$\{a_0, b_0, c_0, \ldots\},\$

where $a_0 \in A' - A_1$, $b_0 \in B' - B_1$, However this element cannot correspond to any element of ST. Indeed it cannot be mapped on an element of A_0 , for example, because if it could, a_0 would have to be one of the elements of A_1 .

4. The well-ordering theorem

After all this I shall now prove, by use of the choice principle, that every set can be well-ordered. First I shall give another version of the notion "well-ordered", different from the usual one.

We may say that a set M is well-ordered, if there is a function R, having M as domain of the argument values and UM as domain of the function values, such that if $N \supset 0$ is arbitrary and $\in UM$, there is a unique $n \in N$ such that $N\subseteq R(n)$. I have to show that this definition is equivalent to the ordinary one. If M is well-ordered in the ordinary sense, then every nonvoid subset N has a unique first element. Then it is clear that if R(n), $n \in M$, means the set of all $x \in M$ such that $n \leq x$, the other definition is fulfilled by this R. Let us, on the other hand, assume that we have a function R of the said kind. Letting N be $\{a\}$, one sees that always $a \in R(a)$. Let N be $\{a,b\}$, $a \neq b$. Then either a or b is such that N \subseteq R(a) resp. R(b). If N \subseteq R(a), then we put $a \leq b$. Since then N is not $\subseteq R(b)$, we have $a \in R(b)$. Now let $b \leq c$ in the same sense that is, $c \in R(b)$, $b \in R(c)$. Then it is easy to see that a < c. Indeed we shall have $\{a,b,c\}\subseteq$ either R(a) or R(b) or R(c), but $b \in \mathbb{R}(c)$, $a \in \mathbb{R}(b)$. Hence $\{a,b,c\} \subseteq R(a)$ so that $\{a,c\} \subseteq R(a)$, i.e. a < c. Thus the defined relation < is linear ordering. Now let N be an arbitrary subset of M and n be the element of N such that $N\subseteq R(n)$. Then if $m \in N$, $m \neq n$, we have $m \in R(n)$, which means that n < m. Therefore the linear ordering is a well-ordering.

Theorem 10. Let a function ϕ be given such that $\phi(A)$, for every A such that $O \subseteq A \subseteq M$, denotes an element of A. Then UM possesses a subset **M** such that to every $N \subseteq M$ and $\supset O$ there is one and only one element N_0 of **M** such that $N \subseteq N_0$ and $\phi(N_0) \in N$.

Proof: I write generally A' = A - $\{\phi(A)\}$. I shall consider the sets $P \subseteq UM$ which, like UM, possess the following properties

- M ∈ P
- 2) $A \in P \rightarrow A' \in P$ for all $A \subseteq M$
- 3) T $P \rightarrow DT \in P$.

These sets P constitute a subset \mathbb{C} of UUM. They are called Θ -chains by Zermelo. I shall show that the intersection $D\mathbb{C}$ of all elements of \mathbb{C} is again a Θ -chain, that is, $D\mathbb{C} \in \mathbb{C}$. It is seen at once that $D\mathbb{C}$ possesses the properties 1) and 2). Now let $T \subseteq D\mathbb{C}$. Then, if $P \in \mathbb{C}$, we have $T \subseteq P$, and since 3) is valid for P, also $DT \in P$. Since this is true for all P, we have $DT \in D\mathbb{C}$ as asserted. Thus I have proved that $D\mathbb{C} \in \mathbb{C}$.

In the sequel I put $D\mathbb{T} = \mathfrak{M}$ and I assert that \mathfrak{M} has the property mentioned in the theorem. Obviously \mathfrak{M} is the least Θ -chain. Let $O \subset N \subseteq M$, and let N_0 be the intersection of all $Q \in M$ for which $N \subseteq Q$, then $N \subseteq N_0$. Further $\phi(N_0) \in N$, because otherwise $N'_0 = N_0 - \{\phi(N_0)\}$ would still contain N and be $\epsilon \mathfrak{M}$, which is a contradiction, since this would mean that N_0 is contained in $N_0 - \{\phi(N_0)\}$.

Thus we have proved the first half of the theorem. The proof of the latter half is considerably more laborious. It will be suitable first to prove the following:

Lemma. Let $A \in \mathfrak{M}$ have the property that for every $X \in \mathfrak{M}$ either $X \subset A$ or X = A or $A \subset X$.

Then A' possesses the same property. By the way, we may notice that such an A exists, M having this property.

Proof: If $X \in \mathfrak{M}$ is such that $A = \mathfrak{X}$ or $A \subset \mathfrak{X}$, then $A' \subset \mathfrak{X}$. Therefore, we only need to consider the case $\mathfrak{X} \subset A$. The question is whether some $\mathfrak{Y} \in \mathfrak{M}$ could exist such that $\mathfrak{Y} \subset A$ but \mathfrak{Y} not $\subseteq A'$, or in other words, $\phi(A)$ still $\epsilon \mathfrak{Y}$. I will denote by \mathfrak{M}^* the subset of \mathfrak{M} which remains after having removed all these \mathfrak{Y} from \mathfrak{M} . I shall show that \mathfrak{M}^* is a Θ -chain.

- 1) $M \in M^*$ because $M \in \mathfrak{M}$ and M is not possibly a \mathfrak{Y} . Indeed each \mathfrak{Y} is $\subset A$.
- Let B ∈ M^{*}. If A ⊂ B, then B' is not ⊂ A so that B' is not a U. On the other hand B' ∈ M, since B ⊂ M. Then B' ∈ M^{*} in this case.

If A = B, then B' = A' so that $\phi(A)\overline{\epsilon}B'$, whence again B' is not a \mathfrak{Y} so that $B' \epsilon \mathfrak{M}^*$. Finally, let $B \subset A$. Then $\phi(A)$ must be $\overline{\epsilon}B$; otherwise B would be a \mathfrak{Y} against the supposition $B \epsilon \mathfrak{M}^*$. But then a fortiori $\phi(A)\overline{\epsilon}B'$, so that B' is not a \mathfrak{Y} . Therefore $B' \epsilon \mathfrak{M}^*$.

3) Let $T \subseteq \mathfrak{M}^*$. Should DT be a \mathfrak{Y} , we would have

Then $\phi(A)$ is ϵ every element C of T. Since every C is not a \mathfrak{Y} , we must have C $\not\in A$ for every C ϵ T and thus, because of the supposed property of A, $A \subseteq C$ for all C ϵ T, whence $A \subseteq D$ T, so that DT is no \mathfrak{Y} . Hence DT $\epsilon \mathfrak{M}^*$.

However, since \mathfrak{M} is the minimal Θ -chain and \mathfrak{M}^* is a Θ -chain $\subseteq \mathfrak{M}$, we have $\mathfrak{M}^* = \mathfrak{M}$, which means that the elements \mathfrak{Y} do not exist. This proves our lemma.

Now let \mathfrak{M}_1 be the subset of \mathfrak{M} consisting of all $A \in \mathfrak{M}$ such that for every $\mathfrak{X} \in \mathfrak{M}$ we have either $\mathfrak{X} \subset A$ or $\mathfrak{X} = A$ or $A \subset \mathfrak{X}$. I shall show that \mathfrak{M}_1 is a Θ -chain, so that it coincides with \mathfrak{M} .

- 1) M is $\epsilon_{\mathbf{M}_1}$. This is evident since every $\mathbf{X} \epsilon_{\mathbf{M}}$ is $\subseteq M$.
- 2) If $A \in \mathfrak{M}_1$, then $A' \in \mathfrak{M}_1$. That is just the lemma proved above.
- 3) Let T be⊆ M1. Then for every N∈T and every X∈M we have either N⊆X or X⊆N. Let X be an arbitrary element of M. Then either there is an element N of T such that N⊆X, and then DT⊆X, or we have for all N∈T that X⊆N, whence X⊆DT. Thus DT∈M1.

Hence it follows that \mathfrak{M}_1 is a Θ -chain and therefore = \mathfrak{M} . This means that if A and B are $\epsilon \mathfrak{M}$, we always have one of the three cases $A \subset B$, A = B, $B \subset A$. Further it ought to be noticed that if $B \subset A$, then $B \subseteq A'$, else we should have $A' \subset B$, which obviously is impossible when $B \subset A$.

All this makes it now possible to prove the latter half of our well-ordering theorem; namely that if $N \neq 0$ is $\subseteq M$ there is only one $N_0 \in \mathfrak{M}$ such that $\phi(N_0) \in N$ and $N \subseteq N_0$. We have seen that there is such an N_0 . Every element P of \mathfrak{M} such that $P \subset N_0$ is $\subseteq N'_0$, so that $\phi(N_0) \in P$, whence N is not $\subseteq P$. Every other element P of \mathfrak{M} is such that $N_0 \subset P$, whence $N_0 \subseteq P'$, whence again $\phi(P) \in N_0$ so that also $\phi(P) \in N$. Thus N_0 is the only element of \mathfrak{M} with the two properties $N \subseteq N_0$ and $\phi(N_0) \in N$.

We can now define a function R from M to \mathfrak{M} thus: As often as N $\epsilon \mathfrak{M}$ & $\phi(N) = m$, we write N = R(m). It follows in particular from the theorem just proved that for every m ϵM a unique N $\epsilon \mathfrak{M}$ exists such that $\{m\} \subseteq N$ while m = $\phi(N)$ so that N = R(m). Thus R and ϕ are inverse functions.

It is easy to see that ϕ maps \mathfrak{M} onto M. Indeed, if $N_1 \subset N_2$, then $N_1 \subseteq N'_2$ so that $\phi(N_2) \in N_1$ whereas $\phi(N_1) \in N_1$. Hence $\phi(N_1) \ddagger \phi(N_2)$ so that ϕ furnishes a one-to-one correspondence between \mathfrak{M} and M. Therefore there exists an inverse function mapping M onto \mathfrak{M} , that is the function R.

Before entering into a more thorough treatment of the well-ordered sets and the ordinals I would like to remind you of some notations I shall use. An initial part A of an ordered set \emptyset shall mean a subset A of \emptyset such that if $x \in A$ and y < x, then always also $y \in A$, or in logical symbols $(x)(y)((x \in A) \&$ $(y < x) \rightarrow y \in A)$. Similarly a terminal part C of \emptyset is to be understood. An interval B shall be used in the meaning $B \subseteq \emptyset$ and (x)(y)(z) ($x \in B \& y \in B \&$ $(x < z) \& (z < y) \rightarrow z \in B)$. These parts A,B,C may be closed or open, for example an initial part A may have a last element, then it is said to be closed, or not, then it is open. An interval B may be open or closed or open to the left, closed to the right or inversely. It ought to be noticed that the union of a set of initial parts is again an initial part.

If $\sigma \in \mathfrak{O}$, the set of all $x < \sigma$ constitute an initial part. This I shall call the initial section corresponding to σ . It ought to be noticed that if \mathfrak{O} is well-ordered, every initial part which is not \mathfrak{O} itself is an initial section.

Theorem 11. Let a well-ordered set M be mapped into itself by a function f which preserves the order, that is $a < b \rightarrow f(a) < f(b)$ for all a and $b \in M$. Then for all $m \in M$ we have $m \leq f(m)$.

Proof: Let us assume that the theorem is not true. That would mean that the subset N of M of all those x for which x > f(x) was not void. Let m denote the least element of N. Then we should have

$$m > f(m) = m'$$
,

and because $m' \overline{\epsilon} N$,

$$\mathbf{m'} \leq \mathbf{f(m')}.$$

However, since f is order-preserving and m > m', we should have f(m) > f(m'), that is m' > f(m').

It follows that if M is mapped by a function f onto M with preservation of order, then f(x) = x for all x. Indeed, according to the theorem, we have $f(x) \leq x$ and $f^{-1}(x) \leq x$, that is, x = f(x).

From this it again follows that if a well-ordered set M is mapped with preservation of order onto an other well-ordered set M', then this mapping is unique. Indeed if f and g both map M onto M', then fg^{-1} maps M onto M so that $fg^{-1}_{(x)}$ is x and therefore f(x) = g(x) for all x.

Theorem 12. If M is mapped by f with preservation of order into an initial part A of itself, then A = M and the mapping is the identical one. We may also say: M cannot be mapped onto an initial section of itself.

Proof: Let f map M onto A, A initial part of M. Then no element m of M can be > every element x of A, because f(m) should belong to A so that m > f(m), which contradicts the previous theorem. Thus every $m \in M$ is \leq an $x \in A$, whence $m \in A$, that is, A = M.

Noticing that an initial part of a well-ordered set M is either M itself or a section of M, we have that if $M \simeq N$ (meaning M and N are similar), then M is neither $\simeq N_1$ nor $N \simeq M_1$, M_1 and N_1 denoting sections of M resp. N.

Theorem 13. Let M and N be well-ordered sets. Then either $M \cong N_1$, N_1 a section of N or $M \cong N$ or $M_1 \cong N$, M_1 a section of M.

Proof: Let I be the set of all initial parts of M that are similar to initial parts of N constituting a set J. Then the union SI is in an obvious way similar to SJ. Now either SI must be = M or SJ = N. Else SJ will be the section belonging to an element i of M and SJ the section delivered by $j \in N$. But then SI + $\{i\}$ would be similar to SJ + $\{j\}$ which contradicts the definition of I. Now, if SI = M, either $M \cong N$ or $M \cong a$ section N₁ of N according as SJ is N or N₁, else SI is a section M₁ of M while SJ = N so that M₁ $\cong N$.

5. Ordinals and alephs

It is now natural to say that an ordinal α is \leq an ordinal β , if α is the order-type of a well-ordered set A, β the type of B, such that A is similar to an initial section of B. It is clear that $\alpha \leq \beta \& \beta \leq \gamma \rightarrow \alpha \leq \gamma$ and that $\alpha \leq \beta$ excludes $\beta \leq \alpha$. Thus all ordinals are ordered. However, this ordering is also a well-ordering. Let us namely consider an arbitrary set or even class C of well-ordered sets. Let M be one of the sets in C. Its ordinal number μ may be the least of all represented by the considered sets. If not there are other sets in C which are similar to sections of M. These sections are furnished by elements of M and among these there is at least one. The corresponding initial section represents then the least ordinal of all furnished by the sets in C.

Theorem 14. A terminal part or an interval of a well-ordered set is similar to some initial part of it.

It is obviously sufficient to prove this for a terminal part. According to the comparability theorem, otherwise the whole set M would have to be sim-