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Abstract

We survey the vector-valued theory of Fourier multipliers and sin-
gular integrals, especially concentrating on identifying the border be-
tween the one-parameter theory valid in UMD spaces and the multi-
parameter theory valid in UMD spaces with property (α). Some new
results are also proved which clarify this question.
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1 Introduction
After its introduction in the early 1980’s by D. L. Burkholder [10], the
probabilistic UMD property (unconditionality of martingale differences; see
Def. 2.1) has become the central notion in Harmonic Analysis of functions
with values in infinite-dimensional spaces. Indeed, several results from the
classical Littlewood–Paley and Calderón–Zygmund theories, including their
more recent extensions, remain valid in the context of X-valued functions
if and only if the Banach space X has UMD. Out of the vast amount of
examples, we record here the continuity in Lp(R, X) of (the tensor extension
of) the Hilbert transform [6, 11], as well as the extensions to Lp(Rn, X) of
the Marcinkiewicz–Mihlin multiplier theorem [8, 45] and the David–Journé
T (1) theorem [24]. While the mentioned results were all obtained by the end
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of the 1980’s, there has been a revival of interest in the related questions
since the turn of the millennium. This has been boosted by the realization of
the connection of another probabilistic notion, the R-boundedness (Def. 2.3),
to the continuity of more general vector-valued Calderón–Zygmund trans-
formations with an operator-valued kernel [14, 57], as well as the successful
applications of these ideas to Partial Differential Equations. The UMD spaces
have retained their central position also for these recent developments.

However, another probabilistic Banach space condition, property (α) (see
Def. 2.2), has also frequently appeared in the assumptions of various results
on vector-valued Harmonic Analysis, and it is now known that in many
cases it cannot be avoided. Already in the late 1980’s it was shown that
the more general (compared to Mihlin’s) Marcinkiewicz–Lizorkin multiplier
theorem is not valid in certain UMD spaces [61], and more recently it was
realized [43] that a characterization of the spaces with this multiplier theorem
is UMD combined with (α). Since this observation, several further results
have considerably clarified the interplay of the UMD and (α) properties,
and the need for the latter has been clearly related to the “multi-parameter”
nature of certain results [34, 36, 37]. The present article has a two-fold
purpose:

• to survey the state-of-art of the theory of vector-valued Fourier multi-
pliers and singular integrals, with emphasis on the rôle of property (α)
(and heavily biased towards the author’s own interests), and

• to supplement some new results, which establish a fairly sharp border
between the parts of the theory requiring or not requiring (α).

The paper will concentrate on the vector-valued Calderón–Zygmund theory
per se. For the applications to Partial Differential Equations we refer to the
recent monograph [19] and the lecture notes [42]. The latter also contains
a detailed presentation of the H∞-calculus of sectorial operators in UMD
spaces (not dealt with here), for which there is also the recent survey [58].

2 Probabilistic preliminaries
We first recall the two fundamental Banach space properties which determine
the behaviour of singular integrals of vector-valued functions:
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Definition 2.1 ( [10]). A Banach space X is UMD if for some (and then
all) p ∈ ]1,∞[ there is a C < ∞ such that

(
E
∣∣∣

N∑

k=1

εkdk

∣∣∣
p

X

)1/p

≤ C
(
E
∣∣∣

N∑

k=1

dk

∣∣∣
p

X

)1/p

whenever N ∈ Z+, (εk)N
k=1 ∈ {−1, +1}N , and (dk)N

k=1 ∈ Lp(Ω, F , P; X)N is
a martingale difference sequence on some probability space (Ω, F , P) with
expectation E :=

∫
Ω dP; i.e., there are sub-σ-algebras F0 ⊆ F1 ⊆ · · · ⊆

FN ⊆ F so that dk ∈ Lp(Ω, Fk, P; X) and E(1Adk) = 0 for all A ∈ Fk−1,
for all k = 1, · · · , N .

Examples of UMD spaces include the reflexive Lebesgue Lp, Lorentz Lp,q

and Schatten–von Neumann C q spaces, 1 < p, q < ∞. If X is any UMD
space, so are its dual X ′, the Bôchner spaces Lp(µ, X) for 1 < p < ∞, and
the closed subspaces and quotients of X. UMD spaces are (super)reflexive,
and they have non-trivial type (and then also Fourier-type) as well as cotype.
There are a number of useful surveys of UMD spaces [12, 13, 51].

In the following definition, and always thereafter, the εi, ε̃j, ε
(1)
k , · · · are

i.i.d. (independent identically distributed) random signs with distribution
P(εi = +1) = P(εi = −1) = 1/2. They are called the Rademacher variables.
Definition 2.2 ( [47]). A Banach space X has property (α) if there is a
C < ∞ such that

E
∣∣∣

N∑

i,j=1

εiε̃jαijxij

∣∣∣
X
≤ CE

∣∣∣
N∑

i,j=1

εiε̃jxij

∣∣∣
X

whenever N ∈ Z+, (xij)N
i,j=1 ∈ XN×N and (αij)N

i,j=1 ∈ {−1, +1}N×N .
This property holds for the commutative Lp spaces for all 1 ≤ p < ∞,

and is also inherited from X by Lp(µ, X) for p in the same range; on the
other hand, the (infinite-dimensional) non-commutative C q spaces have (α)
only when q = 2. Unlike UMD, property (α) is not self-dual (e.g., %1 has
(α) while %∞ does not); however, it is important that the joint property
“UMD and (α)” is inherited by the dual space. Every Banach space with a
local unconditional structure (l.u.st.), in particular every Banach lattice, has
property (α) if and only if it has finite cotype. A good reference is Pisier’s
original paper [47], where property (α) was introduced.

We also recall the main property that one typically needs to impose on
the range of operator-valued singular integral kernels:
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Definition 2.3 ( [1]). An operator collection T ⊂ L (X) is R-bounded if
there is a C < ∞ such that

E
∣∣∣

N∑

k=1

εkTkxk

∣∣∣
X
≤ CE

∣∣∣
N∑

k=1

εkxk

∣∣∣
X

whenever N ∈ Z+, (xk)N
k=1 ∈ XN and (Tk)N

k=1 ∈ T N . The least number C
is called the R-bound and denoted by R(T ).

Even earlier, this notion made anonymous appearances in [8, 61], and
Bourgain [8] proved the useful fact that R(abcoT ) ≤ 2R(T ), where the
bar designates the strong operator closure, and abco stands for the absolute
(or balanced) convex hull. A scalar-valued version of this inequality was
implicitly used already in Marcinkiewicz’ original proof of his multiplier the-
orem [44], which may explain why R-boundedness has become such a central
concept in the operator-valued extensions of this classical result. This notion
is studied in detail in [14, 57].

Another frequently used result in connection with the randomized norms
is the inequality of Kahane which provides the second, non-trivial comparison
in the following chain, where Kp < ∞ is constant only depending on p:

E
∣∣∣

N∑

k=1

εkxk

∣∣∣
X
≤

(
E
∣∣∣

N∑

k=1

εkxk

∣∣∣
p

X

)1/p

≤ KpE
∣∣∣

N∑

k=1

εkxk

∣∣∣
X

, 1 < p < ∞.

This implies that one can replace the L1 norms in Definitions 2.2 and 2.3
by other Lp norms for 1 < p < ∞. (The p invariance of Def. 2.1 is due to
a different reason.) Another useful inequality of Kahane is the contraction
principle, for which the notion of R-boundedness gives the compact formu-
lation R(Λ · idX) ≤ 2 sup{|λ| : λ ∈ Λ}, whenever Λ ⊂ C.

It is sometimes handy to transform R-boundedness on X into usual
boundedness on a certain larger space, Rad(X). The use of this space (well-
known in the Banach space theory) in the context of R-boundedness origi-
nates from Girardi and Weis [27].

Definition 2.4. The Rademacher space Rad(X) is the completion of all
finitely non-zero sequences (xj)∞j=−∞ ∈ XZ in any of the following equivalent
norms, where p ∈ [1,∞[:

∥∥(xj)
∞
−∞

∥∥
Radp(X)

:=
(
E
∣∣∣

∞∑

j=−∞

εjxj

∣∣∣
p

X

)1/p

.
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Unless otherwise said, we use the L1 norm on Rad(X).

Let us identify a finitely non-zero sequence (Tj)∞−∞ ∈ L (X)Z with the
operator T̃ (xj)∞−∞ := (Tjxj)∞−∞ on Rad(X). For T ⊂ L (X), let us denote

T̃ := {(Tj)
∞
−∞ ∈ T Z finitely non-zero}.

Then clearly R(T ) = sup{‖T̃‖L (Rad(X)) : T̃ ∈ T̃ } ≤ R(T̃ ). One of the
main implications, and in fact a characterization, of property (α) of X is the
converse estimate R(T̃ ) ≤ CR(T ) for T ⊂ L (X), where C depends on
the (α) property constant of X only [14].

3 Littlewood–Paley decompositions
The first step in Bourgain’s [8] approach to the estimation of singular inte-
grals in UMD spaces is transforming the defining unconditionality property
of martingale differences into another unconditionality estimate of more an-
alytic flavour. This is an analogue of the classical inequality of Littlewood
and Paley concerning the dyadic spectral decomposition of a function. For
an interval I ⊂ R, we denote ∆[I] := F−11IF , where F is the Fourier
transform. Let I := {η

[
2k, 2k+1

[
: η ∈ {−1, +1}, k ∈ Z} be the collection

of dyadic intervals on R. The vector-valued Littlewood–Paley inequality is
the following:

Theorem 3.1 ( [8, 45]). Let X be a UMD space and 1 < p < ∞. Then there
are constant 0 < c ≤ C < ∞ such that

c ‖f‖p ≤ E
∥∥∥

∑

I∈I

εI∆[I]f
∥∥∥

p
≤ C ‖f‖p , f ∈ Lp(R, X).

Conversely, this estimate implies that X is UMD and 1 < p < ∞.

The proof of Bourgain [8] consists of writing the UMD inequality for the
translated dyadic filtrations (Dk − u)∞k=0 of R, where Dk := {2−k [j, j + 1[ :
j ∈ Z} and 0 ≤ u < 1, and averaging over the values of the translation
parameter u. This yields an inequality similar to that of Theorem 3.1 but
with smooth and overlapping cut-offs (decaying like (2kξ)2 resp. (2kξ)−2 as
ξ → 0 resp. ξ →∞) in place of the indicators of the intervals

[
2k, 2k+1

[
. The

desired sharp cut-offs are then reached by a perturbation argument, which
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uses the R-boundedness of the family of spectral projections ∆[J ], where J
ranges over all intervals of R. This R-boundedness is a consequence of the
boundedness of the single projection ∆[R+] = (id +iH)/2, where H is the
Hilbert transform, the identity ∆[a + J ] = ei2πax∆[J ]e−i2πax, and the basic
properties of R-bounded sets.

A different approach to the vector-valued Littlewood–Paley decomposi-
tion is due to McConnell [45], who proved a Mihlin-type multiplier theorem
directly from the UMD inequality by means of heavy stochastic machin-
ery, and derived Theorem 3.1 as a corollary of his multiplier estimate. In
Bourgain’s approach, on the other hand, Theorem 3.1 is used to obtain the
multiplier theorem (see next section), which turns out to be sharper than
that proved by McConnell.

Theorem 3.1 shows that on the one-dimensional Euclidean domain R, the
classical spectral decomposition extends to the UMD-valued situation, and in
fact reflects the one-parameter decomposition postulated in the definition of
UMD. When we want to move to Rn with n > 1, however, a one-parameter
decomposition cannot adequately capture the full n-dimensional structure of
the product domain Rn = R× · · ·×R, and this is where property (α) enters
the scene. Of course, by simply iterating Theorem 3.1, we obtain

c ‖f‖p ≤ E
∥∥∥

∑

I∈I n

ε(1)
I1

· · · ε(n)
In

∆[I]f
∥∥∥

p
≤ C ‖f‖p , f ∈ Lp(Rn, X), (3.1)

where I n := {I = I1 × · · ·× In : I1, · · · , In ∈ I }, and ε(1)
I1

, · · · , ε(n)
In

are i.i.d.
sequences of Rademacher variables. The products ε(1)

I1
· · · ε(n)

In
, however, are

not quite the same as one independent sequence εI = εI1×···×In indexed by the
product intervals. Property (α), on the other hand, is precisely the condition
under which the two random sums are equivalent, and Zimmermann proved
the following:

Theorem 3.2 ( [61]). Let n > 1. There are constant 0 < c ≤ C < ∞
such that the following estimates hold, if and only if X is a UMD space with
property (α) and 1 < p < ∞:

c ‖f‖p ≤ E
∥∥∥

∑

I∈I n

εI∆[I]f
∥∥∥

p
≤ C ‖f‖p , f ∈ Lp(Rn, X).

All hope is not lost in general UMD spaces, either, but we have to content
ourselves with a coarser decomposition, the so-called blocking by squares of
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Figure 1: The dyadic product decomposition (left) and its blocking by
squares (right).

the product decomposition I n. This consists of the intervals

r−1∏

i=1

ηi

]
0, 2ki+1

[
× ηr

[
2kr , 2kr+1

[
×

n∏

i=r+1

ηi

]
0, 2ki

[
(3.2)

with η ∈ {−1, +1}n, k ∈ Zn. Denoting the set of these intervals by In, the
result reads:

Theorem 3.3 ( [61]). Let X be a UMD space, 1 < p < ∞ and n ≥ 1. Then
there are constants 0 < c ≤ C < ∞ such that

c ‖f‖p ≤ E
∥∥∥

∑

I∈In

εI∆[I]f
∥∥∥

p
≤ C ‖f‖p , f ∈ Lp(Rn, X).

The two decompositions for n = 2 are illustrated in Fig. 1. Unconditional
decompositions and their products and blockings are studied in detail in
Witvliet’s thesis [59].

4 Vector-valued Fourier multipliers
While various classes of Calderón–Zygmund operators and their generaliza-
tions have been treated in UMD spaces by now, many of the typical vector-
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valued phenomena are most easily illustrated in the context of Fourier mul-
tipliers, whose boundedness properties are very closely related to the uncon-
ditionality of Littlewood–Paley decompositions. In fact, the two ingredients
used in Bourgain’s approach to the vector-valued Mihlin multiplier theorem
are Theorem 3.1 and an R-boundedness estimate for the class of multipli-
ers of bounded variation. The point is then to apply this R-boundedness
result to the “dyadic pieces” m1I of a Mihlin multiplier to obtain the bound-
edness of the full multiplier m. Essentially the same idea goes through for
operator-valued multipliers; we only need to strengthen bounded variation
to R-bounded variation:

Definition 4.1. We say that a set M of functions m : Rn → L (X) has
uniformly R-bounded variation if there exists a fixed R-bounded set T ⊂
L (X), and for each m ∈ M a probability measure µ on [−∞̄, ∞̄[ and a
strongly measurable τ : [−∞̄, ∞̄[ → T , such that for all x ∈ X

m(ξ)x =

∫

[−∞̄,ξ]

τ(y)x µ(dy).

We denoted ∞̄ := (∞, · · · ,∞) and [−∞̄, ξ] := [−∞, ξ1]× · · ·× [−∞, ξn].
Typical examples of R-bounded variation arise from multipliers m supported
on intervals J = J1 × · · · × Jn and having derivatives Dαm(ξ), α ∈ {0, 1}n,
ξ ∈ J , such that ‖‖Dαm(ξ)‖T ‖L1(Jα) ≤ C < ∞, where ‖·‖T is the Minkowski
functional of an R-bounded set T , and Jα :=

∏
i:αi=1 Ji ×

∏
i:αi=0{inf Ji}.

Theorem 4.1 ( [8, 42, 61]). Let X be a UMD space and 1 < p < ∞. If
M is a uniformly R-bounded collection of functions on Rn, then the set
of Fourier multiplier operators Tm := F−1mF , m ∈ M , is R-bounded on
L (Lp(Rn, X)).

This result is actually equivalent to the Lp(R, X) boundedness of the
Hilbert transform, since H itself has a scalar multiplier of bounded variation,
whereas every multiplier Tm with m ∈ M belongs to abco(T ·S ), where T
is the R-bounded set appearing in Def. 4.1, and S := {∆[ξ + Rn

+] : ξ ∈ Rn}
whose R-boundedness follows from the boundedness of H.

We can now formulate a generic multiplier theorem:

Theorem 4.2. Let X be a UMD space and 1 < p < ∞. Let J be a
collection of intervals ⊂ Rn such that {∆[J ] : J ∈ J } satisfies, for some
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0 < c ≤ C < ∞, the unconditionality estimate

c ‖f‖p ≤ E
∥∥∥

∑

J∈J

εJ∆[J ]f
∥∥∥

p
≤ C ‖f‖p , f ∈ Lp(Rn, X).

If a multiplier m : Rn → L (X) has the property that the m1J , J ∈ J , are
of uniformly R-bounded variation, then Tm ∈ L (Lp(Rn, X)).

In fact, K := R(Tm1J : J ∈ J ) < ∞ by Theorem 4.1, and then

‖Tmf‖p ≤
1

c
E
∥∥∥

∑

J∈J

εJ∆[J ]Tmf
∥∥∥

p
=

1

c
E
∥∥∥

∑

J∈J

εJTm1J ∆[J ]f
∥∥∥

p

≤ 1

c
KE

∥∥∥
∑

J∈J

εJ∆[J ]f
∥∥∥

p
≤ C

c
K ‖f‖p .

The following two results, which provide vector-valued extensions of the
classical Mihlin and Marcinkiewicz–Lizorkin multiplier theorems, are now
consequences of the generic Theorem 4.2 and the Littlewood–Paley decom-
positions of the previous section:

Theorem 4.3 ( [8, 54, 57, 61]). Let n ≥ 1. If (and only if ) X is a UMD
space and 1 < p < ∞, then every multiplier m : Rn \ {0}→ L (X) such that

R(|ξ||α| Dαm(ξ) : α ∈ {0, 1}n, ξ ∈ Rn \ {0}) < ∞

satisfies Tm ∈ L (Lp(Rn, X)).

Theorem 4.4 ( [54, 61]). Let n > 1. If (and only if ) X is a UMD space with
property (α) and 1 < p < ∞, then every multiplier m : Rn \ {0} → L (X)
such that

R(|ξα|Dαm(ξ) : α ∈ {0, 1}n, ξ ∈ (R \ {0})n) < ∞

satisfies Tm ∈ L (Lp(Rn, X)).

The case of Theorem 4.3 when n = 1 and m is scalar-valued was proved
by Bourgain [8] and extended to n > 1 by Zimmermann [61]; a slightly
weaker statement had already been obtained by McConnell [45] using differ-
ent methods. The operator-valued statement was first achieved by Weis [57]
for n = 1 and extended to n > 1 by Štrkalj and Weis [54]; other proofs of
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this result are given in [19, 29, 42]. Zimmermann’s original formulation of
the scalar-multiplier case of Theorem 4.4 was in the slightly smaller class
of UMD spaces with l.u.st.; a similar but yet more restricted statement in
Banach lattices was proved in [21], based on [45]. The class of UMD spaces
with (α) used by Štrkalj and Weis is the largest possible, as observed by
Lancien [43].

Finally, it should be pointed out that the R-boundedness assumptions
are not only a matter of technical convenience, but a necessity to obtain
multiplier theorems, as shown by Clément and Prüss [15]:

Theorem 4.5 ( [15]). Let n ≥ 1 and 1 < p < ∞. There is a constant C < ∞
such that if X is an arbitrary Banach space and m ∈ L1

loc(R
n, L (X)), then

R(m(ξ) : ξ ∈ Rn a Lebesgue point of m) ≤ C ‖Tm‖L (Lp(Rn,X)) .

5 Bootstrapping and induction
In the context of vector-valued estimates, various possibilities of self-improve-
ment are looming around. A basic observation is the isomorphic (thanks to
Kahane’s inequality) identification of spaces

Rad(Lp(Rn, X)) ! Lp(Rn, Rad(X)),

which gives rise to an identification of operators (Tmj)
∞
−∞ ! T(mj)∞−∞

, where
on the right we have the Fourier multiplier with the sequence-valued kernel
ξ ,→ M(ξ) := (mj(ξ))∞−∞ ∈ L (Rad(X)). Thus, proving the R-boundedness
of a family of Fourier multiplier operators amounts to checking the bound-
edness of the single L (Rad(X))-valued multiplier M(ξ). In the presence
of property (α), it is possible to conclude that M inherits the required R-
boundedness estimates from the original multipliers mj. These observations
lead to the following:

Theorem 5.1 ( [9, 27, 41, 56]). Let n ≥ 1. If (and only if ) 1 < p < ∞ and
X is a UMD-space with property (α), then every family M of L (X)-valued
multipliers on Rn such that

R(|ξα|Dαm(ξ) : α ∈ {0, 1}n, ξ ∈ (R \ {0})n, m ∈ M ) < ∞

induces an R-bounded family of operators {Tm : m ∈ M } ⊂ L (Lp(Rn, X)).
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This was first proved for scalar-valued multipliers by Venni [56]; the
operator-valued extension was found by Bu [9] and by Girardi and Weis [27]
(apparently independently). The necessity of (α) is shown in [41].

Another basic identification is the Fubini isometry

Lp(Rn+1, X) ! Lp(R, Lp(Rn, X)),

where Lp(Rn, X) has UMD and/or (α) if X has, and 1 < p < ∞. This again
gives an identification of Fourier multipliers,

Tξ∈Rn+1 &→m(ξ)∈L (X) ! Tξ1∈R &→Tm(ξ1,·)∈L (Lp(Rn,X)).

As it turns out, this kind of identification can be used, as done in [31],
to reprove Theorems 4.4 and 5.1 for general n ≥ 1 using only Theorem 5.1
for n = 1 and a simple induction on the dimension. While the inductive
method is not necessary for getting these results, as we saw, it may offer at
least some conceptual simplification, which has been exploited in proving new
estimates for singular integrals by Portal and the author [38]. It seems that
the inductive method is most useful in the presence of (α), for otherwise it is
difficult to ensure the required R-bounds of the sequence-valued multipliers,
but it may also be useful in some special situations without (α), as we see in
the proof of Proposition 6.1 below.

6 Scope of the two multiplier theorems
The Mihlin Multiplier Theorem 4.3 is a result typical of the classical Calderón–
Zygmund theory, which deals with classes of operators invariant under the
natural one-parameter family of dilations ξ ,→ δξ, δ > 0, of Rn. The
Marcinkiewicz–Lizorkin Multiplier Theorem 4.4, on the other hand, is typi-
cal of the multi-parameter or product theory, allowing independent dilations
ξ ,→ (δ1ξ1, · · · , δnξn), δ̄ = (δ1, · · · , δn) > 0̄, in the different coordinate di-
rections. Since |ξα| = |ξα1

1 · · · ξαn
n | ≤ |ξ||α| (typically with strict inequality),

Theorem 4.4 imposes less stringent conditions on the multiplier m, at the
cost of restricting the admissible Banach spaces.

Since the main interest in results like Theorems 4.3 and 4.4 comes from
their applications, it is natural to enquire about the difference of the two
conditions in practice: What are the typical multipliers for which one needs
to use the more general Marcinkiewicz–Lizorkin theorem? In his classic book
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Singular integrals, Stein [52] gives two examples of multipliers failing the
Mihlin condition but falling under the scope of the Marcinkiewicz–Lizorkin
theorem. The first one is the multiplier

m(ξ) =
ξ1

ξ1 + i(ξ2
2 + ξ2

3 + · · · + ξ2
n)

(6.1)

related to parabolic equations, whereas the other example

m(ξ) =
|ξ1|α1 |ξ2|α2 · · · |ξn|αn

(ξ2
1 + ξ2

2 + · · · + ξ2
n)|α|/2

=
|ξα|
|ξ||α| =

n∏

i=1

( |ξi|
|ξ|

)αi

, (6.2)

where α = (α1, α2, · · · , αn) ≥ 0̄, “is not untypical of a class arising in connec-
tion with the study of spaces of fractional potentials”.

We will study the multipliers of the parabolic type more systematically in
the next section and now take a closer look at the second example (6.2). This
multiplier has the curious feature of formally belonging to the one-parameter
class, having invariance under the standard dilations ξ ,→ δξ, but failing the
Mihlin conditions for the derivatives. Nevertheless, there holds:
Proposition 6.1. For the multiplier m in (6.2), we have Tm ∈ L (Lp(Rn, X))
for all 1 < p < ∞ and all UMD spaces X.
Proof. Let us first observe that it suffices to treat m(ξ) = mε(ξ) := (|ξ1| / |ξ|)ε,
ε > 0: this is the special case with α = (ε, 0, · · · , 0), but if we know the bound-
edness of these multipliers, the general case of (6.2) also follows, since it is
just the product of our special multiplier and its rotated versions. We make
use of the identification Tm ! Tξ1 &→Tm(ξ1,·) , and verify the operator-valued
Mihlin conditions for the one-dimensional multiplier M(ξ1) := Tm(ξ1,·).

Let us show that {M(ξ1) : ξ1 ∈ R\{0}} is R-bounded in L (Lp(Rn−1, X)),
for which it suffices by Theorem 4.1 that the scalar multipliers m(ξ1, ·) have
uniformly bounded variation. For α ∈ {0}× {0, 1}n−1, it is easy to compute

Dαmε(ξ) = Cε,αmε(ξ)
ξα

|ξ||α| = Cε,α

∏

i:αi=1

|ξ1|ε/|α| ξi

(ξ2
1 + |ξ′|2)ε/2|α|+1

,

where ξ′ := (ξ2, · · · , ξn), and then
∫

Rα

|Dαm(ξ)| dξα ≤ Cε,α

∏

i:αi=1

∫ ∞

−∞

|ξ1|ε/|α| |ξi|
(ξ2

1 + ξ2
i )

ε/2|α|+1
dξi

= Cε,α

( ∫ ∞

−∞

|x| dx

(1 + x2)1+ε/2|α|

)|α|
,
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which is a finite constant. We still need the R-boundedness of ξ1M ′(ξ1),
but this is immediate from the work already done, once we observe that
ξ1D1mε(ξ) = ε

(
mε(ξ)−mε+2(ξ)

)
.

Thus we observe that even if the full Marcinkiewicz–Lizorkin Multiplier
Theorem 4.4 does not apply in a general UMD space, we can still go somewhat
beyond the Mihlin Multiplier Theorem 4.3. The next section elaborates on
this theme even more.

7 Parabolic theory of multipliers
The multiplier (6.1) is not well-behaved under the radial dilations, but it
has the property of being invariant under the anisotropic one-parameter di-
lations ξ ,→ (δ2ξ1, δξ2, · · · , δξn), δ > 0. It turns out that this is essentially as
good as the radial dilations, since there is also an anisotropic version of the
Littlewood–Paley inequality, which can be proved almost by a repetition of
the construction of the blocking-by-squares decomposition of Theorem 3.3.
The key observations to this end are the facts that

• the one-dimensional Littlewood–Paley Theorem 3.1 remains valid if
we replace the dyadic intervals ±

[
2k, 2k+1

[
by any lacunary intervals

±
[
λk, λk+1

[
, λ > 1, (this follows easily from the case λ = 2) and

• in constructing the blocking by squares of the product decomposition,
we may take different one-dimensional decompositions in the different
coordinate directions.

Using the decomposition with λ = 2θi in the ith coordinate, this con-
struction results in the decomposition In(θ), whose intervals are

r−1∏

i=1

ηi

]
0, 2θi(ki+1)

[
× ηr

[
2θrkr , 2θr(kr+1)

[
×

n∏

i=r+1

ηi

]
0, 2θiki

[
,

where η ∈ {−1, +1}n and k ∈ Zn. This decomposition for n = 2 is illustrated
in Fig. 2. We obtain the following theorems:
Theorem 7.1 ( [34]). Let n ≥ 1, θ = (θ1, · · · , θn) > 0̄, X be a UMD space
and 1 < p < ∞. Then there are 0 < c ≤ C < ∞ such that

c ‖f‖p ≤ E
∥∥∥

∑

I∈In(θ)

εI∆[I]f
∥∥∥

p
≤ C ‖f‖p , f ∈ Lp(Rn, X).

23



!

"

Figure 2: The anisotropic blocking decomposition with (2θ1 , 2θ2) = (5
2 , 2).

Theorem 7.2 ( [34]). Let n ≥ 1, θ = (θ1, · · · , θn) > 0̄, X be a UMD space
and 1 < p < ∞. Then every multiplier m : Rn \ {0}→ L (X) such that

R(,θ(ξ)
θ·αDαm(ξ) : α ∈ {0, 1}n, ξ ∈ Rn \ {0}) < ∞,

where ,θ(ξ) is the unique positive solution of
∑n

i=1 ξ2
i ,θ(ξ)−2θi = 1, satisfies

Tm ∈ L (Lp(Rn, X)).

Theorem 7.2 follows from 7.1 in the same way as Theorem 4.3 follows
from 3.3. It contains Theorem 4.3 as the special case θ = (1, · · · , 1), but also
applies to more general multipliers of the parabolic type, like (6.1).

8 Multipliers for Sobolev-type inequalities
The following question of generalized Sobolev-type inequalities leads to an
interesting class of Fourier multipliers: Find the conditions under which the
following estimate for partial derivatives holds for all test functions, say u ∈
D(Rn, X): ∥∥Dβu

∥∥
p
≤ C

∑

α∈A

‖Dαu‖p . (8.1)

The classical problem for X = C has the simple answer, for p ∈ ]1,∞[, that
we must have β ∈ conv A , the convex hull of A (see e.g. [5]). The necessity
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follows by writing (8.1) for appropriate sums of translates and dilates of u.
A sketch for the sufficiency is as follows: By the boundedness of ∆[Rη1 ×
· · · × Rηn ], η ∈ {−, +}n, which commute with Dα, and by symmetry we
may assume that Fu is supported in Rn

+. By induction on the size of A , it
suffices to treat #A = 2. The task is reduced to proving that

m(ξ) =
ξtα0+(1−t)α1

ξα0 + ξα1
1Rn

+
(ξ) =

1Rn
+
(ξ)

ξ(1−t)(α0−α1) + ξt(α1−α0)
(8.2)

is a Fourier multiplier of Lp(Rn, X). It is readily checked to be a Marcin-
kiewicz–Lizorkin multiplier, so we have (8.1) in UMD spaces with (α). But
does it hold in general UMD spaces?

For n = 1, clearly yes. For n > 1, we may observe that m(λθξ) = m(ξ) for
all λ > 0, provided that we choose θ so that θ · (α0−α1) = 0. This is always
possible with some θ -= 0̄, but may be not with θ > 0̄. The homogeneity
of m is not in general of the parabolic type covered by Theorem 7.2, which
leads to the question: Does there exist a “hyperbolic” version of Theorem 7.2,
allowing θ ∈ (R \ {0})n, and still valid in all UMD spaces?

The answer to this general question turns out to be negative, as demon-
strated in the following section, but for more specific reasons there neverthe-
less holds:

Theorem 8.1 ( [36]). Let X be a UMD space, 1 < p < ∞, and β ∈ conv A .
Then there is C < ∞ such that (8.1) holds for all u ∈ D(Rn, X).

The proof exploits the Littlewood–Paley type estimate (3.1), the fact that
the multipliers ξα are products ξα1

1 · · · ξαn
n of one-dimensional multipliers, and

finally a complex interpolation argument.

9 No hyperbolic theory of multipliers
We now prove the impossibility of the hyperbolic theory of multipliers that
one could have hoped for by the considerations in the previous section. Let
us first look at some consequences that such a theory would have. If m ∈
C2(R\{0}) satisfies the second-order Mihlin-type condition

∣∣ξkDkm(ξ)
∣∣ ≤ C

for k = 0, 1, 2, then (ξ1, ξ2) ∈ R2 ,→ m(ξ1ξ2) is a hyperbolic multiplier with
dilation invariance under ξ ,→ (λξ1, λ−1ξ2). If it was to be bounded on
Lp(R2, X) ! Lp(R, Lp(R, X)), then by Theorem 4.5, the set of operators
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Tm(ξ1·) induced by the dilations of m would be R-bounded in L (Lp(R, X)).
That such a result can only hold under the property (α) is the main content
of the following:

Proposition 9.1. There exists a Mihlin multiplier m ∈ C∞(R \ {0}) satis-
fying

∣∣ξkDkm(ξ)
∣∣ ≤ Ck for all k ∈ N, such that the following hold for every

1 < p < ∞ and every Banach space X:

• Tm ∈ L (Lp(R, X)) if and only if X is UMD, and

• {Tm(2j ·) : j ∈ Z} is R-bounded on Lp(R, X) if and only if X is UMD
with (α).

Proof. The building blocks of our construction are a function ψ̂ ∈ D(R)
supported in [1/2, 2] and satisfying

∑∞
j=−∞ ψ̂(2jξ) = 1]0,∞[(ξ), and a sequence

(αj)∞j=−∞ ∈ {0, 1}Z chosen so as to contain as a subsequence every one of the
(countably many) finite bit sequences. Our multiplier is then defined as

m(ξ) :=
∑

j∈Z

αjψ̂(2−jξ).

This clearly satisfies the Mihlin conditions of any order, so the asserted
boundedness follows Theorem 4.3 and the R-boundedness from Theorem 5.1.

Concerning the necessity of UMD, we observe that it suffices to prove
‖F−1(1]0,∞[f̂)‖p ≤ C ‖f‖p for all f ∈ S (R, X) with supp f̂ a compact subset
of R \ {0}. Given such an f , let us denote

ρ := sup{|ξ| / |η| : ξ, η ∈ supp f̂} < ∞.

By definition, (αj)∞j=−∞ contains a subsequence of 1’s of length N + 1 where
N > log2 ρ, say αj ≡ 1 for j ∈ [j0, j0 + N ] ∩ Z. An appropriate dilation ĝ :=
f̂(λ·), λ > 0, has the positive half of its support on [2j0 , ρ2j0 ] ⊂ [2j0 , 2j0+N ],
where m(ξ) ≡ 1. Thus ‖F−1(1]0,∞[ĝ)‖p = ‖Tmg‖p ≤ C ‖g‖p, and by dilation
invariance we have the same with f in place of g.

We then come to the necessity of (α) for the R-boundedness of the dilated
multipliers. Recall that this is equivalent to the boundedness of the operator-
valued Fourier multiplier TM on Lp(R, Rad(X)), where

M(ξ)(xj)
∞
−∞ := (m(2jξ)xj)

∞
−∞

= (αi+jxj)
∞
j=−∞, if ξ = 2i.
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For this, it is necessary by Theorem 4.5 that the essential range of M is
R-bounded on Rad(X). This requires in particular that

EẼ
∣∣∣
∑

i∈F

∑

j∈G

εiε̃jαi+jxi,j

∣∣∣
X
≤ CEẼ

∣∣∣
∑

i∈F

∑

j∈G

εiε̃jxi,j

∣∣∣
X

(9.1)

for all finite F, G ⊂ Z and xi,j ∈ X. But we may choose F = {n0 +Nk : k =
0, · · · , N − 1}, G = {% : % = 0, · · · , N − 1}, so that

{i + j : i ∈ F, j ∈ G} = [n0, n0 + N2 − 1] ∩ Z

will be any desired sequence of N2 consecutive integers, and the correspond-
ing αi+j = αn0+Nk+( may be chosen as an arbitrary N × N array of bits.
Thus (9.1) becomes precisely the defining condition of property (α).

We saw earlier that the UMD condition alone suffices for much of the one-
parameter theory of multipliers, which goes somewhat beyond the standard
Calderón–Zygmund theory related to the radial dilations. In contrast to this,
the previous Proposition shows that we cannot go much further: there is no
“hyperbolic one-parameter theory” of multipliers on its own right; it only
exists as a special case of the multi-parameter theory, which requires the
additional property (α).

Incidentally, the fact that hyperbolic dilations, although having only
one independent variable, should already be regarded as part of the multi-
parameter theory, has been observed in other contexts, too. As pointed out
in [22] in connection to near-L1 estimates for maximal functions

MRf(x) := sup
x∈R∈R

1

|R|

∫

R

|f(y)| dy

related to different families of rectangles R, “the two-dimensional collection
of rectangles of the form s× 1/s is already a two-parameter family.”

We have now found a fairly sharp border between the multiplier theory
valid in all UMD spaces and only in UMD spaces with (α), but some questions
still remain. E.g., it would be interesting to know if the multiplier in Prop. 9.1
could be replaced by some more naturally occurring one. Observe that the
m constructed in the proof in some sense contains all information in the
universe, and one may wonder if a little less would be sufficient.

Furthermore, we have mainly excluded the possibility of certain general
statements in all UMD spaces, but the continuity or its failure of a par-
ticular operator arising from a specific application is not implied by these
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results, leaving the possibility for various interesting special theorems, like
the inequality (8.1) discussed in the previous section.

10 Other Banach space properties
In the remaining three sections, we briefly survey other developments in
vector-valued Harmonic Analysis, which are independent of the above dis-
cussion of the border between one-parameter and multi-parameter theories.
We first consider the effect on the multiplier theory of some further Banach
space properties (besides UMD and (α)), which have been studied in a num-
ber of papers.

Fourier-type
In the scalar-valued context, it is a classical result of Hörmander that Mihlin’s
multiplier theorem remains valid when changing the set of derivatives for
which the estimate |ξ||α| |Dαm(ξ)| ≤ C is required from α ∈ {0, 1}n to |α| ≤
0n/21+ 1. In the vector-valued case, a similar reduction of the needed total
order of differentiation is caused by the Fourier-type of the Banach space X.
Recall that X has Fourier-type t ∈ [1, 2] if the Hausdorff–Young inequality
‖Ff‖t′ ≤ C ‖f‖t holds for f ∈ Lt(Rn, X) for one (and then all) n ∈ Z+.

Theorem 10.1 ( [26, 30, 33]). Let n ≥ 1, 1 < p < ∞, and let X be a UMD
space (resp. UMD space with (α)) with Fourier-type t ∈ ]1, 2]. If

R(|ξ||α| Dαm(ξ) : ξ ∈ Rn \ {0}) < ∞,
(
resp. R(|ξα|Dαm(ξ) : ξ ∈ (R \ {0})n) < ∞

)
,

for all α ∈ {0, 1}n with |α| ≤ 0n/t1+ 1, then Tm ∈ L (Lp(Rn, X)).

The original realization of the condition |α| ≤ 0n/t1 + 1 under Fourier-
type t is due to Girardi and Weis [26]. The possibility of intersecting this with
Mihlin’s resp. Marcinkiewicz–Lizorkin’s condition was observed in [30] resp.
[33]. The assumptions may be further weakened somewhat by considering
appropriate fractional order smoothness, which allows to approach the critical
index n/t.
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Lattices
Rubio de Francia [51] wrote about twenty years ago: “Our present knowledge
of the properties and structure of UMD lattices is deeper than for general
UMD spaces.” The state of affairs is still very much the same today. The
additional tools available in UMD lattices, especially maximal functions and
techniques using Muckenhoupt’s Ap weights, have made it possible to prove
results like the following, which remain interesting open problems for general
UMD spaces:

Theorem 10.2 ( [51]). Every UMD lattice X is a complex interpolation space
[H, Y ]θ, 0 < θ < 1, between a Hilbert space H and another UMD lattice Y .

Theorem 10.3 ( [50, 51]). Let X be a UMD lattice and 1 < p < ∞. If
f ∈ Lp(T, X), then the Fourier series of f converges to f almost everywhere.

Theorem 10.3 was first proved by Rubio de Francia [50] for UMD spaces
with an unconditional basis and extended by the same author [51] to the
generality stated above. Other results in UMD lattices or UMD spaces with
an unconditional basis have been proved in [7, 28, 55].

Interpolation spaces
Theorem 10.2 motivated the following definition by Berkson and Gillespie:

Definition 10.1 ( [2]). The class I consists of those UMD spaces X which
are isomorphic to a closed subspace of a complex interpolation space [H, Y ]θ,
0 < θ < 1, between a Hilbert space H and another UMD space Y .

By Theorem 10.2, every UMD lattice belongs to I, but I also contains
other UMD spaces like the Schatten–von Neumann ideals C p = [C 2, C q]θ,
1/p = (1 − θ)/2 + θ/q. More generally, the interpolation properties of non-
commutative spaces coincide with those of their commutative analogues un-
der fairly broad conditions [20], which implies the membership in I for many
further operator spaces.

In some cases [2, 35, 38], improved results (compared to general UMD
spaces) have been proved in the spaces of class I by interpolating with the
estimates available in arbitrary UMD spaces and the stronger ones that one
can get in a Hilbert space. Thus it would be interesting to know if I actually
contains all UMD spaces.
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Littlewood–Paley–Rubio property
Berkson, Gillespie and Torrea have recently introduced the following notion:

Definition 10.2 ( [3, 25]). Let 2 ≤ p < ∞. A Banach space X has the
Littlewood–Paley–Rubio property LPRp if there is C < ∞ so that for every
collection J of disjoint intervals J ⊂ R there holds:

E
∥∥∥

∑

J∈J

εJ∆[J ]f
∥∥∥

p
≤ C ‖f‖p , f ∈ Lp(R, X).

The scalar field X = C, and then by Fubini also Lp(µ), satisfies LPRp by
an inequality of Rubio de Francia [49]. This inequality was used by Coifman,
Rubio de Francia and Semmes [16] to improve the Marcinkiewicz multiplier
theorem. Similarly, the LPRp property of a Banach space X implies an
improvement of the vector-valued multiplier theorem, which was obtained
by Potapov and the present author:

Theorem 10.4 ( [38]). Let 1 ≤ s < 2 ≤ p < ∞ and X be a Banach space
with LPRp. Let m : R → L (X) be a function such that for all dyadic
intervals I = ±

[
2k, 2k+1

[
we have

sup
(
‖f(ξ0)‖s

T +
N∑

j=1

‖f(ξj−1)− f(ξj)‖s
T

)1/s

≤ c < ∞,

where T is an R-bounded set, and the supremum is over all partitions inf I =
ξ0 < ξ1 < · · · < ξN = sup I. Then Tm ∈ L (Lp(R, X)).

The case s = 1 above is the (vector-valued) Marcinkiewicz multiplier
theorem valid in every UMD space and 1 < p < ∞ (although we have
only given the somewhat weaker formulation in Theorem 4.3 above). The
assumption becomes weaker with increasing s. If we also assume that X ∈ I,
then we may take s = 2 in Theorem 10.4.

11 Singular convolution operators
In the vector-valued treatment of Calderón–Zygmund operators beyond those
represented by Mihlin or Marcinkiewicz–Lizorkin type multipliers, the follow-
ing “restricted R-boundedness” estimate for the translations τhf := f(·− h)
has become an indispensable companion to the Littlewood–Paley inequalities
discussed earlier:
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Theorem 11.1 ( [8]). Let X be a UMD space and 1 < p < ∞. Then there
is a constant C < ∞ such that, whenever the functions fj ∈ Lp(Rn, X) and
the colinear points hj ∈ Rn, j ∈ Z, satisfy

supp Ffj ⊆ {ξ : |ξ| ≤ 2j}, |hj| ≤ K2−j

for some K ≥ 2, there holds

E
∥∥∥

∑

j

εjτhjfj

∥∥∥
p
≤ C log K · E

∥∥∥
∑

j

εjfj

∥∥∥
p
.

This result of Bourgain’s [8] had apparently no scalar-valued predecessor,
but the scalar version of the theorem was independently discovered around
the same time by Yamazaki [60]. The original statement in [8] concerns
n = 1, but the transference to n > 1 is standard and may be found from [26].

Like the proof of Theorem 3.1, also that of Theorem 11.1 starts from the
defining inequality of UMD spaces, but now applied to a less obvious choice
of the filtration. Every second σ-algebra will be generated by simple intervals
N−1 [k, k + 1[, k ∈ Z, but the atoms of the intermediate σ-algebras will be
unions N−1

(
[k, k + 1[ ∪ [n + k, n + k + 1[

)
, k ≡ 0, 1, · · · , n− 1 (mod 2n), of

two separated intervals, where the separation reflects the translations that
we are aiming at. Like in the case of Theorem 3.1, the estimate obtained
from the martingale inequality introduces extra smoothing in addition to
the desired translations. Moreover, we can only reach translations which
satisfy certain algebraic restrictions. In order to remove these deficiencies,
a perturbation argument based on Theorem 4.1 is required. To make this
argument, we have to split the functions fj into approximately log K subsets
for separate treatment, which gives rise to the logarithmic factor in the final
estimate. The scalar-valued version in [60] is somewhat easier, since the
trivial case p = 2 can be extrapolated to the whole range of 1 < p < ∞ by
standard Calderón–Zygmund methods.

The first application of Theorem 11.1 is to the boundedness of singular
integrals of convolution type:

Theorem 11.2 ( [8, 39]). Let X be a UMD space and 1 < p < ∞. Let
K ∈ C(Rn \ {0}, L (X)) satisfy the size and cancellation conditions

R(|x|n K(x), |x|n+δ |y|−δ [K(x + y)−K(x)] : |x| > 2 |y| > 0) < ∞

for some δ > 0, and R(
∫

r<|x|<R K(x) dx : R > r > 0) < ∞, as well as the
existence of the limit limε↓0

∫
ε<|x|<1 K(x) dx in the strong operator topology.
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Then the convolution f ,→ K ∗ f (initially defined on a test-function space)
extends to a bounded linear operator on Lp(Rn, X).

Bourgain [8] first demonstrated the use of his Theorem 11.1 to obtain
the scalar-kernel version of Theorem 11.2 for n = 1, and this was extended
to the n-dimensional operator-kernel setting by Weis and the present author
in [39], where also a more general but rather technical sufficient condition of
Hörmander-type is given for the kernel K. As with multipliers, one gets the
R-boundedness of families of convolution operators under the additional as-
sumption of property (α). One should also note that the improved estimates
for multipliers involving the Fourier-type (discussed in the previous section)
are actually based on convolution-kernel estimates and, at the bottom, on
Theorem 11.1.

In the proof of results like Theorem 11.2, the translation inequality of
Theorem 11.1 assumes, to some extent, the rôle played by maximal function
estimates in the scalar-valued theory. In fact, the proof of the scalar-valued
case of Theorem 11.2 by Littlewood–Paley theory is something like the fol-
lowing: First, by the Littlewood–Paley inequality, we have

‖K ∗ f‖p !
∥∥∥
( ∑

I∈In

|∆[I](K ∗ f)|2
)1/2∥∥∥

p

=
∥∥∥
( ∑

I∈In

|(ϕI ∗K) ∗ (∆[I]f)|2
)1/2∥∥∥

p
,

where the ϕI have Fourier transforms ϕ̂I , which are smoothed versions of
1I , say 1I ≤ ϕ̂I ≤ 1I∗ , where I∗ ⊃ I is a slightly larger rectangle. The
assumptions on the kernel K imply that the convolution operators (ϕI ∗K)∗
are point-wise dominated by the Hardy–Littlewood maximal function, so
that the Fefferman–Stein maximal inequality and the reverse Littlewood–
Paley estimate give

!
∥∥∥
( ∑

I∈In

[M(∆[I]f)]2
)1/2∥∥∥

p
!

∥∥∥
( ∑

I∈In

|∆[I]f |2
)1/2∥∥∥

p
! ‖f‖p .

The first and last estimates and the equality in the above chain remain
valid in the UMD-valued situation, thanks to Theorem 3.3, just by replacing
the square sums

( ∑
|∆[I]g|2

)1/2 by the randomized sums E |
∑

εI∆[I]g|X ,
where g ∈ {f, K ∗f}; however, a suitable analogue of the maximal inequality
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is not known, except in the lattice setting. Thus the two estimates in the
middle are replaced by the following computation:

E
∥∥∥

∑

I∈In

εI(ϕI ∗K) ∗ (∆[I]f)
∥∥∥

p
= E

∥∥∥
∑

I∈In

εI

∫
(ϕI ∗K)(y)τy(∆[I]f) dy

∥∥∥
p

= E
∥∥∥

∫ ∑

I∈In

εI2
−jIn(ϕI ∗K)(2−jIy)τ2−jI y(∆[I]f) dy

∥∥∥
p
,

where 2jI ! the side-length of I and the integrals are over Rn. The estimate
now continues with

!
∫

R(2−jIn(ϕI ∗K)(2−jIy) : I ∈ In)E
∥∥∥

∑

I∈In

εIτ2−jI y(∆[I]f)
∥∥∥

p
dy

!
∫

R(2−jIn(ϕI ∗K)(2−jIy) : I ∈ In) log(2 + |y|) dy · E
∥∥∥

∑

I∈In

εI∆[I]f
∥∥∥

p
,

where the final estimate utilized Theorem 11.1. The above integral will be
finite under the assumptions made on K, whereas the last randomized norm
is ! ‖f‖p by Theorem 3.3.

12 General Calderón–Zygmund operators
The fundamental tools of vector-valued Harmonic Analysis introduced in the
earlier section have been successfully exploited to treat also the generalized,
non-translation-invariant, Calderón–Zygmund operators. There is the fol-
lowing version of the David–Journé T (1) theorem [17]:

Theorem 12.1 ( [24, 40]). Let X be a UMD space. Let K ∈ C(Rn×Rn\{x =
y}, L (X)) satisfy the estimate

R( |x− y|n K(x, y), |x− y|n+δ |x− x′|−δ [K(x, y)−K(x′, y)],

|x− y|n+δ |x− x′|−δ [K(y, x)−K(y, x′)] : |x− y| > 2 |x− x′| > 0) < ∞.

Let T : S (Rn) → L (S (Rn), L (X)) be a linear operator such that

〈φ1, Tφ0〉 =

∫∫
φ1(x)K(x, y)φ0(y) dx dy (12.1)
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for all disjointly supported φ0, φ1 ∈ D(Rn), and such that

R(rn 〈φ1(r · +h), T (φ0(r · +h))〉 : r > 0, h ∈ Rn) ≤ C < ∞ (12.2)

for all “bump functions” φi ∈ D(B(0, 1)) with ‖Dαφi‖∞ ≤ 1 for all |α| ≤ N
(some large number). If T (1) = 0, T ′(1) = 0 (in the sense of distributions
modulo constants), then T extends to an operator in L (Lp(Rn, X)) for 1 <
p < ∞.

This result was first obtained by Figiel [24] for scalar-valued kernels us-
ing a clever decomposition of the operator and martingale estimates. For
scalar kernels, one can even replace the conditions T (1) = 0, T ′(1) = 0 by
T (1), T ′(1) ∈ BMO(Rn), and this condition is both necessary and sufficient
for the conclusion T ∈ L (Lp(Rn, X)) under the other stated assumptions,
so that a full analogue of the David–Journé theorem is valid. The operator-
valued extension, and a new proof building on the Fourier-analytic techniques
discussed in the previous sections, was recently found by Weis and the present
author [40]. It is possible to state sufficient BMO-type conditions for T (1)
and T ′(1) even in the operator setting, but they are probably far stronger
than necessary. The problem may be reduced to the question of boundedness
of operator-valued paraproducts, but the precise condition for this is unknown
already in infinite-dimensional Hilbert spaces [4, 46].

While Figiel’s martingale approach to the T (1) theorem differs quite a
lot from the techniques discussed in this paper, there still exist parallel in-
gredients. In particular, a key rôle is played by estimates for translations of
the Haar functions from [23], which are analogous to Bourgain’s Translation
Theorem 11.1. With appropriate modifications of Figiel’s ideas, it is also
possible to get an operator-valued extension of the T (b) theorem of David,
Journé and Semmes [18]:

Theorem 12.2 ( [32]). Let X be a UMD space and let K and T be as
in Theorem 12.1, except that in (12.1) we have biφi in place of φi, and in
(12.2) bi(·)φi(r · +h) in place of φi(r · +h),1 where b0, b1 ∈ L∞(Rn) satisfy
the accretivity condition Re bi ≥ c > 0. If T (b0) = 0 and T ′(b1) = 0, then
T ∈ L (Lp(Rn, X)) for 1 < p < ∞.

1The analogue of (12.2) is assumed in a stronger form in [32], where also the φi are
required to vary inside the R-bound; however, it is easy to see that only the uniform
boundedness over the φi is actually required in the proof.
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Again, for a scalar-valued kernel it is sufficient (and necessary) for the
conclusion that T (b0), T ′(b1) ∈ BMO(Rn), and there is an analogous suffi-
cient condition in the operator-valued case. The accretivity assumption may
be replaced by more general para-accretivity ; see [32]. The scalar-kernel case
of Theorem 12.2 can be easily deduced from Theorem 12.1 and the original
T (b) theorem from [18].

Various results have also been proved for vector-valued pseudo-differential
operators, of which the following is representative:

Theorem 12.3 ( [37, 48, 53]). Let X be a UMD space and 1 < p < ∞. Let
a ∈ L∞(Rn ×Rn, L (X)) satisfy

R
(
(1 + |ξ|)kDk

ξi
a(x, ξ), (1 + |ξ|)k

Dk
ξi
a(x, ξ)−Dk

ξi
a(y, ξ)

|x− y|δ
: ξ ∈ Rn

)

≤ C < ∞

for all x, y ∈ Rn, i = 1, · · · , n and k = 0, 1, · · · , n + 1. Then the pseudo-
differential operator

Tf(x) :=

∫

Rn

a(x, ξ)f̂(ξ)eix·ξ dξ

extends to T ∈ L (Lp(Rn, X)).

First results on operator-symbol pseudo-differential operators were ob-
tained in Štrkalj’s thesis [53] and worked out in a slightly different form by
Portal and Štrkalj [48]. The above statement is a special case of the recent
results of Portal and the author [37]; in comparison to [48], fewer derivatives
are required, but somewhat more R-bounds (instead of just uniform bounds)
are imposed.
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