that $\tilde{\omega}_U(A) \leq \omega_H(A)$.

To show (ii) and (iii) we observe that

$$12\int_0^\infty (u(tz))^2 \frac{dt}{t} = 1.$$

Note that $z^j u(z)^2 \in H_0^\infty(\Sigma_{\varphi})$ for j = -1, 0, 1. It follows easily that if $x \in X$ and $x^* \in X^*$ then

$$\xi(t) = 12u(tA)^2 x, \qquad \xi^*(t) = 12(u(tA)^2)^* x^*$$

give the required functions.

For (i) observe that $\tilde{\omega}_U(A) \leq \omega_H(A)$ but the first part of the proof shows equality.

Theorem 4.2. Suppose A and B are sectorial operators such that Dom(A) = Dom(B), Ran(A) = Ran(B) and for a suitable constant C we have

$$C^{-1} ||Ax|| \le ||Bx|| \le C ||Ax|| \qquad x \in Dom (A)$$

and

$$C^{-1} \|A^{-1}x\| \le \|B^{-1}x\| \le C \|A^{-1}x\| \qquad x \in Ran \ (A).$$

Suppose A has an H^{∞} -calculus. Then the following are equivalent: (i) B has an H^{∞} -calculus with $\omega_H(B) = \varphi$. (ii) B is almost U-sectorial and $\tilde{\omega}_U(B) = \varphi$.

Proof. This is now immediate from Theorem 4.1 using (3.1) and (3.2).

If X is a Hilbert space then the assumption that B is almost U-sectorial is redundant and this reduces to the result of Auscher, McIntosh and Nahmod [1]. However, in general this assumption cannot be eliminated. It suffices to take a sectorial operator A with an H^{∞} -calculus with $\omega_H(A) > \omega(A)$. Such examples exist [6]; in fact examples are known on subspaces of L_p when $1 [9]. Now fix <math>\theta$ with $\pi - \omega_H(A) < \theta < \pi - \omega(A)$. Thus $e^{\pm i\theta}A$ are sectorial with $\omega(e^{\pm i\theta}A) \leq \omega(A) + \pi - \theta$. However if both have an H^{∞} -calculus we would deduce that for a suitable constant C

$$\int_0^\infty |\langle u(te^{\pm i\theta}A)x, x^*\rangle| \frac{dt}{t} \le C \|x\| \|x^*\| \qquad x \in X, \ x^* \in X^*$$

which would imply that $\omega_H(A) \leq \pi - \theta$. This contradiction implies that at least one of $e^{\pm i\theta}A$ fails to have an H^{∞} -calculus. However if $B = e^{\pm i\theta}A$ then (1.1) and (1.2) are trivially satisfied.

References

- Auscher, P., McIntosh, A., Nahmod, A., Holomorphic functional calculi of operators, quadratic estimates and interpolation, Indiana Univ. Math. J. 46 (1997), 375–403.
- [2] Boyadzhiev, K., deLaubenfels, R., Semigroups and resolvents of bounded variation, imaginary powers and H^{∞} functional calculus, Semigroup Forum, 45 no.3 (1992), 372–384.

- [3] Cowling, M., Doust, I., McIntosh, A., Yagi, A., Banach space operators with a bounded H[∞] functional calculus, J. Austral. Math. Soc. Ser. A 60 no.1 (1996), 51–89.
- [4] Cwikel, M., Kalton, N. J., Interpolation of compact operators by the methods of Calderón and Gustavsson-Peetre, Proc. Edinburgh Math. Soc. 38 no.2 (1995), 261–276.
- [5] Gustavsson, J., Peetre, J., Interpolation of Orlicz spaces, Studia Math. 60 no. 1 (1977), 33–59.
- [6] Kalton, N. J., A remark on sectorial operators with an H[∞]-calculus, in "Trends in Banach spaces and operator theory, Memphis, TN, 2001", Contemp. Math. 321, Amer. Math. Soc. (Providence, RI) 2003, 91–99.
- [7] Kalton, N. J., Kunstmann, P. C., Weis, L., Perturbation and Interpolation Theorems for the H[∞]-Calculus with Applications to Differential Operators, Math. Ann., to appear.
- [8] Kalton, N. J., Weis, L., The H[∞]-calculus and sums of closed operators, Math. Ann. 321 (2001), 319–345.
- [9] Kalton, N. J., Weis, L., Euclidean structures and their applications, in preparation.
- [10] Kunstmann, P. C., Weis, L., Maximal L_p-regularity for parabolic equations, Fourier multiplier theorems and H[∞]-functional calculus, in "Functional analytic methods for evolution equations", Lecture Notes in Math. 1855, Springer Verlag 2004, 65–311.

Nigel Kalton, Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211. nigel@math.missouri.edu