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ALIGNMENT CHARTS

Introduction. From time to time the present author has

given a course called Graphical and Numerical Computation* It

has usually covered such topics as Alignment Charts, Inter-

polation, Numerical Differentiation and Integration, and Curve

Fitting, as well as various minor topics and applications. It

is the object of the present paper to discuss the first of

these topics. It is our aim to present the subject with

theoretical generality but with all possible simplicity.

The alignment chart, or nomograph, is a tool of consider-

able value. In a great variety of applied problems where high

accuracy is not required, or where it is unattainable, this

graphical process has demonstrated its usefulness. It is

especially helpful when many numerical problems of a similar

sort must be handled. Often the most complicated formula will

be solved by reading from a scale. Moreover, the chart can be

used by a person without special knowledge or experience and

without the mastery of a difficult technique.

There are many books on alignment charts. The subject

has appealed to those who are Interested in the application of

numerical processes to practical problems. One may say of

these books that often they have been written by authors whose

interests tended in special directions with the result that



each presentation has had a particular bias. As a consequence,

many of these texts, however excellent In certain of their as-

pects, have failed to present to the reader certain parts of

the underlying theory which seem to the present author to be

fundamental. It Is because of these facts that this Intro-

duction to the subject Is being written.

The theory of alignment charts may be reduced to very

simple elements. Like all Gaul In the time of Julius Caesar

the theory Is divided Into three parts. They ares

(1) Scales, or curves In parametric form,

(2) Three-rowed determinants,

(5) The transformation theory.

We shall discuss these three parts In order.

Scales. Familiar examples of scales are the common foot

rules and measuring tapes with the graduations marked upon

them, thermometers, protractors, and the like (see Figure 1).

Each exemplifies the fundamental nature of a scale as a curve

(Including the straight line) with certain marks upon It to

which numbers are attached.

Let us think of the curve as lying In a plane In which we

have set up a system of rectangular coordinates. The X and Y

of each point of the curve depend upon • that Is, are functions

of - the scale reading at the point. We thus have

(1) X - f(t), Y * g(t),

where t Is the scale reading and f and g are suitable

functions. We have In (1) the equations of the curve In para-

metric form.
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AM an example, the scale furnished by the edge of the

foot rule at the top of Figure 1, using the axes indicated, is

X • t, Y • 0,

where t is the number of inches as read at the point. The pro-

tractor below it carries a scale whose parametric equations

are

X » r cos 0, Y * r sin 9,

where 6 is the scale reading in degrees and r is the radius of

the circle.

.Conversely, a pair of relations such as (1) defines a

scale. We construct it by plotting the curve which these

relations define and marking upon it such values of the para-

meter t as we wish. For example, at the bottom of Figure 1

we have plotted the scale



Consider a uniform scale lying on a line,

X * kt, Y » 0,

drawn in a plane in which a coordinate system has been set up*

The distance between unit values of t on the scale is k

X-units. A large value of k means generous room for the

t-graduations, a small k crowds them together. The distance

between the unit graduations, measured in terms of the unit

used in laying out the coordinate system, is the derivative

dX/dt - k.

In the general case (1) the ratio of the scale unit to

the unit used for the coordinate system is the derivative of

arc length

ff(t)2 + g'(t)2 .

Ordinarily, this scale factor will vary from one part of the

scale to another.

In the example of the protractor scale of Figure 1, we

find

(-r sin 0)2 + (r cos 8)2 - r.

In the example of the protractor scale of Figure 1, we
find, since s • irr6/180,

da- irr

The scale factor is thus constant and we have a uniform cir-

cular scale.

Slide Rules* The slide rule is so simple an illustra-

tion of the use of scales that it seems desirable to digress

from our main purpose long enough to set down its general

theory* We shall find that we have a mechanical contrivance
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which can be made to solve a large variety of problems.

Consider two material objects, such as strips of wood or

of pasteboard, which can be placed on opposite sides of a line

in the plane and can slide freely along this line. We take

the line to be the X-axis* Place the objects together in an

initial position and mark a common origin 0 upon the line*

Measuring from 0 we construct lower and upper scales

respectively

X - f(x), X = g(y).

We mark a second origin Of and lay off from It lower and upper

scales

X' - P(s), X' - G(t),

respectively. We may use any desired functions in construct-

ing the four scales. There results a slide rule whose upper

and lower parts bear two scales each.

We proceed to investigate the properties of this mechanism.

Let the upper part slide along the line, as illustrated in

Figure 2. In the new position suppose that the readings x and

y fall together and the readings s and t fall together,. Since

0 and Of on the upper part have been displaced the same dis-
*

tance from their original positions we have immediately that

(2) f(x) - g(y) =P(s) - 0{t).

1
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This slide rule is a device for solving (2) for any one

of 'the variables when the other three are known. Thus to

solve for t when x, y, and a are given we set the rule so that

the given valves of x and y fall together, coincident with the

given value of s we read the required value of t. Any equat-

ion in four variables which can be written as a sum of terms

each containing only one of the variables can be thrown into

the form (2) and hence can be solved by means of a suitable

slide rule.

In the preceding construction various simplifications may

occur. It may happen that 0 and Of fall together, that the

scales on one of the moving parts may coincide, or the scales

above and below the line may be alike. All of these things

happen in the case of the simplest form of the slide rule for

multiplication. The lower scales X * log x and X = log s

coincide, as do also the upper scales X = log y and X =* log t.

Equation (2) becomes

log x - log y m log s - log t,

from which various multiplications and divisions can be

performed*

In Figure 3 is shown a slide rule for solving the problem

of finding the length a of the longest girder which will go

around the corner from a corridor of width x into one of width

y at ri#it angles to it. This is a problem frequently met in

the calculus. It is allied to the hypocyclold of four cusps,

since the equation connecting the variables is

We write this in the form (2) as follows!



x2/3 - 0 - a2/3 - y2/3,

and the scales are of the form X = x ' .

Y

The role Is set for x » 8. From It we read that If

y m 10 then a = 25.3. anything shorter than this will pass

around the corner* If the girder is 20 feet long and x s 8

feet then the second corridor must be about 6.1 feet wide in

order that the girder can make the turn.

Three-rowed Determinants. For a comprehension of the

essentials of the theory it is important that the student

have a knowledge of determinants. They need be only deter-

minants of the third order. A little later he will require

the formula for the multiplication of two such determinants,

but at present a knowledge of the most elementary properties

will suffice.

The equation

" X Y 1

*2 b2 C2

ft3 b3 C3
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where the elements in the second and third rows are constants,

represents a straight line; at least, unless the minors by

which X and Y are multiplied are both zero. We can make this

line pass through a point Pg (Xg,Yg) by replacing the elements

of either the second row or the third row by Xg,Yg,l. By a

similar alteration of the other row we can put the line

through another point Ps (X3,Y3). That

X Y 1

passes through Pg and Fg is now obvious, since to replace X

and Y by the coordinates of either point is to make two rows

alike and to cause the equation to be satisfied.

The preceding line will pass through the point P̂ (X̂ ,Ŷ

if the coordinates of this point satisfy the equation of the

line, that Is, if

x1 TI

(3) Y2 1 0.

This is the necessary and sufficient condition that the three

points P̂ , Pg, and Pg lie on a line. In the next section we

make use of this condition to lay the foundation of our theory.

Alignment Charts. Given three scales lying in the XT-

plane (Figure 4). Let their parametric equations be

Xx * F(x), Yx - f (x)

<4> Xg * °(y)' Y2 * g(7)'
X - H(z), Y = h(z).
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(5)

We lay a straight line across the figure, cutting the

scales at the points Pi»?2'̂ 3' with scale readings x,y,z. The

coordinates of the points, namely, (X̂ Ŷ ), (Xg,Yg), (X3,Y3)

respectively, are given by Equations (4).

From the fact that P̂ Pĝ g ̂ ie on a line the coordinates

of these points satisfy Equation (5). Inserting the values

from (4) we have

F(x) f(x) 1

0(y) g(y) 1

H(z) h(z) 1

Conversely, If this equation Is satisfied the points

(X̂ Yg), (X3,Y3), as given by (4), lie on a line.

The three scales constitute an alignment chart for the

solution of equation (5). If two of the variables are known

the third can be found. We Join by a straight line the points

on the scales whose parameters are given and where this line

meets the third scale we read the value of the remaining

parameter.

The determlnantal Equation (5) Is the central feature of

the whole theory. When we set out to construct an alignment

chart for the solution of an equation In three variables we

endeavor to put the equation In the form (5). If successful,
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we can then construct the three scales (4) by extracting the

functions from the rows of the determinant.

The important fact about the determinant (5) is that each

row contains one and only one of the variables and each vari-

able has its row. Given an equation, we endeavor to write it

as such a determinant set equal to zero. If we can achieve

this in one way we can do it in many ways - by adding columns

to columns, which keeps the variables in their appropriate

rows, by dividing the elements of a row by a function of the

variable appearing In that row, which amounts to dividing the

two members of the equation by that function. By this latter

device we secure the column of lfs which appears in (5).

The Quadratic and the Reduced Cubic. We illustrate with

the equation

x2 + ax * b » 0.

Ordinarily, a and b are given and x is to be found. We write

this after a few trials as

x2 -x -1

a 1 0 - 0 ,

b 0 1

in which we have the variables suitably distributed into rows.

We can complete the determinant in Innumerable ways. Thus to

remove the 0 in the third column we add the elements of the

second column:

X2 -X -X-l

a 1 1

b 0 1

0.



How dividing through by -x-1 we have the equation in the

form (5)

* x
a l l

b 0 1

We would next plot the scales

0.

Xg - a, Y2 * 1,

X3 = b' Y3 * °»

and our nomograph for solving the quadratic would be completed*

The first of these scales is a hyperbola, the second and third

are parallel lines. The chart will not be illustrated here.

We can get an alignment chart for solving the reduced

cubic

x5 * az + b - 0

by replacing x2 in the preceding analysis by x5. The a- and b»

scales are the same as before. The x-scale is the cubic curve

Parallel Scales. There are many relations in which the

variables appear in separate terms, so that the equation is of

the type

h(z) » f(x) + g(y).

This can be written

-1 f(x) 1

1 gfy) 1

0 ?h(z) 1
A

from which we can construct an alignment chart.
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We have the scales

^ • -1, ?! - f U),

X • 1* Y - g(y),

These three scales are parallel, the last being midway between

the other two. It is clear from very elementary geometry

that any line cuts across the scales so that Ŷ  is the average

of Y-ĵ  and Ygf

which is identical with the given equation. This type of

chart is much used.

Two examples are shown. In Figure 5 we have a chart for

multiplication, using

log 2 » log x * log y,

the scales thus being the familiar logarithmic scales. In

Figure 6 is a chart for the solution of the problem of getting

the girder around the corner from one corridor into another,

-10

— Q

- 10

— Q

— 10

—10
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A chart for multiplication which does not employ logarith-

mic scales can be devised. The equation

z - xy

may be written

-x 1 0

0 y 1 * 0.

z 0 1

Adding the elements of the second column to those of the third

and performing a division In the second row, we get

-x 1 1

0 -i. 1
y+i

z 0 1

The scales are again straight liness

The first and third are parallel, the second is perpendicular

to them.

Mechanical Details. Certain practical hints may be

mentioned for the benefit of the novice in the making of charts.

The graduations • should be fine lines and should be drawn at

right angles to the curve on which they are marked. It will

simplify the reading If certain Important marks, such as every

fifth one, are made longer. The ordinary slide rule is well

designed in this respect and should be studied by the chartist.

The line across the chart by which a problem is solved

should not be actually drawn, since a few lines in pencil
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would Impair the chart's utility. Some sort of mechanical

line to be laid across the drawing is required* An opaque

straight edge, such as a wooden ruler, is not serviceable, be-

cause It covers up part of the scale and makes Interpolation

difficult. The edge of a transparent ruler is much better.

Some persons have had good success with a fine thread, which

can be stretched across the nomograph.

The present author, who has studied this matter a good

deal, constructed a "line" as follows and found it superior to

all other means. On a transparent ruler or celluloid triangle

(not too short) let a highly accurate straight line be drawn

with the point of a knife. Let graphite from a pencil be

worked into the line to give it visibility. The device is used

with the side of the ruler on which- the line is drawn flat

against the paper, so that parallax is prevented.

It need hardly be remarked that a good alignment chart

cannot be folded or wrinkled without damage to its accuracy.

It is an interesting fact, though, that there are many kinds

of stretching and deformation of the paper that will not im-

pair its efficacy. This brings us to the matters treated in

the following sections.

The Transformation Theory, If a problem can be solved

by an alignment chart it can be solved by an infinitude of

different charts. Once we have our basic determinant, it can

be altered in Innumerable ways by adding columns to columns,

and the scales whose equations are extracted from the deter-

minant exhibit great variety. We propose' now to treat the

process with generality.
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Let th* equation (5) on which a chart is based be multi-

plied through, by a non-vanishing constant D written In the

form of a determinant with constant elements:

(6)

D

cl

The equation which results,

F(x) f(x) 1

0(y) g(y) 1

H(z) h(z) 1

°*

ftl *2 ft3
bl bS b3

a30(y)

cl °2 ci

be rewritten In determinant form by the use of the formula

for the multiplication of two determinants. The result is

-0.

We have again a determinant In which each variable is re-

stricted to a single row. We get the desired lfs in the last

column by dividing through by the elements that appear there.

Obviously, we can divide the first member of this equation by

dividing all the elements in a single row. The result is the

equation

(7)
0,

itf f*

where
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(8) XJ * i bjf (*) + Ol yl m a2F(x) * bgf (x) * eg
* a3F(x) + b3f (x) + c3 ' 1 a3F(x) * b3f(x) •*• c3 '

Y.
a30(y) + b3g(y) + c3 ' 2 a3G(y) * b3g(y)

yt
2

, , aiH(g) •*" *>i*i(z) * QX ^ agH(z) * b2h(z) * c2
X3 * a3H(z) * b3h(z) + c3 3 * a3H(z) + b3h(z) * c3 '

Equations (8) are parametric equations for the construc-

tion of scales to form an alignment chart for the solution of

(7), and (7) Is simply an altered form of (5)* There are nine

constants at our disposal In (8), eight of which are essential*

We can select them so as to get a wide variety of different

charts.

As a practical matter we observe that we can multiply by

D as soon as we have our equation in determinant form with the

variables distributed into rows* There is no advantage In

getting a column of lfs beforehand. For example, starting

with the first determinantal form of the equation of the quad-

ratic in a preceding section, we are led to the following form

of Equations (8):

- bgx ~ c2 >
b3x - o3 agx" - b3x -

a-a •*• b. a^a '

x^

* bl v. » "8* *
asa + b3 ' 2

T.
3

The first of these curves is a conic, the second and third are

straight lines. By a suitable choice of the constants, the

conic may be any prescribed hyperbola, parabola, or ellipse -
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the unit circle with center at the origin, for instance - and

the linear scales may have various positions*

We have a similar discussion of the reduced cubic if xf*
•z

in the preceding equations be replaced by x • The first scale

is then a cubic curve, which may have a variety of forms.

Pro J e ct i ve Trans formations. Let us consider the scales

of Equations (4) in the original chart in the XT* plane and com-

pare them with the new scales of Equations (8). The latter are

plotted in rectangular coordinates in an X HIT '-plane. We ob-

serve from these two sets of equations that the original scales

are carried into the new ones by means of the relations

-. _
• y

These equations map points, lines, scales, etc,, lying in the

XT- plane upon corresponding objects in the X HP -plane. They

transform configurations in the XT-plane into configurations

in the X̂ 1 -plane. The particular Equations (9) define what is

called a protective transformation.

This important transformation has thus arisen in a simple

and natural way in the study of alignment charts. It is a

powerful tool to be used in their alteration and improvement*

The student should, at this point, devote serious study to the

properties of the transformation to the end that he may take

full advantage of its possibilities. In the process he will

become acquainted with one of the most fascinating parts of

geometry.

For many purposes we need the values of X and Y in terms

of Xf and Y1. Solving (9) we find the so-called inverse

trans formation:
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(10) ^ _ AiX» * AgY' * A3 , BjX' * BgY' * B5
" OjX1 + CgY1 + C3

 f C^X1 * CgY1 + C3

Here the capital letters indicate the co-factors of the corres-

ponding small letters in the determinant D, that is,

Al * b2°3 * b3°2» *2 * b3°l * °1C3» A3 * bl°2 " b2cl*

BI * agcg - ages, Bg = â cj - agci, 83 » agci - â cg,

Cl = a2b3 * a3b2' C2 = a3bl * alV °3 * alb2 ~ a2bl"

Equations (10) would be used to insert the values of X and Y

into the equation of a curve in the XT- plane to get the equat-

ion of the transformed curve in the XHT1- plane*

The inverse transformation (10) is itself a projective

transformation. Also it is readily found that the succession

of two projective transformations is a projective trans-

formation* That is, if the XT-plane is mapped by a projective

transformation on the XT '-plane and the X!Y '-plane is mapped

By a projective transformation on the X̂ Ŷ -plane, the result-

Ing transformation of the XT-plane on the X*Y"-plane is

projective. We say that air these transformations form a

group >

The Straight Line* The general straight line in the

XT-plane,
pX * qY * r = 0,

is carried by the transformation (using Equations (10)) into

(pAx + qBi * rO^X* + (pAg + qBg * rCg)Y' + pA3 * qB3 * rC3 - 0.

We thus have the result that a straight line is carried into a

straight line* It is because of this property that an align-

ment chart is transformed by a projective transformation into

an equivalent alignment chart* Three points which lie on a
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straight line on the scales of one chart are carried Into

colllnear points on the scales of the other chart.

A line of special Import Is

(11) agX + b3Y * c3 = 0,

which we get by setting the denominators In (9) equal to zero.

We dispose of this case by postulating a "line at infinity11 in

the X HP-plane into which this line goes* Similarly, from

(10), there is a line

CxX
f * C2Y* + C3 » 0,

which corresponds to a line at Infinity in the XT-plane. If

a$ • bg * 0, so that the denominator of (9) is constant, the

line at infinity goes into the line at infinity and the trans-

formation is called affine.

The use of Infinite elements is one of the most intrigu-

ing aspects of projective geometry for the beginner. Parallel

lines meet at infinity and two distinct lines thus always have

one common point. We transform concurrent linear scales into

parallel scales by making the line (11), pass through the

point of intersection of the original scales. We can indeed

transform a whole linear scale to the line at infinity, lines

through a point on the scale would then merely have a speci-

fied direction.

Conies. The degree of a curve is unchanged by a pro-

jective transformation. That the degree is not increased is

seen by substituting from (10) and simplifying, that it is not

decreased follows from the fact that the inverse transforma-

tions cannot raise it again* It follows that conies are

transformed into conies.
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Conies are classified according to their behavior with

reference to the line at infinity* An ellipse does not meet

that line| a hyperbola meets it in two points j a parabola

meets it In one point. What a conic is carried into by the

project!ve transformation (9) is determined by the number of

its intersections with the line (11).

The beginner will find it instructive to apply some simple

transformation, such as
X f = x - *•-!

to familiar conies to see what results. Here the Y-axis,

X = 0, is carried to Infinity. Conies which meet the line at

two points, such as

X2 + Y2 » 1, Y2 = X + 1,

go into hyperbolas
o o 9 0

Xt2 - Y'*5 * 1, Yi* - X'^ « X'.

Conies which do not meet it go into ellipses, for example, the

parabola 0
Y2 - X - 1

is transformed into the circle

Xi
2 + Y'2 - X'.

Conies which touch the line, as the following circle, parabola,

and hyperbola,

X2 + Y2 * aX - 0, Y2 » X, XT - 1,

go into parabolas:

yt2 * aX1 + 1 « 0, Y'2 - Xf, Y» - X|2.

A scale which lies on a conic - a circular scale, for

instance - may be projected into one lying on any other conic

whatsoever, and this may be done in infinitely many ways. Let
o

us, for instance, transform a given conic into Yf - X1 so
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that three points P, Q, R, on the conic go into the end of the

Y-axis, the origin, and the point (1,1) respectively. Let

a3X + b3Y + c3 = 0

be the tangent at P; let

agX + b2Y + c2 = 0

be the tangent at Q. and let

alX * blY * °1 * °

be the line FQ. Now the transformation

b2Y * c2
a3X 1- D3Y + c3 ' a3X + b3Y + c3

carries the given conic into a parabola touching both the

X'-axls and the line at Infinity on the Yf-axls. It has then

2the equation Yf = KXf . If now we choose n and k so that at R

we have X1 • 1, Y1 = 1, then the transform is Y1 = X|2. Since

two conies can thus be transformed into the same parabola then

one can be projected into the other so that three prescribed

points of the first go into three prescribed points of the

second. This can be done, in fact, in only one way. In parti-

cular, a conic may be thus mapped on Itself. For example, a

circle, In addition to being carried into itself by rotations

about its center, can be projected into Itself in infinitely

many other ways.

The Problem of the Rectangular Page. We use the pro-

Jective transformation to shift the positions of scales and to

put a chart In more manageable form. We bring distant portions

of a chart back on the page^ we change the positions of scales

so as to make best use of the space on which our chart is to

be drawn. As an indication of what we can achieve we quote
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two theorems s

There la one and only one projectlve transformation which

carries four given points, no three collinear, of the XT-plane

into four given points, no three collinear, of the XT '-plane.

There is one and only one projective transformation which

carries four given lines, no three concurrent, of the XT- plane

Into four given lines, no three concurrent, of the XT '-plane.

Let the portion of the chart that we wish to use be en-

closed in a convex quadrilateral PQRS, as shown in Figure 7.

We wish to map this on the rectangular page P'Q'R'Ŝ aa in the

figure. We call this the problem of the rectangular page. It
«

can be solved, according to the preceding theorems, in exactly

one way. We give here, its analytic solution.

Let PS and PQ have equations

c ~ 0, aX * bY * c - 0,

respectively. Let 1C,N be the points of Intersection of oppos-

ite sides of the quadrilateral, and let the equation of the

line MN be
&3X + b3Y + c3 - 0.

We set up the transformation

* Y.
b3Y + c3 '

It la clear that the line PS goes into the line Xf 8 0, as

required, and that the line PQ goes into Yf 3 0. The line UN

goes to infinity*

Since H is carried to infinity, the line QR is carried

into a parallel to the Y'-axls. Similarly, since H goes to



S'

Y'

R1

X1

Q1

infinity, the line SR Is carried Into a parallel to the

X'-axis. The original quadrilateral is thus napped on a

rectangle two of whose sides lie along the axes. We have now

but to choose h and k so that the remaining sides pass through

the points Qf and S1, and the problem is solved.

In Figure 7 the points and lines all appear in the finite

plane, but this need not be the case. One or.more of them may

lie at infinity. This leads to no difficulty. For example.
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if FQ and RS %are parallel but PS and OR are not, then N is at

Infinity and MN is a line through M parallel to FQ. If KJRS

is a parallelogram then MN is the line at infinity*! in this

case we set a3 = b3 « 0. We handle similarly the cases in

which a vertex or a side of PQRS is at infinity.

It is essential that the quadrilateral be such that the

line MN, which is to be carried to infinity, should not cut

across the interior of the region to be mapped on the page*

Hiffi. Accuracy Charts. It was remarked In the beginning

that alignment charts are valuable if great accuracy is not

required. Let us see what can be done to increase the accur-

acy that one ordinarily expects. We could, of course, make

larger and larger charts, but there are obvious objections to

excessive size.

One thing that occurs to us is that there Is a good deal

of blank space on an alignment chart. There are ordinarily

three scales surrounded by unused areas. Is it not possible

to break scales into pieces and fit them Into these areas with

the result that we get the advantages of long scales without

the disadvantages of long charts? That this is sometimes

possible will be shown by an example.

We consider the case of parallel scales and the equation

h(ss) * f(x) * g(y).

Let us write this in the form of a determinant as followst
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- l - i - 2ma f (x) - mb 1

1 + 2na g(y) - nb 1 « 0.

(m+n)a |[h(z) - (m+n)b] 1

For m = n = 0, this gives the chart with three parallel

scales explained earlier in this paper. Let b be the height

of the page and let the original chart be so designed that the

scales extend upward from the X-axis to a height p times the

height of the page, where p is an integer. Taking the X-axis

at the bottom of the page, we plot the scales

X-ĵ  - - 1 + 2ma, Yx * f(x) - mb,

for m = 0,l,...,p - 1. The long x-scale thus appears in p

parts along vertical lines spaced a distance 2a apart.

Similarly, we plot

X2 • 1 + 2na, Y2 * g(y) - nb,

for n - 0,1,...,p - 1, getting p parallel y-scales 2a apart.

The z-scales,

X3 - (m+n)a, Y3 * £ [h(z) - (m+n)b],A
m,n = l,2,...,p - 1 are 2p - 1 In number and are spaced a units

apart. In designing the chart,a is so chosen that the scales

do not interfere with one another.

For a given m and n we note that

X3 =5 <X1 "I"X2>-

In using the chart we need remember only one thing, namely,

that the z-scale which is used with given x- and y-scales is

the one lying midway between them.
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The accompanying "Arithmougraph" is a chart which is

constructed on these principles. It is based on the equation

log z = log x + log y.

By its use, considerable accuracy in multiplication and

division is possible. The values of x appear at the tops of

scales 0,2,4,6. the values of y are read on the tops of scales

8,10,12,14; the values of z are on the bottoms of scales 4

to 10.

For example, to multiply 12.13 by 11.15, we lay a line

across 12.13 on scale 0 and 11*15 on the top of scale 8. This

line cuts the lower scale of 4 (midway between 0 and 8) at the

product 135.2*

Other types of charts will require quite different hand-

ling. These matters have been little studied/ but in this

author's Judgment they wo/uld well repay investigation. By

suitable design a device for rougjh calculation may be con-

verted into an instrument of precision.
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