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If we turn to analysis it must be remarked that the classical form of it
cannot be obtained. Indeed it will be necessary to distinguish between real
numbers of different orders. A class of real numbers of 1. order which is
bounded above possesses an upper bound, but this bound may then be a real
number of order 2. Nevertheless a great part of analysis can be developed
as usual, namely, the most useful part of it dealing with continuous functions,
closed point-sets, etc. The reason for this is that it is often possible to
prove theorems of reducibility, namely, theorems saying that a class (or
relation) of a certain order coincides with one of lower order. I will not
enter into this but only refer the reader to the book: "Das Kontinuum" by
H. Weyl, where he has developed such a kind of predicative analysis.

15. Lorenzen's operative mathematics

In more recent years the German mathematician P. Lorenzen has set
forth a system of mathematics which in some respects resembles the ramified
theory of types, but it has also one important feature in common with the
simple theory of types, namely, that the simple infinite sequence and similar
notions are characterized by an induction principle which is assumed valid
within all layers of objects. Lorenzen talks namely about layers of objects,
not of types or orders. To begin with he takes into account some original
objects, say numerals, figures built up in a so-called calculus as follows. We
have the rules of production

which means that the object or symbol 1 is originally given and whenever we
have a symbol or a string of symbols k we may build the string k 1 obtained
by placing 1 after k. He introduces the notion "system". A system is a
finite set of symbols. The systems are obtained by the rules

x

X~»X, x

The length or cardinal number of a system X is denoted by |x|. He
gives the rules

| X , X | = | X | 1

for these lengths. Now the explanation of the successive layers of language
is as follows.

From certain originally given symbols called atoms, say Ui un, he
constructs strings of symbols by the schema

X —»XUi

x -'xun
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Further, he introduces logical symbols, first A , V, — *, 1 denoting conjunc-
tion, disjunction, implication and negation respectively, then Ax, Ay, ... which
are universal quantifiers, Vx, Vy, ... which are existential quantifiers, ep, ea
which express membership, namely, that something belongs to a class, rela-
tion, etc., an operational symbol having the same meaning as Russell's x,
and finally 4p, J£a, .. which are called operators of induction. These last
ones have the following significance:

Let AI , A2 , .... be prepositional expressions built up from propositions
YI , Y2 , .... Ynep while we have the schema of production

AI~>XI,I , Xi,2 , ....,

then 4 p written before this schema denotes the relation that is the set of all
m - tuples which can be constructed by the schema.

The symbolic figures obtained in this way constitute what Lorenzen calls
the first layer of language and denotes by Si . Whenever Sn, the n*h layer of
language, has been constructed, he defines the (n+1)**1 layer Sn+1 as consist-
ing of all figures belonging to Sn together with all further ones which can be
derived from them by the same means we used in deriving the first layer
from the atoms Ui ...., un.

By this procedure it is necessary to distinguish between variables in
different layers, for example, by writing the number of the layer as a sub-
script just as I used an order subscript above in the ramified type theory.
The construction of layers can, however, be continued transfinitely. Indeed,
after having performed the construction of the layers Sn with finite n,
Lorenzen defines S(j, co the least transfinite ordinal, as the union of all
Sn, n < w. Now it becomes possible to introduce Sum > 8^+2 ,••• and their
union Scu • 2 , and so on. He can introduce all S a , where a is any con-
structed transfinite ordinal.

One sees the resemblance between this theory and the ramified theory of
types. In both theories an expression containing a bound variable extended
over a previously obtained range is considered as belonging to a new range
of symbols. The presence of the symbols Up, lov- means that there is not,
as in the previously treated systems, any attempt to reduce the inductive or
recursive definitions to the explicit ones, an attempt which caused so much
trouble above, in particular in the case of the predicative set theory. In ac-
cordance with this attitude in Lorenzen' s system, the principle of complete
induction remains unchanged by transition to higher layers.

It is obvious that the objects of a certain layer SQ can be enumerated.
In his book "Operative Logik and Mathematik" he shows this in detail for Si
and it is easy to see how that can be carried out for an arbitrary layer SQ.
The formula giving this enumeration does, however, not belong to SQ but to
SQ+I . Sometimes, of course, a set belonging to SQ may have an enumeration
belonging to SQ. We may then say that the set is denumerable in SQ. Other-
wise the set is nonde numerable in SQ. All this shows that the notion "de-
numerable" must be conceived in a relative sense. This result we also ob-
tained by application of the Lowenheim theorem to the axiomatic set theory
in so far as denumerable models must exist for any consistent set theory.
But in Lorenzen' s theory this relativism is obtained immediately.
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In connection with this we may notice that the problem concerning the
principle of choice disappears. Indeed, the enumeration in S0 + 1 of the ob-
jects constituting the layer SQ makes possible at once the simultaneous
choice of one element from every set in SQ. On the other hand it is not
certain that we can find a formula in SQ furnishing such a choice for a set of
sets in SQ. Thus we have again a relativity with regard to the existence of
choice functions.

Now let us consider real numbers —defined, for example, as initial parts
of the ordered set R of rational numbers—and sets of reals all belonging to
the layer S & , where Q is a limit number. Then it is possible to prove
for each set M of real numbers, M as well as the elements of M belonging •
to S e , that if M is bounded below, it possesses a lower bound y also in
S Q . Indeed y is the intersection of all elements of M considered as initial
parts of R. Since MeS e , we have Me S Q, 9 some ordinal < @ . In the
definition of y all occurring variables belong to SQ but there is a universal
quantifier extended over SQ. Thus y is a real number occurring in S0 + i.
However, since @ is a limit number we have 9 + 1 < Q . Therefore the
lower bound y always again belongs to S e . More special theorems, such
as the existence of a convergent subsequence of a bounded sequence of reals,
and that every convergent sequence (in the sense of Cauchy) has a real num-
ber as limit, are easily proved.

The theory of neighborhoods and coverings is more difficult. In order
to be able to develop the usual covering theorems, Lorenzen finds it necessary
to take into account sets of real numbers belonging to essentially higher lay-
ers than the real numbers themselves. He choses two limit numbers, @ i <
0 2. The considered real numbers shall all belong to S e 1, whereas sets

of, and relations between, these reals are allowed to belong to S e . The

classes and relations which already belong to S 9 i are called primary,

those which belong to S e 2 but not S e 1 are called secondary. It may be

noticed that by taking into account also the secondary sets we are enabled to
say that all the reals in an interval constitute a set, namely, a secondary one.
Indeed it is clear that all these numbers belonging to S 0 , constitute a set

tr 1

that occurs in S e 1+1. Similar remarks can be made for neighborhoods.

Lorenzen now succeeds in proving the Heine-Borel theorem, which here has
the wording: To every primary covering, that is a primary set of neighbor-
hoods, one can find a finite covering, that is, a finite set of such neighborhoods.

A further important notion is that of a quasi-primary function: That
y = f(xi,...,xn) is quasi-primary means that, whenever Xi,..., xn are primary
real numbers, that is, they belong to S 0 1, y is a primary real. Of course

every primary function is quasi-primary, but the inverse is not always true.
Thus, for example, x + y is quasi-primary but not primary. Indeed the set
of all triples (x,y,z) such that x + y = z, where x,y,z run through S e L,

does not belong to S 0 x, but to S @ x + 1.

For the quasi-primary functions Lorenzen proves theorems analogous to
the theorems in ordinary analysis concerning functions of real numbers.
Thus he proves that a continuous quasi-primary function on a closed interval
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is uniformly continuous. Further he proves that the values of such a function
on a closed interval are bounded and that the upper and lower bounds are
attained. He also proves that such a function takes every value between two of
its values. If a quasi-primary function has a derivative for every (primary)
real number, then this derivative is again a quasi-primary function.

He also develops a theory of integration, defining first the Riemann inte-
gral, later also Lebesque's. It might seem that a measure theory must be
impossible in this system, because by ordinary concepts the measure should
be = 0 for denumerable sets, and here all sets are denumerable in a suffic-
iently high layer. However, the distinction between primary and secondary
sets makes a definition of measure possible in such a way that the primary
sets all get the measure 0, but not the secondary sets.

This system has one great advantage in distinction to the previous ones,
namely, that the objects we are dealing with are all definitely and explicitly
given. It is true of course that the unsolvability or even undecidability of
many problems remains as before, but we know what we are talking about.
In the previous theories it was at any rate not required that our considerations
should be restricted to the definable or constructible objects.

16. Some remarks on intuitionist mathematics

Of great interest is the so-called intuitionism which above all is due to
the Dutch mathematician L. E. J. Brouwer. This theory is essentially
characterized by the requirement that an assertion of the existence of a
mathematical object must contain a means of finding or constructing such an
object. Further, the use of such a formal logical principle as "tertium non
datur" is only justified, if we have a decision procedure. The intuitionist
critique of classical mathematics is similar to the critique of Kronecker who
also declared that a great part of ordinary mathematics was only words. It
would lead too far, however, if I should give in these lectures a detailed ex-
position of the intuitionist foundation of mathematics. I must confine my ex-
position here to a few remarks which I hope will give an idea of the intuition-
ist way of reasoning.

The conjunction p & q retains its usual meaning also in intuitionist logic.
The disjunction p v q can be asserted if and only if either p can be asserted
or q can. The negation ~| p shall mean that the assumption p leads to a con-
tradiction. The implication p —»q means that we are in possession of a cer-
tain construction which will furnish a proof of q as soon as a proof of p is
available. The assertion (x)p (x) is justified if we possess a schema showing
the property p(x) for an arbitrary x, and (E(x)p(x) can be asserted if we
know an x with the property p or at least have a method for constructing
such an x.

Since we have no general method to prove either p or "| p, the tertium
non datur, p v~l p, is not generally valid. It can be proved that p —*"|~lP *s

generally true, but not the inverse implication. Such differences in the pro-
positional logic cause differences in predicate logic of course. As an interest-


