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Abstract. We present a survey of recent results in the Banach
space classi�cation of non-commutative Lp-spaces.

An important role in Banach space theory has always been played
by the problem of classifying Banach spaces. This problem has many
facets. In our present setting we address this problem by looking at a
Banach space as a linear topological space. The natural maps then are
continuous linear operators and we look for invariants under isomor-
phism (=bicontinuous one-to-one linear operator).

In general, the development of Banach space theory has clearly shown
that there is no hope left for a complete structural theory of Banach
spaces, although one can still hope to have such a theory in some
special cases. Our objective in the present talk is to describe recent
results in this direction in the special case of non-commutative Lp-
spaces associated with semi�nite von Neumann algebras.

To place this work in its proper context we brie
y review its origins,
beginning with the work of both the mathematicians mentioned so far:
Banach and von Neumann.

Many fruitful directions in Banach space theory emerged from the
famous book [B] by Banach, and the date of appearance of the French
edition of this book (1932) is usually regarded as the date of birth of
the theory itself. The �nal chapter (XII) of this book discusses in depth
the problems of comparison between the elements of the two families
of Banach spaces (perhaps, the most important families of classical
Banach spaces): the spaces lp and Lp = Lp(0; 1), 1 � p < 1. Recall
that lp is the space of all in�nite complex-valued sequences a = (an)1

n=1
,

such that

kaklp := (

1X
n=1

janj
p)1=p <1;
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and Lp = Lp(0; 1) is the space of all (equivalence classes of) Lebesgue
measurable functions f on (0; 1) such that

kfkLp
:= (

Z
1

0

jf(t)jpdt)1=p <1:

The result which is of direct relevance to our present theme can be
formulated as follows.

Theorem 1 [B], (1932) There exists an isomorphic embedding of
the space Lp into lq if and only if p = q = 2.

In other words, these two families are pairwise non-isomorphic.
In contrast to Banach's book, the paper of J. von Neumann [N] is

almost completely unknown, even to experts. It appeared in 1937 (�ve
years after Banach's book), in an obscure Russian journal, which ceased
to exist almost immediately after its �rst volume was printed. From the
present point of view, the theory of non-commutative Lp-spaces began
from this paper. Let me brie
y describe (a version of) von Neumann's
construction of Lp-spaces associated with the von Neumann algebra
Mn of all n�n complex matrices. As a linear space it is identi�ed with
Mn. Given the matrix A = (aij)

n
i;j=1

2 Mn, let jAj = (A�A)1=2. Fixing

the standard trace Tr on Mn, we set

kAkp := Tr(jAjp)1=p; 1 � p <1:

It is established in [N] that k � kp is a norm on Mn and it is customary
to denote the space (Mn; k � kp) by Cn

p . In the modern terminology, the
space Cn

p is a non-commutative Lp-space associated with von Neumann

algebra (Mn; T r).
It seems clear from [N] that von Neumann was well aquainted with

Banach's book and after having constructed the n2-dimensional space
matrix space Cn

p , he remarks that another natural way to metrize the

n2-dimensional linear space Mn is to identify standard matrix units
eij; 1 � i; j � n with the �rst n2 coordinate vectors of the space

lp, in other words to convert Mn into the n2-dimensional space ln
2

p .

This leads to an immediate problem: whether these two n2-dimensional

spaces, Cn
p (non-commutative) and ln

2

p (commutative), coincide. In [N],

von Neumann easily established that the spaces Cn
p and ln

2

p are non-
isometric.

From the viewpoint adopted in our present setting, the natural ques-

tion would be whether the Banach-Mazur distance between Cn
p and ln

2

p
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is uniformly bounded. Recall that the Banach-Mazur distance d(X; Y )
between Banach spaces X and Y is

d(X; Y ) := inffkTk � kT�1k j T : X �! Y isomorphismg;

where we adopt the convention inf ; = +1. This question was an-
swered only 30 years later, in the negative, by McCarthy (see [M] and
also comments and additional references in Pisier's paper [P]). Before
formulating McCarthy's result, recall �rst that the in�nite-dimensional
analogues of the spaces Cn

p are Schatten-von Neumann ideals Cp; we
may also refer to them as to non-commutative Lp-spaces associated
with von Neumann algebra B(H) of all bounded linear operators on
the Hilbert space H equipped with the standard trace Tr. Recall that
a compact operator A 2 B(H) belongs to Cp if and only if

kAkCp
:= Tr(jAjp)1=p <1:

Theorem 2 [M], (1967) There exists a constant C > 0 such that
for any n 2 N and n2-dimensional subspace X of Lp we have

d(Cn
p ; X) > Cn

1

3 j 1p� 1

2 j
:

The following consequence is straightforward.

Corollary 3 [M], (1967) There exists an isomorphic embedding of

the space Cp into Lp if and only if p = 2.

The converse to the result of Corollary 3 was obtained by Arazy and
Lindenstrauss [AL].

Theorem 4 [AL], (1975) There exists an isomorphic embedding
of the space Lp into Cp if and only if p = 2.
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One by-product of the Arazy-Lindenstrauss arguments was an iden-
ti�cation of yet another member of the Lp-family, the spaces Sp; 1 �
p <1. The de�nition is very simple

Sp := (�1
n=1

Cn
p )p;

i.e. each element x 2 Sp is represented by an in�nite sequence (xn)1
n=1

with xn 2 Cn
p and

kxkSp
:= (

1X
n=1

kxnkCn
p
)1=p:

This space can be easily viewed as a subspace of Cp, in our terminology
we may say that Sp is the Lp-space associated with the von Neumann
algebra (�1n=1Mn) (von Neumann subalgebra of B(H)) equipped with
the standard trace Tr.

Theorem 5 [AL], (1975) There exists an isomorphic embedding

of the space Cp into Sp if and only if p = 2.

Thus development from 1932 till 1975 has clearly shown that the
following four families of in�nite-dimensional separable Lp-spaces are
non-isomorphic:

(a) The Lp-spaces associated with the von Neumann algebra l1 =
L1(N) with the trace given by counting measure on N , i.e. the spaces
lp;

(b) The Lp-spaces associated with the von Neumann algebra L1 =
L1(0; 1) with trace given by Lebesgue measure on (0; 1), i.e. the spaces
Lp;

(c) The Lp-spaces associated with the von Neumann algebra (�1n=1Mn)
with trace Tr, i.e. the spaces Sp;

(d) The Lp-spaces associated with the von Neumann algebra B(H)
with trace Tr, i.e. the spaces Cp.
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Let us now overview the situation. Let M be an in�nite dimensional
semi�nite von Neumann algebra acting on a separable Hilbert space,
let � be a normal faithful semi�nite trace on M, and let Lp(M; �); 1 �
p <1 be the Banach space of all � -measuarble operators A a�liated
with M such that �(jAjp) < 1 with the norm kAkp := (�(jAjp))1=p,

where jAj = (A�A)1=2 (see e.g. [FK]). It is quite natural to ask the
following question:
What is the linear-topological classi�cation of the spaces Lp(M; �);

p 6= 2?
It is natural to subdivide the above question to further subcategories

accordingly to various classi�cation schemes for von Neumann algebras.
Tne following two results (obtained jointly with V. Chilin) are a simple
application of Pe lczy�nski's decomposition method.

Proposition 6 [SC1], (1988) Let M be a commutative von Neu-

mann algebra with a normal faithful semi�nite trace � . Then Lp(M; �),
p 6= 2 is Banach isomorphic to one of the spaces lp or Lp.

Further, recall that a von Neumann algebra M is called atomic if ev-
ery nonzero projection in M majorizes a nonzero minimal projection.

Proposition 7 [SC1], (1988) Let M be an atomic von Neumann
algebra with a normal faithful semi�nite trace � . Then Lp(M; �); p 6= 2
is Banach isomorphic to one of the spaces lp, Sp or Cp.

The next logical step is the description of Lp-spaces associated with
von Neumann algebras of type I with separable predual. It is well-
known that such an algebra can be represented as a countable l1-direct
sum of von Neumann algebras of the typeAn �
Mn andA�
B(H), where
An, A are commutative von Neumann algebras with separable predu-
als. One can easily see that the following Banach spaces are actually
Lp-spaces associated with von Neumann algebras of type I: the direct
sums Lp � Sp and Lp � Cp, the Lebesgue-Bochner spaces Lp(Sp) and
Lp(Cp), as well as the space Cp � Lp(Sp). The following result (an-
nounced in [SC2]) actually shows that these examples actually exhaust
the list of such spaces.
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Theorem 8 [SC2], (1990) LetM be a type I von Neumann algebra
with a normal faithful semi�nite trace � . Then Lp(M; �); p 6= 2 is

Banach isomorphic to one of the following spaces

lp; Lp; Sp; Cp; Sp � Lp; Lp(Sp); Cp � Lp; Lp(Cp); Cp � Lp(Sp):

Moreover, the spaces

lp; Lp; Sp; Cp; Sp � Lp

are pairwise Banach non-isomorphic and non-isomorphic to any of the
four remaining spaces

Lp(Sp); Cp � Lp; Lp(Cp); Cp � Lp(Sp):

Thus, the number of distinct Lp-families has been raised from 4 to
5. However the question whether the remaining 4 spaces are pairwise
distinct proved to be very hard. The following result proved to be one
of the necessary ingredients.

Theorem 9 [S1], (1996) Let N be a �nite von Neumann algebra
with �nite, normal, faithful trace �1, let M be an in�nite von Neu-
mann algebra with semi�nite, normal, faithful trace �2. Then for p > 2
there is no Banach isomorphic embedding of Cp into Lp(N ; �1), whence
Lp(N ; �1) and Lp(M; �2) are non-isomorphic for all p 2 (1;1); p 6= 2.

This result was subsequently used (together with other methods) in
the �rst part of the following theorem, which raises the number of dis-
tinct families of re
exive Lp-families to 8. The second part of Theorem
10 below yields a complete linear-topological classi�cation of the pred-
uals to von Neumann algebras of type I. The proof of the second part
is based on the study of the Dunford-Pettis property in von Neumann
algebras and its preduals.

Theorem 10 [S2], (2000) Let M be an in�nite-dimensional von
Neumann algebra of type I acting in a separable Hilbert space H,
let � be a normal faithful semi�nite trace on M, let Lp(M; �); p 2

[1;1); p 6= 2 be the Lp-space associated with M. Then
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(a) the space Lp(M; �) is isomorphic to one of the following nine
spaces:

lp; Lp; Sp; Cp; Sp� Lp; Lp(Sp); Cp� Lp; Lp(Cp); Cp� Lp(Sp); (L)

and if (E; F ) is a pair of distinct spaces from (L), which does not
coincide with the pair (Lp(Cp); Cp�Lp(Sp)), then E is not isomorphic
to F ;
(b) all nine spaces from (L) are pairwise non-isomorphic, provided

p = 1.

However the question whether the Lp(Cp) and Cp � Lp(Sp) are Ba-
nach distinct for 1 < p < 1 remained unresolved. The technique of
[S1] for dealing with embeddings of Cp for p > 2 has not been su�-
cient. The breakthrough has come with the following joint result of the
author with U. Haagerup and H. Rosenthal.

Theorem 11 [HRS1], [HRS2] (2000) Let N be a �nite von Neu-
mann algebra with �nite, normal, faithful trace �1, letM be an in�nite
von Neumann algebra with semi�nite, normal, faithful trace �2. Then
for 1 � p < 2 there is no Banach isomorphic embedding of Cp into
Lp(N ; �1), whence Lp(N ; �1) and Lp(M; �2) are non-isomorphic for all

p 2 [1;1); p 6= 2.

Theorem 11 is crucial in the proof of the following theorem which
completes the isomorphic classi�cation of separable Lp-spaces associ-
ated with von Neumann algebras of type I for p > 1; it yields more
than just the non-isomorphism of Lp(Cp) and Cp�Lp(Sp) and strength-
ens the second part of Theorem 10.

Theorem 12 [HRS1], [HRS2] (2000) Let N be a �nite von
Neumann algebra with a �xed faithful normal tracial state � on N
and 1 � p < 2. Then Lp(Cp) is not isomorphic to a subspace of

Cp � Lp(N ; �).

Thus, all nine spaces listed in L (see Theorem 10) are pairwise non-
isomorphic also for 1 � p 6= 2 <1.

Much more follows via application of (a strengthened version of)
Theorem 11. Let M be a hyper�nite (i.e., M is a weak closure of
a union of an increasing sequence of �nite dimensional von Neumann
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algebras) semi�nite von Neumann algebra. In this setting, M can be
decomposed as MI �MII1 �MII1, where MI , MII1, MII1 are hy-
per�nite von Neumann algebras of types I, II1, and II1 respectively.
Further, using disintegration and deep results of A. Connes [C], the
algebras MII1 (respectively, MII1) can be realized as a countable l1-
direct sum of von Neumann algebras of the form A�
B, where A is as
above and B the unique hyper�nite factor R of type II1 (respectively,
the unique hyper�nite factor R0;1 = R 
 B(H) of type II1). Again
via Pe lczy�nski's decomposition method (and results of A. Connes) we
arrive at the following classi�cation result.

Proposition 13 [HRS1], [HRS2] (2000) If M is a hyper�nite
semi�nite von Neumann algebra with a normal faithful semi�nite trace

� and 1 � p <1, then Lp(M; �) is isomorphic to one of the following
thirteen spaces:

lp; Lp; Sp; Cp; Sp � Lp; Lp(Sp); Cp � Lp; Lp(Cp); Cp � Lp(Sp) ;

Lp(R); Cp � Lp(R); Lp(R)� Lp(Cp); Lp(R0;1):

However, the question whether all spaces listed above are pairwise
non-isomorphic is much harder. It required the full strength of Theo-
rem 11 combined with very recent results of M. Junge [J].

Theorem 14 [HRS1], [HRS2] (2000) Let N be a �nite von Neu-
mann algebra with a �xed faithful normal tracial state � and 1 � p < 2.
Then Lp(R0;1) is not isomorphic to a subspace of Lp(N )� Lp(Cp).

Theorem 15 [HRS1], [HRS2] (2000) IfM is a hyper�nite semi�-

nite von Neumann algebra with a normal faithful semi�nite trace � and
1 � p < 1, then Lp(M; �) is Banach isomorphic to precisely one of
the spaces listed in Proposition 13.
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