$$
\left\{a_{0}, b_{0}, c_{0}, \ldots .\right\}
$$

where $a_{0} \in A^{\prime}-A_{1}, b_{0} \in B^{\prime}-B_{1}, \ldots$. However this element cannot correspond to any element of ST. Indeed it cannot be mapped on an element of A_{0}, for example, because if it could, a_{0} would have to be one of the elements of A_{1}.

4. The well-ordering theorem

After all this I shall now prove, by use of the choice principle, that every set can be well-ordered. First I shall give another version of the notion "well-ordered", different from the usual one.

We may say that a set M is well-ordered, if there is a function R, having M as domain of the argument values and UM as domain of the function values, such that if $N \supset 0$ is arbitrary and $\epsilon U M$, there is a unique $n \in N$ such that $N \subseteq R(n)$. I have to show that this definition is equivalent to the ordinary one. If M is well-ordered in the ordinary sense, then every nonvoid subset N has a unique first element. Then it is clear that if $R(n), n \in M$, means the set of all $\mathbf{x} \in \mathrm{M}$ such that $\mathrm{n} \leqq \mathrm{x}$, the other definition is fulfilled by this R. Let us, on the other hand, assume that we have a function R of the said kind. Letting N be $\{\mathrm{a}\}$, one sees that always $\mathrm{a} \in \mathrm{R}(\mathrm{a})$. Let N be $\{\mathrm{a}, \mathrm{b}\}$, $a \neq b$. Then either a or b is such that $N \subseteq R(a)$ resp. $R(b)$. If $N \subseteq R(a)$, then we put $a<b$. Since then N is not $\subseteq R(b)$, we have $a \bar{\epsilon} R(b)$. Now let $b<c$ in the same sense that is, $c \in R(b), b \bar{\epsilon} R(c)$. Then it is easy to see that $a<c$. Indeed we shall have $\{a, b, c\} \subseteq$ either $R(a)$ or $R(b)$ or $R(c)$, but $b \bar{\epsilon} R(c), a \bar{\epsilon} R(b)$. Hence $\{a, b, c\} \subseteq R(a)$ so that $\{a, c\} \subseteq R(a)$, i.e. $a<c$. Thus the defined relation < is linear ordering. Now let N be an arbitrary subset of M and n be the element of N such that $N \subseteq R(n)$. Then if $m \in N, m \neq n$, we have $m \in R(n)$, which means that $\mathrm{n}<\mathrm{m}$. Therefore the linear ordering is a well-ordering.

Theorem 10. Let a function ϕ be given such that $\phi(A)$, for every A such that $O \subset A \subseteq M$, denotes an element of A. Then UM possesses a subset an such that to every $N \subseteq M$ and $\supset O$ there is one and only one element N_{0} of all such that $N \subseteq N_{0}$ and $\phi\left(N_{0}\right) \in N$.
Proof: I write generally $A^{\prime}=A-\{\phi(A)\}$. I shall consider the sets $P \subseteq U M$ which, like UM, possess the following properties

1) $M \in P$
2) $A \in P \rightarrow A^{\prime} \in P$ for all $A \subseteq M$
3) $T P \rightarrow D T \in P$.

These sets P constitute a subset \mathbb{d} of UUM. They are called Θ-chains by Zermelo. I shall show that the intersection $D \mathbb{C}$ of all elements of \mathbb{C} is again a Θ-chain, that is, $D \mathbb{C} \epsilon \mathbb{C}$. It is seen at once that $D \mathbb{C}$ possesses the properties 1) and 2). Now let $T \subseteq D \mathbb{C}$. Then, if $P \in \mathbb{C}$, we have $T \subseteq P$, and since 3) is valid for P, also $D T \in P$. Since this is true for all P, we have $\mathrm{DT} \epsilon \mathrm{D} \mathbb{C}$ as asserted. Thus I have proved that $\mathrm{D} \mathbb{C} \in \mathbb{C}$.

In the sequel I put $D \mathbb{C}=\mathbb{f l l}$ and I assert that $\mathbf{n l l}$ has the property mentioned in the theorem. Obviously \nrightarrow is the least Θ-chain. Let $O \subset N \subseteq M$, and let N_{0} be the intersection of all $Q \in M$ for which $N \subseteq Q$, then $N \subseteq N_{0}$. Further $\phi\left(N_{0}\right) \in N$, because otherwise $N_{0}^{\prime}=N_{0}-\left\{\phi\left(N_{0}\right)\right\}$ would still contain N and be ϵ all, which is a contradiction, since this would mean that N_{0} is contained in $\mathrm{N}_{0}-\left\{\phi\left(\mathrm{N}_{0}\right)\right\}$.

Thus we have proved the first half of the theorem. The proof of the latter half is considerably more laborious. It will be suitable first to prove the following:
 or $\boldsymbol{X}=\mathrm{A}$ or $\mathrm{A} \subset \boldsymbol{X}$.

Then A^{\prime} possesses the same property. By the way, we may notice that such an A exists, M having this property.
 we only need to consider the case $\nexists \subset A$. The question is whether some $\ell \in \mathfrak{n}$ could exist such that $\eta \subset A$ but η not $\subseteq A^{\prime}$, or in other words, $\phi(A)$ still
 moved all these χ from an. I shall show that $\mathbb{f l l}^{*}$ is a Θ-chain.
 $\subset A$.
2) Let $B \in \AA^{*}$. If $A \subset B$, then B^{\prime} is not $\subset A$ so that B^{\prime} is not a ข. On the

If $A=B$, then $B^{\prime}=A^{\prime}$ so that $\phi(A) \bar{\epsilon} B^{\prime}$, whence again B^{\prime} is not a $\mathfrak{\eta}$ so that $B^{\prime} \in \boldsymbol{m l}^{*}$. Finally, let $B \subset A$. Then $\phi(A)$ must be $\bar{\epsilon} B$; otherwise B would be a V against the supposition $B \in \mathfrak{A l} *$. But then a fortiori $\phi(A) \bar{\epsilon} B^{\prime}$, so that B^{\prime} is not a そ. Therefore $\mathrm{B}^{\prime} \in \mathfrak{A l}$.
3) Let $T \subseteq\left\{a^{*} *\right.$. Should DT be a \mathbb{Q}, we would have

$$
(\mathrm{DT} \subset \mathrm{~A}) \&(\phi(\mathrm{~A}) \in \mathrm{DT})
$$

Then $\phi(A)$ is ϵ every element C of T. Since every C is not a \mathbb{Z}, we must have $C \notin A$ for every $C \in T$ and thus, because of the supposed property of A, $A \subseteq C$ for all $C \epsilon T$, whence $A \subseteq D T$, so that DT is no ข. Hence DT $\epsilon \nVdash *$.
 we have $\mathrm{fll}^{*}=\mathrm{m}$, which means that the elements \mathbb{Z} do not exist. This proves our lemma.

Now let \AA_{1} be the subset of \boldsymbol{m} consisting of all $A \in \AA$ such that for every
 Θ-chain, so that it coincides with $\mathfrak{m l}$.

1) M is $\epsilon \mathbb{m}_{1}$. This is evident since every $\notin \in \mathfrak{f l}$ is $\subseteq M$.
2) If $A \in \mathbb{A l}_{1}$, then $A^{\top} \in \mathbb{A l}_{1}$. That is just the lemma proved above.
3) Let T be $\subseteq \mathbb{A l}_{1}$. Then for every $N \in T$ and every $\boldsymbol{X} \in \mathfrak{n l}$ we have either $N \subseteq X$ or $X \subseteq N$. Let \notin be an arbitrary element of \nsubseteq. Then either there is an element N of T such that $N \subseteq \notin$, and then $D T \subseteq \mathcal{A}$, or we have for all $\mathrm{N} \in \mathrm{T}$ that $\notin \subseteq \mathrm{N}$, whence $\notin \subseteq D T$. Thus DT $\in \mathbb{m}_{1}$.

Hence it follows that \prod_{1} is a Θ-chain and therefore $=\boldsymbol{f l}$. This means that if A and B are ϵ fll, we always have one of the three cases $A \subset B, A=B$, $B \subset A$. Further it ought to be noticed that if $B \subset A$, then $B \subseteq A^{\prime}$, else we should have $A^{\circ} \subset B$, which obviously is impossible when $B \subset A$.

All this makes it now possible to prove the latter half of our well-ordering theorem; namely that if $N \neq 0$ is $\subseteq M$ there is only one $N_{0} \in$ ill such that $\phi\left(\mathrm{N}_{0}\right) \in \mathrm{N}$ and $\mathrm{N} \subseteq \mathrm{N}_{0}$. We have seen that there is such an N_{0}. Every element P of fll such that $\mathrm{P} \subset \mathrm{N}_{0}$ is $\subseteq \mathrm{N}^{\prime}{ }_{0}$, so that $\phi\left(\mathrm{N}_{0}\right) \bar{\epsilon} \mathrm{P}$, whence N is not $\subseteq \mathrm{P}$. Every other element P of $f l$ is such that $N_{0} \subset P$, whence $N_{0} \subseteq P^{\prime}$, whence again $\phi(P) \bar{\epsilon} \mathrm{N}_{0}$ so that also $\phi(P) \bar{\epsilon} \mathrm{N}$. Thus N_{0} is the only element of all with the two properties $N \subseteq N_{0}$ and $\phi\left(N_{0}\right) \in N$.

We can now define a function R from M to \mathfrak{m} thus: As often as $\mathrm{N} \epsilon \boldsymbol{m}$ \& $\phi(N)=m$, we write $N=R(m)$. It follows in particular from the theorem just proved that for every $m \in M$ a unique $N \in \mathfrak{A l}$ exists such that $\{m\} \subseteq N$ while $\mathrm{m}=\phi(\mathrm{N})$ so that $\mathrm{N}=\mathrm{R}(\mathrm{m})$. Thus R and ϕ are inverse functions.

It is easy to see that ϕ maps m onto M. Indeed, if $N_{1} \subset N_{2}$, then $N_{1} \subseteq N^{\prime}{ }_{2}$ so that $\phi\left(\mathrm{N}_{2}\right) \bar{\epsilon} \mathrm{N}_{1}$ whereas $\phi\left(\mathrm{N}_{1}\right) \in \mathrm{N}_{1}$. Hence $\phi\left(\mathrm{N}_{1}\right) \neq \phi\left(\mathrm{N}_{2}\right)$ so that ϕ furnishes a one-to-one correspondence between ill and M. Therefore there exists an inverse function mapping M onto $f l$, that is the function R.

Before entering into a more thorough treatment of the well-ordered sets and the ordinals I would like to remind you of some notations I shall use. An initial part A of an ordered set (0) shall mean a subset A of (1) such that if $\mathbf{x} \in \mathrm{A}$ and $\mathrm{y}<\mathrm{x}$, then always also $\mathrm{y} \in \mathrm{A}$, or in logical symbols $(\mathrm{x})(\mathrm{y})((\mathrm{x} \in \mathrm{A}) \&$ $(y<x) \rightarrow y \in A)$. Similarly a terminal part C of $(\mathbb{O}$ is to be understood. An interval B shall be used in the meaning $B \subseteq \mathscr{C}$ and $(x)(y)(z)(x \in B \& y \in B \&$ $(x<z) \&(z<y) \rightarrow z \in B)$. These parts A,B,C may be closed or open, for example an initial part A may have a last element, then it is said to be closed, or not, then it is open. An interval B may be open or closed or open to the left, closed to the right or inversely. It ought to be noticed that the union of a set of initial parts is again an initial part.

If $\sigma \in \mathscr{D}$, the set of all $\mathbf{x}<\sigma$ constitute an initial part. This I shall call the initial section corresponding to σ. It ought to be noticed that if $\mathcal{0}$ is well-ordered, every initial part which is not $(\mathbb{D}$ itself is an initial section.

Theorem 11. Let a well-ordered set M be mapped into itself by a function f which preserves the order, that is $a<b \rightarrow f(a)<f(b)$ for all a and $b \in M$. Then for all $m \in M$ we have $m \leqq f(m)$.

Proof: Let us assume that the theorem is not true. That would mean that the subset N of M of all those x for which $x>f(x)$ was not void. Let m denote the least element of N . Then we should have

$$
\mathrm{m}>\mathrm{f}(\mathrm{~m})=\mathrm{m}^{\prime},
$$

and because $\mathrm{m}^{\mathbf{\prime}} \bar{\epsilon} \mathrm{N}$,

$$
m^{\prime} \leqq f\left(m^{\prime}\right) .
$$

However, since f is order-preserving and $m>m^{\prime}$, we should have $f(m)>$ $f\left(m^{\prime}\right)$, that is $m^{\prime}>f\left(m^{\prime}\right)$.

It follows that if M is mapped by a function f onto M with preservation of order, then $f(x)=x$ for all x. Indeed, according to the theorem, we have $f(x) \leqq x$ and $f^{-1}(x) \leqq x$, that is, $x=f(x)$.

From this it again follows that if a well-ordered set M is mapped with preservation of order onto an other well-ordered set M^{\prime}, then this mapping is unique. Indeed if f and g both map M onto M^{\prime}, then fg^{-1} maps M onto M so that $\mathrm{fg}_{(\mathrm{x})}^{-1}$ is x and therefore $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ for all x .

Theorem 12. If M is mapped by f with preservation of order into an initial part A of itself, then $A=M$ and the mapping is the identical one.
We may also say: M cannot be mapped onto an initial section of itself.
Proof: Let f map M onto A, A initial part of M . Then no element m of M can be $>$ every element x of A, because $f(m)$ should belong to A so that $m>f(m)$, which contradicts the previous theorem. Thus every $m \in M$ is \leqq an $\mathbf{x} \in \mathrm{A}$, whence $\mathrm{m} \in \mathrm{A}$, that is, $\mathrm{A}=\mathrm{M}$.

Noticing that an initial part of a well-ordered set M is either M itself or a section of M, we have that if $M \simeq N$ (meaning M and N are similar), then M is neither $\simeq N_{1}$ nor $N \simeq M_{1}, M_{1}$ and N_{1} denoting sections of M resp. N .

Theorem 13. Let M and N be well-ordered sets. Then either $M \simeq N_{1}$, N_{1} a section of N or $M \cong N$ or $M_{1} \cong N, M_{1}$ a section of M.

Proof: Let I be the set of all initial parts of M that are similar to initial parts of N constituting a set J. Then the union SI is in an obvious way similar to SJ. Now either SI must be $=\mathrm{M}$ or $\mathrm{SJ}=\mathrm{N}$. Else SJ will be the section belonging to an element i of M and SJ the section delivered by $j \in N$. But then $\mathrm{SI}+\{\mathbf{i}\}$ would be similar to $\mathrm{SJ}+\{\mathrm{j}\}$ which contradicts the definition of I. Now, if $S I=M$, either $M \cong N$ or $M \cong$ a section N_{1} of N according as SJ is N or N_{1}, else $S I$ is a section M_{1} of M while $S J=N$ so that $M_{1} \cong N$.

5. Ordinals and alephs

It is now natural to say that an ordinal α is < an ordinal β, if α is the order-type of a well-ordered set A, β the type of B, such that A is similar to an initial section of B. It is clear that $\alpha<\beta \& \beta<\gamma \rightarrow \alpha<\gamma$ and that $\alpha<\beta$ excludes $\beta<\alpha$. Thus all ordinals are ordered. However, this ordering is also a well-ordering. Let us namely consider an arbitrary set or even class C of well-ordered sets. Let M be one of the sets in C. Its ordinal number μ may be the least of all represented by the considered sets. If not there are other sets in C which are similar to sections of M . These sections are furnished by elements of M and among these there is at least one. The corresponding initial section represents then the least ordinal of all furnished by the sets in C .

Theorem 14. A terminal part or an interval of a well-ordered set is similar to some initial part of it.
It is obviously sufficient to prove this for a terminal part. According to the comparability theorem, otherwise the whole set M would have to be sim-

